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KEYWORDS Abstract Various methods and specialized software programs are available for processing two-
Background correction; dimensional gel electrophoresis (2-DGE) images. However, due to the anomalies present in these
Filtering; images, a reliable, automated, and highly reproducible system for 2-DGE image analysis has still
Noise reduction; not been achieved. The most common anomalies found in 2-DGE images include vertical and hor-
Preprocessing; izontal streaking, fuzzy spots, and background noise, which greatly complicate computational anal-
2D gel electrophoresis ysis. In this paper, we review the preprocessing techniques applied to 2-DGE images for noise

reduction, intensity normalization, and background correction. We also present a quantitative
comparison of non-linear filtering techniques applied to synthetic gel images, through analyzing
the performance of the filters under specific conditions. Synthetic proteins were modeled into a
two-dimensional Gaussian distribution with adjustable parameters for changing the size, intensity,
and degradation. Three types of noise were added to the images: Gaussian, Rayleigh, and exponen-
tial, with signal-to-noise ratios (SNRs) ranging 8-20 decibels (dB). We compared the performance
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of wavelet, contourlet, total variation (TV), and wavelet-total variation (WTTV) techniques using
parameters SNR and spot efficiency. In terms of spot efficiency, contourlet and TV were more sen-
sitive to noise than wavelet and WTTV. Wavelet worked the best for images with SNR ranging 10—
20 dB, whereas WTTV performed better with high noise levels. Wavelet also presented the best per-
formance with any level of Gaussian noise and low levels (20-14 dB) of Rayleigh and exponential
noise in terms of SNR. Finally, the performance of the non-linear filtering techniques was evaluated
using a real 2-DGE image with previously identified proteins marked. Wavelet achieved the best
detection rate for the real image.

Introduction

Proteomics is the analysis of the complete set of proteins (i.e.,
the proteome) produced in a cell, tissue, or organism, at a
given time. A number of different aspects of protein analysis
are covered in proteomics, including the analysis of protein
expression. The presence or absence of proteins, and the direct
measurement of relative protein abundances can help under-
stand cellular processes, and may be useful for identifying drug
targets and diagnostic/prognostic markers [1]. As such, it is
one of the most active fields of biological research, given its
wide range of applications.

One of the most commonly used techniques in compara-
tive proteomic studies is two-dimensional gel electrophoresis
(2-DGE) [2], a technique capable of resolving thousands of
proteins in a single run. Using 2-DGE, proteins are firstly
separated according to their isoelectric points (pls) in one
dimension, and then, according to their molecular weights
in a second dimension [3]. Afterward, the 2-DGE gels are
stained for protein visualization and analyzed with
computer-assisted image evaluation systems for a comprehen-
sive qualitative and quantitative examination of the pro-
teomes [4].

2-DGE was initially employed for protein separation and
analysis approximately in 1975 [5]. Even though it was intro-
duced more than four decades ago, nowadays 2-DGE is still
widely used for whole proteome analysis [6,7], comparative
analysis of proteome changes [6,8], biomarker discovery, can-
cer research [9,10], as well as for the identification of protein
isoforms and post-translational modifications [11], among
other purposes. Its popularity could be attributed to several
factors. It is possible to resolve and visualize thousands of pro-
teins in a single gel as mentioned above. In addition, 2DGE is
very affordable compared to other techniques, which does not
require complex laboratory equipment but offers reliable and
reproducible results. 2GDE is optimal for cases when multiple
analyses are required on replicate samples. More importantly,
it is compatible with mass spectrometry and other downstream
analyses. Therefore, 2GDE is often used as one of the first
steps in describing the protein composition of a particular sam-
ple type, at a certain time point, and under a particular set of
conditions.

Many computational applications are available for process-
ing and analyzing 2-DGE images, such as MELANIE,
PDQuest, Z3, Progenesis Workstation, ProteomeWeaver, Pro-
teinMine, Delta2D, and DeCyder [12,13]. Given that one cell
can express around ten thousand proteins, 2-DGE needs an
effective computational tool that can process large volumes
of information [14]. It is often necessary to apply appropriate

preprocessing techniques to 2-DGE images, as the ultimate
performance of these analysis tools strongly depends on the
quality of the images to be processed [4,15].

For 2-DGE image analysis, techniques are required to
detect protein spots, to segment and to quantify the protein
expression level based on the number of pixels [15,16]. An
additional step of image alignment is performed in order to
match the corresponding protein spots from different images
[17]. However, due to technical difficulties inherent to 2-
DGE, anomalies are often found in gel images, such as noise
around protein spots, vertical and horizontal streaking, satura-
tion of certain protein spots, presence of very faint protein
spots, as well as non-linear intensity of protein spots [14,18].
Therefore, 2-DGE image analysis is frequently perturbed by
the presence of different types and levels of noise. For instance,
the impulsive noise can spectrally interfere in all frequencies
when the sample is digitalized. The background of 2-DGE
images can also vary among samples, depending on the techni-
cal specifications of the imaging system used to capture and
digitalize the images [15]. These variations and anomalies often
complicate the analysis of 2-DGE images and affect the repro-
ducibility of the results obtained [19,20]. A preprocessing
phase could be effective in reducing or eliminating these
anomalies, thus reducing errors in the subsequent spot detec-
tion. Omitting this preprocessing stage may profoundly affect
the results of the subsequent analysis, as noise could be falsely
identified as a protein, whereas real proteins of interest could
be missed [21]. Therefore, it is important to review the
advances in 2-DGE image preprocessing, in order to identify
areas of improvement that may be of great interest to research-
ers in the field.

There are three common objectives for the 2-DGE image
preprocessing, i.e., pixel intensity regularization (image nor-
malization), background correction, and noise reduction (fil-
tration) [15]. In the subsequent sections, we describe in detail
the preprocessing strategies to achieve these objectives, their
limitations, and recent advances. We also compare the most
representative noise reduction techniques using synthetic gel
images for a quantitative evaluation. Finally, we conclude with
recommendations to be considered for successful automatic
2-DGE image processing.

Preprocessing of 2-DGE images

2-DGE images inevitably exhibit anomalies caused by sample
preparation techniques and the imaging system used to acquire
the digital images [22]. The most common anomalies in 2-DGE
images are oversaturated, faint, or fuzzy spots, vertical and
horizontal streaking, overlapping spots, and noise [13,23].
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Figure 1 shows a 2-DGE image with the most common anoma-
lies. The image was obtained in our laboratory from prostate
tissue, the challenges of image preprocessing, and thus, the
requirement for robust algorithms in order to achieve proper
preprocessing are apparent.

Image normalization

Intensity normalization of 2-DGE images aims to normalize
the intensity of protein spots to facilitate processing. The spot
intensities may vary due to differences in the exposure of the
gel during the staining process and data saturation, among
other reasons [15]. As a step of image processing [24], intensity
normalization is also known as a preprocessing technique in
various literatures [25]. In fact, some researchers recommend
eliminating saturated spots before processing in order to
achieve the optimal results for the identification of proteins
in the gel [14,26].

To avoid saturation caused by high protein concentrations,
it is necessary to make sure that most of the data are repre-
sented by levels slightly below the maximum possible intensity.
Highly abundant proteins often mask fainter spots that repre-
sent proteins with low abundance. Usually, these low-
abundance proteins are also relevant, but pose difficulties in
accurate quantification, if the spots are too faint [27].

The normalization process helps to reduce noise, which dis-
torts the detection of protein spots in 2-DGE images according
to criteria of statistical significance, thus allowing the outline
of the spots of interest to be delineated [28]. However, in some
circumstances, the intensity of pixels does not present a clear
tendency. This type of standardization is based on information
from various replicate gels, generating a statistical average of
the intensity of each pixel. With these statistical averages, the
intensities of the entire image are normalized, using normaliza-
tion algorithms such as Cyclic Loess, Contrast, Cyclic Linear,
and Quantile [28]. Image regularization with multiple replicate
gels has yielded satisfactory results, since changes in patterns
of protein expression among samples are small compared to
the overall pattern of protein spots. The major limitation of

Noise Streaking

Fuzzy spots

Low abundance spots

Figure 1 Common anomalies present in a 2-DGE image

A 2-DGE image obtained from human peripheral blood mononu-
clear cells. As indicated by the arrows, the most common
anomalies are vertical and horizontal streaking, fuzzy spots, faint
(low abundance) spots, and background noise. 2-DGE,
2-dimensional gel electrophoresis.

this approach lies in obtaining and aligning a representative
number of gel images, which may result in the unwanted
removal of faint protein spots [15]. With image regularization,
it is possible to minimize distortions present in the images;
however, low-abundance proteins are often eliminated in the
process. Therefore, it is necessary to apply discriminatory algo-
rithms to these regularization techniques, so that potentially
faint but important protein spots would not be removed dur-
ing image regularization.

Background correction

The aim of 2-DGE image processing is to detect spots, and
define the location, border, and intensity of each spot. How-
ever, in some conditions, defining the limits of the spot border
is difficult due to the varied background, noise, and saturation
of protein spots [14,29,30]. Background correction is thus nec-
essary, as the background signal of 2-DGE images is not uni-
form and varies locally according to protein intensities. The
greater the intensity of a protein spot, the greater the noise sig-
nal around it, which introduces errors in detection. In addi-
tion, anomalies such as vertical streaking must be removed
from the image, as protein spots contained within these streaks
are not identifiable or quantifiable [15,31]. Three background
correction techniques are available to reduce the influences
of these phenomena. These include adjustment by polynomi-
als, local and global minima, and histograms.

Background correction with polynomial adjustment has
been widely accepted in the scientific community [32]. This
technique seeks smoothing the image background, removing
noise from overlapping spots, and minimizing the effects of
intensity degradation. The biggest limitation of background
correction is the selection of a background sample for the
adjustment. A poor selection of the background sample can
generate significant image distortion, or even lead to the
improper softening of background texture [33]. Local and glo-
bal minima are the simplest technique for background correc-
tion, making it possible to effectively mitigate noise in the
flatter areas (without significant changes in pixels) and smooth
discontinuities. However, a global threshold is not sufficient to
detect background variations [15].

For background adjustment using histograms, the distribu-
tion of intensities in an image is used to identify the back-
ground. The maximum peak in the intensity distribution is
the intensity of background pixels. The challenge of this tech-
nique is to establish the intensity threshold of the background
that is usually set by an optimization process [34]. The selec-
tion of parameters is a significant drawback for users with little
knowledge of optimization techniques, considering that the
model implemented to describe the background may be insuf-
ficient or cause a significant loss of faint but important protein
spots [35]. Although studies on the implementation of back-
ground correction techniques for 2-DGE images have lost
momentum, a variety of techniques [36] in this field are yet
to be explored. In addition, new techniques have also been
developed that are efficient for the analysis of images with fea-
tures similar to those of 2-DGE images, such as combination
of Gaussian mixture models and machine learning approach
[37], which may be promising options for 2-DGE image
processing.
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Noise reduction

2-DGE image filtering is the most commonly used approach
within the scientific community, with the most diversified tech-
niques [15]. These filtering techniques can be classified into two
broad categories: linear and nonlinear filters.

The first techniques reported for 2-DGE image’ preprocess-
ing were based on linear filters, which are the most widely used
techniques in commercial software programs. These kinds of
filters compute the output pixel as a linear relation of the sur-
rounding pixels [38]. In general, linear filters tend to blur
images, affecting the edges, lines, and fine details of the protein
spots [39]. While linear filtering techniques, such as the Gaus-
sian filters, have an acceptable performance under general con-
ditions, they are also likely to reduce the density of proteins
spots by smoothing the contour [40].

Orthogonal regression methods have been used as a simple
and efficient option that can adapt to a linear model [41]. How-
ever, the edges of protein spots of interest in 2-DGE images are
often distorted during filtering [25,42]. The linear filters based
on orthogonal regression techniques, which are most com-
monly used for noise reduction in 2-DGE images, are based
on principal component analysis (PCA) and Wiener filters.
PCA is a robust orthogonal regression technique, which shows
a great advantage in terms of spot edge maintenance. How-
ever, small details, such as low-abundance protein spots, can
be removed in the process [43,44].

With the Wiener filter, it is possible to obtain satisfactory
results with a low level of distortion of the image, but the noise
reduction is compromised [38]. When taking into account the
overall advantages of noise removal, a certain level of signal
degradation is generally acceptable. However, the noise reduc-
tion results in the blurred image with poor edge definition [15].
In general, these methods allow the user to select the number
of times the smoothing filter is applied, and the size of the con-
volution window to adjust the level of smoothing [45].

Nonlinear filters have fewer limitations, but generally
increase the degree of complexity and the need to define
parameters more thoroughly. Some nonlinear filtering tech-
niques used in 2-DGE images include contourlet transform
[46], total variation [47], and wavelet transform [19]. The con-
tourlet transform performs a decomposition of the data in fre-
quency and space by means of two decomposition methods
[46]. These methods allow a multiple scale of space and fre-
quency, as well as a high degree of directionality. Satisfactory
results have been achieved using these methods, in addressing
the low signal-to-noise ratio [48], and loss of relevant informa-
tion, thereby surpassing the wavelet transform [48].

The total variation technique, proposed by Chan [49] and
Xin [50], is very advantageous in terms of the extraction of
geometric features and in terms of the preservation of edges.
Using this technique, different degrees of smoothing on differ-
ent points can be achieved, which exemplifies its anisotropy.
Although able to capture all the directional information, this
technique leads to staircase effects in the noise removal process
[51]. Therefore, this technique does not perform as well as the
wavelet transform technique [41,50]. Wavelet transform is the
most commonly used technique for noise reduction, with a
high percentage of filtering and acceptable level of loss of rel-
evant information [19,43,52-57]. This method has become
increasingly popular in the preprocessing of 2-DGE images

since 2004, as reported in the study by Kaczmarek and others
[19].

Despite the simplicity of noise suppression methods based on
spatial filtering, the image tends to be severely distorted after
processing. As these types of images have local features with
high variation, it is almost impossible to discriminate between
information of interest and noise, when the processing consid-
ered only the spatial or spectral domain [41]. For this reason,
it is necessary to use a filter with a joint time—frequency domain
[57] that exceeds spatial filtering, in both signal/noise ratio and
distortion. Using the wavelet transform method, the image
can be decomposed into space-frequency components and eval-
uated point by point. It is also possible to combine several
images in order to obtain an average value and thus eliminate
noise more effectively [56]. For a correct operation, it is neces-
sary to determine the scale of the wavelet transform. However,
it is difficult to properly define the contours, resulting in a signif-
icant distortion of the information of interest [50].

Different derivations of the wavelet transform [58,59] are
available to deal with its limitations. For instance, Barlaud
and colleagues [60] presented a very useful technique called
Wavelet Transform Quincunx, to obtain a multiresolution
scale, thereby improving the performance around the edges
and enhancing filtering effect [41]. A hybrid technique, WTTV,
combines the power of wavelets with the advantages of Total
Variation (TV) [50], to reduce the loss of relevant information
and increases the level of filtering. The wavelet transform can
be applied first, followed by a total variation routine, thus min-
imizing distortions caused by the wavelet transform. In this
case, it is necessary to carefully define the parameters for both
components, since false information is generally introduced
due to limitations of the directional information. As a result,
the geometric captures can be affected, creating a distortion
of the borders around the spots of interest [46].

Due to the limitations of these techniques and the need for
parameter adjustments, advanced techniques such as genetic
algorithms [52] have been applied. However, it is noteworthy
that this entails an increase in computational complexity.
Although methods are available to minimize the computa-
tional cost of genetic algorithms, these add a higher level of
complexity to the whole process [61].

Validation measures for processing 2-DGE images

The lack of performance indicators with which the various
techniques can be fairly compared greatly hinders the selection
of preprocessing techniques. In fact, performance comparison
of many commonly used techniques has not yet been reported
in the literature [15]. The most commonly used indicator is the
signal-to-noise ratio (SNR) obtained from the mean square
error (MSE):

n A2
MSE, — 2=l = )7 ’;") (1)
> (x)
1
SNR = 10 % IOglom (2)

However, with the SNR indicator, important factors
regarding the retention of relevant information are not consid-
ered. Daszykowski thus proposed a measure called false dis-
covery rate (FDR), defined as a ratio of the number of
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stable variables from the permuted data to the number of
stable variables from the original dataset [25]. While this mea-
sure is focused on the object detection process, it does not list
the spots of interest that were removed during the preprocess-
ing routine. FDR can be estimated by:

N1

07 A3)
where N1 is the number of falsely identified significant features
in the permuted data for a given threshold value and N2 is the
number of significant features in the experimental data set for
the same threshold.

Another measure is spot efficiency [41] as defined below,
which establishes a relationship between the false spots that
were generated or prevailed, and spots that were lost with
the technique.

FDR = 100 *

Number of spots detected — Number of false spots
Number of spots detected + Number of lost spots

Spot efficiency =

(4)
Quantitative comparison of noise reduction methods
Comparison of synthetic images

The performance of several noise reduction techniques was
compared using synthetic images. Experiments were developed

A " e LAY

under controlled conditions and the quantitative indicators
SNR and spot efficiency were used to determine the perfor-
mance of the filtering techniques with a perturbation of
impulsive-type noise. To generate a cloud of spots, we used a
model of uniform distribution, which simulates proteins in 2-
D gels, and allowed overlapping between spots. The synthetic
spot model is a Gaussian distribution [62], with adjustable
parameters for size, intensity, and degradation (see Figure 2A).
We used a 512 x 512 synthetic image with 250 protein spots.
For each protein, the standard deviation was randomly set
between 0.3 and 0.8, and its maximum intensity was con-
strained between 0.6 and 1. Different types of noise were added
to the synthetic images to examine how the change of distribu-
tion affects the behavior of the techniques being evaluated.
The noise distributions applied to the images are: Gaussian
noise, Rayleigh type noise, and exponential type noise [63].
Table 1 presents the parameters used for each noise type to
simulate images with SNR between 8 and 20 dB. An example
of a synthetic image with noise is presented in Figure 2B.

To obtain images with a blurring effect, a linear approxima-
tion of the camera movements in pixels (N) was performed,
using image processing techniques with a filter of displacement
vector [64]. We used synthetic images with linear displacement
from 5 to 30 pixels and a representative synthetic image with
blurring effect is shown in Figure 2C. In addition, we also gen-
erated images with distortions between 5% and 30% in the
background to represent a non-uniform illumination system,
as exemplified by the image in Figure 2D.

Figure 2 Synthetic protein spots modeled as a 2-D Gaussian distribution
A. Example of synthetic image. B. Synthetic image with noise obtained by adding random values with Gaussian distribution. C. Synthetic
image with blurring using a filter of displacement of 5 pixels. D. Synthetic image with distortion that change background intensity until 5%.
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The SNR and spot efficiency for the images with noise and
filtered with nonlinear techniques wavelet, contourlet, TV, and
WVTYV are presented in Table 2 and Table 3, respectively. The
technique with the best performance for each noise distribu-
tion, variance, and indicator is highlighted. As expected, the
performance of each of these techniques decreases with the
increasing noise level. In terms of SNR, wavelet is the best
technique for images with Gaussian noise (Table 2). For
images with Rayleigh and exponential noise, wavelet presents
the best performance for low-level noise. Conversely, TV was

better for high level of Rayleigh and exponential noise (8—12
dB).

In terms of spot efficiency, wavelet and WVTV techniques
have a lower sensitivity to noise than the contourlet and TV
techniques, as reflected by the best performance of wavelet
and WTTYV techniques. Wavelet was the best for images with
noise levels between 12 and 20 dB, and WVTV was best for
images with high-level noise. Figure 3 presents an example of
filtering results obtained for the image with Gaussian noise
equal to 10 dB.

Table 1 Parameters for Gaussian, Rayleigh and exponential noise of synthetic images

Noise intensity (dB)

Distribution Parameter

20 18 16 14 12 10 8
Gaussian 4 0.0766 0.0966 0.1214 0.1530 0.1929 0.2430 0.3091
Rayleigh b 0.0277 0.0398 0.0539 0.0725 0.0980 0.1335 0.1858
Exponential a 14.0361 10.0361 8.3389 6.8749 5.6862 4.6894 3.8549

Note: o, standard deviation for Gaussian distribution with median x4 = 0; b, scale for Rayleigh distribution with shifting parameter o = 0; a, scale

parameter for exponential distribution.

Table 2 Performance of noise reduction techniques evaluated using SNR

Noise intensity (dB)

Noise type Noise reduction technique
20 18 16 14 12 10 8
Gaussian Wavelet 27.61 26.70 25.55 24.24 22.82 24.15 19.29
Contourlet 25.80 24.08 22.36 20.79 19.41 18.26 17.33
TV 26.29 24.48 22.64 20.79 18.92 16.99 15.02
WVTV 20.01 19.97 19.90 18.76 18.75 18.63 18.46
Rayleigh Wavelet 27.54 24.76 21.04 17.77 14.95 12.35 9.86
Contourlet 25.75 20.03 19.90 16.97 14.42 11.96 9.25
TV 26.11 23.87 20.73 17.69 15.01 12.50 10.50
WVTV 20.30 19.59 18.15 16.20 14.12 11.73 8.78
Exponential Wavelet 25.15 6.69 24.63 21.38 18.30 15.41 12.72
Contourlet 23.63 22.95 20.84 18.35 16.05 13.76 11.58
TV 23.53 24.78 24.20 22.28 19.86 17.20 14.60
WVTV 18.28 18.71 18.47 17.60 16.22 14.37 12.29

Note: SNR, signal-to-noise ratio; TV, total variation; WVTV, wavelet-total variation. The values in bold indicate the best SNR for each noise level.

Table 3 Performance of noise reduction techniques evaluated using spot efficiency

Noise intensity (dB)

Noise type Noise reduction technique
20 18 16 14 12 10 8
Gaussian Wavelet 90.71 90.00 90.36 87.86 88.57 86.07 71.79
Contourlet 89.29 88.57 87.50 87.51 78.93 65.00 44.64
TV 87.14 89.64 86.79 85.00 72.21 37.89 25.12
WVTV 87.14 86.43 86.43 85.71 86.79 87.14 85.16
Rayleigh Wavelet 90.36 89.64 89.64 91.43 89.64 87.86 88.57
Contourlet 89.64 88.57 88.57 86.07 89.29 84.64 72.36
TV 87.86 87.86 85.36 88.57 85.43 87.59 51.25
WVTV 86.43 86.79 87.86 85.00 86.79 86.07 83.57
Exponential Wavelet 90.00 90.00 88.93 88.21 88.21 88.21 77.14
Contourlet 90.36 87.14 87.86 84.29 72.50 61.84 48.25
TV 90.71 89.29 87.50 86.07 82.86 75.00 62.37
WVTV 85.71 85.36 85.36 85.71 84.29 85.57 83.93

Note: TV, total variation; WVTV, wavelet-total variation. The values in bold indicate the best spot efficiency for each noise level.
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Figure 3  Filtering results for a 2-DGE synthetic image with Gaussian noise
A. Synthetic image filtered with wavelet. B. Synthetic image filtered with contourlet. C. Synthetic image filtered with TV. D. Synthetic
image filtered with WVTV. The synthetic image is obtained by adding random values with Gaussian distribution for an intensity of the

noise of 10 dB. TV, total variation; WVTV, wavelet-total variation.

Table 4 Performance of noise reduction techniques evaluated using SNR and spot efficiency for images with blurring and non-uniform

background distribution

Image anomaly Noise reduction technique SNR (dB) Spot efficiency (%)

Blurring N (pixels) 5 10 15 20 25 30 5 10 15 20 25 30
Wavelet 34.8 26.2 21.6 18.4 16.1 14.3 98 96 90 80 66 54
Contourlet 35.3 26.3 21.6 18.4 16.1 14.3 98 96 90 81 65 53
TV 22.6 222 20.6 17.9 16.8 14.2 91 92 89 82 63 54
WVTV 25.4 24.3 20.7 17.9 15.9 14.2 93 94 89 82 63 55

Non-uniform Distortion (%) S 10 15 20 25 30 5 10 15 20 25 30

background Wavelet 21.5 19.8 17.9 15.7 12.9 9.2 99 98 99 97 97 97
Contourlet 21.5 19.8 17.9 15.7 12.9 9.2 99 99 99 98 98 96
vV 19.3 18.3 16.9 15.1 16.7 9.1 92 92 92 92 94 94
WVTV 20.3 19.0 17.4 154 12.8 9.1 98 97 98 97 96 96

Note: The values in bold indicate the best SNR and spot efficiency for each noise level. N (pixels) represents the number of pixels used to simulate

blurring effect. Distortion (%) is the percentage of degradation used for the non-uniform background.

Table 4 presents SNR and spot efficiency for images with
the blurring effect and non-uniform background distribution
filtered with nonlinear techniques wavelet, contourlet, TV,
and WVTV. Contourlet and wavelet transform have the best
performance with blurred images and images with a non-
uniform background distribution. Both filtering techniques
achieved comparable results for the different levels of blurring
and distortion.

Comparison with a real 2-DGE image

A real 2-DGE image taken from the LECB 2-D PAGE Gel
Images Datasets was used to compare the performance of
the aforementioned filtering techniques [65]. Sample 19, an
annotated 2-DGE image of human leukemia (Figure 4), in
which many proteins have been previously identified was
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Figure 4  An annotated 2-DGE image of a human leukemia blood
sample

A 2-DGE image of a human leukemia blood sample [65] was used
to validate the filtering results obtained from the synthetic images.
Annotated proteins in the image are indicated with crosshairs.

Table 5 Performance of noise reduction techniques evaluated using
the rate of detected proteins in a real 2-DGE image

Image Detection rate
Original 75.8%
Filtered by wavelet 87.9%
Filtered by contourlet 81.8%
Filtered by TV 71.2%
Filtered by WVTV 78.8%

Note: The value in bold indicates the best detection rate achieved. Data
source: LECB 2-D PAGE Gel Images Dataset.

selected for computing the rate of detection of these known
proteins before and after filtering using the different tech-
niques. Table 5 presents the rate of detected proteins from
the original image, and of the image filtered by wavelet, con-
tourlet, TV, and WVTYV. It can be seen that wavelet, con-
tourlet, and WVTV improved the rate of detection in
comparison with the non-filtered image. A detection rate of
71.2% was achieved using TV, whereas a maximum detection
rate of 87.9% was achieved using wavelet.

Table 6 Summary of preprocessing techniques for 2-DGE images

Remarks

The first step in most commercial 2-DGE image analysis soft-
ware programs is spot detection. Often, false positive spots are
detected due to noise and other artifacts in the image, and con-
versely, some real data may be missed. Therefore, image pre-
processing is a fundamental step for proteomic analysis using
2-DGE, as the performance of the subsequent analysis is
directly affected by the quality of the image. The development
of image acquisition systems and optimal sample preparation
protocols greatly improves image quality, reducing the inten-
sity and frequency of unwanted anomalies. However, some
anomalies are unavoidable and affect the accuracy and repro-
ducibility of the proteomic characterization of the sample.
Each of the preprocessing approaches meets particular needs.
Nonetheless, the order these preprocessing stages should be
implemented in, and whether all of them are actually necessary
or some could be excluded without affecting the final perfor-
mance, is still not clear. In conclusion, a methodology that
adequately integrates these preprocessing approaches is
needed.

Even though several specialized image processing software
programs are available for 2-DGE, these still require consider-
able human intervention, which affects reproducibility of the
results as well. The wide range of anomalies in 2-DGE images,
such as fuzzy spots, vertical and horizontal streaking, and
noise, make it difficult to process the image. Therefore, it is
important to implement advanced preprocessing techniques
that could help mitigate the effect of these anomalies. In this
review, we grouped three approaches of preprocessing: filter-
ing, image regularization, and background correction, which
are suited to different purposes such as noise reduction, regu-
larization of the intensity of the pixels, and background correc-
tion. If these preprocessing procedures are not implemented,
negative effects are observed during the image processing
stage, such as image distortion, loss of relevant information,
and changes in the contour of the spots of interest, yielding
non-representative data. Table 6 summarizes the most com-
mon techniques, and the disadvantages of the three main
groups of approaches for 2-DGE image pre-processing.

Noise reduction is successful when filtering techniques are
applied. Although linear filters are easy and simple for reduc-
ing noise in 2-DGE images, these filters tend to distort the
edges of the spots of interest. Techniques such as Gaussian fil-
ters, orthogonal regression, and PCA often remove small
details such as low-abundance proteins in the process. Thus,
nonlinear noise reduction techniques are presented as more

Objective Approach

Disadvantage

Image normalization Multiple-gel

Background correction Adjustment of polynomial

Local and global minima

Adjustment using histogram

Wavelet
Contourlet
TV
WVTV

Filtering

Requiring alignment of samples

Requiring selection of background sample
Depending on threshold selection
Requiring setting of optimization parameters

Requiring scale selection

Requiring scale selection

Resulting in the staircase effect

Depending on parameter of both wavelet and TV
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appropriate solutions. Nonlinear filters are more robust, but
also more complex to use; they require the definition of param-
eters that depend on the image. It is clear that there is still a
great scope for improving the performance of preprocessing
techniques for 2-DGE images, as well as for proposing new
ones, since the decision to implement these techniques in 2-
DGE image processing is based on their performance with
other types of images. Therefore, 2-DGE images are an attrac-
tive alternative for testing new algorithms for noise reduction,
background correction, and image adjustment.

In this article, we validated the quantitative performance of
the most representative preprocessing techniques for noise
reduction of 2-DGE images. By comparing the performance
of wavelet, contourlet, TV, and WVTV techniques using
SNR and spot efficiency indicators, we conclude that spot effi-
ciency is more appropriate for evaluating the noise reduction
techniques applied to 2-DGE images. This index provides
information about the effect of the noise reduction technique
on the process of protein detection. Quantitative performance
comparison using synthetic images indicates that wavelet filter-
ing is the best technique under the test conditions, which
achieves good results for the images with different types and
levels of noise evaluated.

Taking into account the results obtained for the images with
a blurring effect, and the fact that this anomaly is recurrent [66],
we highlight the importance of high-quality image acquisition
equipment, as this blurring effect is not mitigated effectively
by the preprocessing techniques evaluated in this review. Blur-
ring dramatically affects the performance of detection algo-
rithms, and hence, specialized deblurring algorithms could be
included in the preprocessing stage of 2-DGE images. How-
ever, cautions should be taken when including these techniques
since they can lead to a significant distortion of the image [67].
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