Skip to main content
. 2018 May 30;20(5):e10775. doi: 10.2196/10775

Table 1.

Summary of reviewed studies addressing blood glucose prediction: prediction horizon in minutes, objective population criteria, number of participants in the cohort, mean number of monitored days per patient, mean number of monitored hours per day, type of monitoring technology, existence of monitoring during the overnight period (O) and inclusion of exercise or physical activity information (E).

Prediction horizon (min) Population Cohort Days Time O E Method Ref Year
15, 30, 45 T1Da 15 28 10 h ANNb [39] 2010
30 T1D 12 10 24 h ANN [33] 2010
75 Critical Care 1 16 15 h ANN [40] 2010
75 T1D 27 5 24 h ANN [41] 2011
30 T1D 5VPc, 1 7 24 h ANN [42] 2011
30, 45 T1D 30VP 8 24 h ANN [43] 2012
15, 30, 60, 120 T1D 27 13 24 h RFd [44] 2012
30 T1D 20VP, 9 11, 7 24 h ANN [45] 2012
30 T1D 10 3 24 h SVMe, RAf, ANN [46] 2013
15, 30, 45 T1D 23 6.1 24 h RA, ANN [47] 2013
15, 30, 60, 120 T1D 27 13 24 h SVR [48] 2013
30 T1D 20 3 24 h ANN [49] 2015
15, 30, 45, 60 T1D 6 11 24 h ANN [50] 2015
30, 60, 120 T1D 10 6 24 h ANN [51] 2015
30 T1D 15 13 24 h ANN [52] 2015
30 T1D 5VP, 1 30 24 h SVR [53] 2016
T2Dg 346 1 ANN [54] 2016
5, 15, 30, 45, 60 T1D 15 13 24 h Kernel [55] 2016
60 T1D 5 90 24 h EAh [56] 2016
1440 T1D, T2D 8 3 24 h DTi [57] 2016
30 T1D 3 10 24 h EA [58] 2016
30,60 T1D 17 6 24 h RA [59] 2017
60, 120, 150, 180 T1D 20VP 14 24 h EA [60] 2017
0 T2D 3 23 NBj [61] 2017
30, 60, 90, 120 T1D 10 10 24 h KNNk, RF, EA [62] 2017
120 T1D 100VP 14 24 h EA [63] 2017
30, 60, 90 T1D & T2D 106 <7 24 h RA and ANN [64] 2017

aT1D: type 1 diabetes.

bANN: artificial neural network.

cVP: virtual patient.

dRF: random forest.

eSVM: Support Vector Machine

fRA: regression algorithm.

gT2D: type 2 diabetes.

hEA: evolutionary algorithm.

iDT: decision tree.

jNB: Naïve Bayes.

kKNN: k-nearest neighbor.