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Microglia are the sentinels of the brain but a clear understanding of the factors that modulate their

activation in physiological and pathological conditions is still lacking. Here we demonstrate that

Nerve Growth Factor (NGF) acts on microglia by steering them toward a neuroprotective and anti-

inflammatory phenotype. We show that microglial cells express functional NGF receptors in vitro

and ex vivo. Our transcriptomic analysis reveals how, in primary microglia, NGF treatment leads to

a modulation of motility, phagocytosis and degradation pathways. At the functional level, NGF

induces an increase in membrane dynamics and macropinocytosis and, in vivo, it activates an out-

ward rectifying current that appears to modulate glutamatergic neurotransmission in nearby

neurons. Since microglia are supposed to be a major player in Ab peptide clearance in the brain,

we tested the effects of NGF on its phagocytosis. NGF was shown to promote TrkA-mediated

engulfment of Ab by microglia, and to enhance its degradation. Additionally, the proinflammatory

activation induced by Ab treatment is counteracted by the concomitant administration of NGF.

Moreover, by acting specifically on microglia, NGF protects neurons from the Ab-induced loss of

dendritic spines and inhibition of long term potentiation. Finally, in an ex-vivo setup of acute brain

slices, we observed a similar increase in Ab engulfment by microglial cells under the influence of

NGF. Our work substantiates a role for NGF in the regulation of microglial homeostatic activities

and points toward this neurotrophin as a neuroprotective agent in Ab accumulation pathologies,

via its anti-inflammatory activity on microglia.
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1 | INTRODUCTION

Microglia are the resident immune cells of the central nervous system

(CNS). Beside classic inflammatory activities shared with macrophages,

microglia are responsible for brain homeostasis and monitor the brain

environment with their ever-moving processes (Nimmerjahn, Kirchhoff,

& Helmchen, 2005; Wolf, Boddeke, & Kettenmann, 2017). They take

part in sculpting neuronal circuitries during development (Paolicelli

et al., 2011; Wu, Dissing-Olesen, MacVicar, & Stevens, 2015) and

actively participate in activity-dependent plasticity and learning proc-

esses (Parkhurst et al., 2013; Sipe et al., 2016). Microglia have been

shown to be key players in the pathogenesis and progression of many

neurodegenerative disorders. However, their role—either promoting or

preventing pathology—is debated. On one hand, excessive activation of

microglia leads to oxidative stress, neuroinflammation, and eventually

neuronal death (Block, Zecca, & Hong, 2007). In contrast, the modula-

tion of microglial activation might be harnessed to carry out protective

activities in the brain, such as phagocytosis of aggregates, synaptic

pruning and formation, and the maintenance of healthy neuronal cir-

cuits (Diaz-Aparicio, Beccari, Abiega, & Sierra, 2016; Keren-Shaul et al.,

2017). Therefore, there is a compelling urgency to find ways to selec-

tively target microglia neuroprotective activities, sparing, or even inhibi-

ting, those features known to be pathological mediators.
Caterina Rizzi and Alexia Tiberi should be considered joint first authors

.......................................................................................................................................................................................
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, pro-

vided the original work is properly cited.
VC 2018 The Authors GLIA Published by Wiley Periodicals, Inc.

Glia. 2018;66:1395–1416. wileyonlinelibrary.com/journal/glia | 1395

Received: 20 April 2017 | Revised: 22 January 2018 | Accepted: 31 January 2018

DOI: 10.1002/glia.23312

http://orcid.org/0000-0002-0093-444X
http://creativecommons.org/licenses/by/4.0/


The idea of harnessing the CNS immune system—the natural scav-

engers of the brain—to boost neuroprotection in the brain is intriguing,

especially when tackling diseases marked by loss of proteostasis such as

Alzheimer’s disease (AD; Ardura-Fabregat et al., 2017). In the search of

neuroprotective agents against neurodegeneration, neurotrophins have

been historically considered as potential therapeutic candidates, mostly

due to their actions on neuronal targets. Microglia themselves are a source

of neurotrophins (Elkabes, DiCicco-Bloom, & Black, 1996; Heese, Hock, &

Otten, 1998): microglial-derived Brain Derived Neurotrophic Factor

(BDNF) has been shown to promote synapse formation (Parkhurst et al.,

2013). As for Nerve Growth Factor (NGF), this neurotrophin reportedly

acts by modulating microglial migratory activity in vitro (De Simone et al.,

2007). Macrophages, the peripheral counterparts of microglia, are a target

of both mature and pro-NGF (Williams et al., 2015). However, to what

extent NGFmight affect physiological microglial functions—and how alter-

ations in this modulation might come into play in neurodegenerative disor-

ders—has not been systematically investigated yet.

Indeed, the main cellular targets of the neurotrophin NGF (Levi-Mon-

talcini, 1952) in the CNS are considered to be the cholinergic neurons of

the basal forebrain (BFCNs; Hefti, 1986). Consistently, interfering with

NGF signaling in the adult brain leads to deficits of the cholinergic system

(Capsoni et al., 2000; Fagan, Garber, Barbacid, Silos-Santiago, & Holtzman,

1997; Nagahara et al., 2009; Ruberti et al., 2000). The expression of anti-

NGF antibodies selectively neutralizing mature NGF (Capsoni et al., 2000;

Ruberti et al., 2000) or of antibodies neutralizing TrkA (Capsoni et al., 2000;

Capsoni, Tiveron, Vignone, Amato, & Cattaneo, 2010) in the adult brain of

transgenic mice, determines a progressive comprehensive neurodegenera-

tion, synaptic and behavioral deficits. Changes in NGF homeostasis in the

brain, with particular regard to the ratio of NGF to proNGF levels, have

also been linked to Alzheimer’s disease (Cattaneo & Calissano, 2012). The

overall neurodegenerative picture induced by anti-NGF or anti-TrkA anti-

bodies in those transgenic models is, however, much broader than what

one would expect on the basis of an action of the antibodies exclusively on

the BFCNs. Moreover, the loss of NGF-TrkA signaling “in the CNS”,

obtained by conditionally deleting NGF or TrkA genes in CNS cells derived

from nestin-positive cells, has proven not to be sufficient in inducing severe

cognitive impairments nor neurodegeneration in mice (Muller et al., 2012).

Altogether, this body of results motivated our search for non-

neuronal targets of NGF in the adult brain. Microglia was a strong can-

didate, because (1) previous work had suggested that NGF could mod-

ulate some aspects of microglial cells in culture (De Simone et al.,

2007) and (2) transcriptomic studies in the AD11 mouse model—

expressing anti-NGF—had shown that neuroinflammation is the earliest

phenotypic alteration, already at a presymptomatic phase (1 month of

age; Capsoni et al., 2011; D’Onofrio et al., 2011).

In this article, we provide now stringent evidence that microglia

are target cells for NGF, both in vitro and ex vivo and that the activity

carried out by this neurotrophin on microglial cells might result neuro-

protective and anti-inflammatory in the context of Alzheimer’s disease.

2 | MATERIALS AND METHODS

2.1 | Animals

Adult C57BL/6, Cx3cr1/GFP1/1 mice and B6129 mice were pur-

chased from The Jackson Laboratory (Bar Harbor, ME). Genotyping of

CX3CR1-GFP mice was performed by PCR analysis of tail DNA (IDT

14276: 50-GTC TTC ACG TTC GGT CTG GT-30, IDT 14277 50-CCC

AGA CAC TCG TTG TCC TT-30, IDT 14278 50-CTC CCC CTG AAC

CTG AAA C-30). All experiments with mice were performed according

to the national and international laws for laboratory animal welfare and

experimentation (EU directive n. 2010/63/EU and Italian DL n. 26 04/

03/2014). Mice were kept under a 12-hr dark to light cycle, with food

and water ad libitum.

2.2 | Cell cultures

The immortalized BV-2 murine microglial cell line (Blasi, Barluzzi, Boc-

chini, Mazzolla, & Bistoni, 1990) was maintained in RPMI (Thermo

Fisher Scientific, MA; #11835-063) medium containing 1% penicillin/

streptomycin (Euroclone, MI, Italy; #ECB3001D), 1% Glutamax

(Thermo Fisher Scientific; #35050-038) and 10% fetal bovine serum

(FBS; Euroclone; #ECS0180l) in 5% CO2 at 378C.

Primary microglial cells were derived from the brains of B6129 or

Cx3cr1/GFP1/1 mice at P3–4 as previously described (Butovsky et al.,

2014). Cells were maintained in Dulbecco’s modified Eagle’s medium

(DMEM/F12; Thermo Fisher Scientific; #21331-020) containing 1%

penicillin/streptomycin, 1% Glutamax and 10% FBS in 5% CO2 pH 7.4

at 378C. Microglia were separated from the mixed primary glial cultures

by mild shaking, they were re-suspended in DMEM/F12 with 1% peni-

cillin/streptomycin, 1% Glutamax and 10% FBS—this is the standard cul-

ture medium unless otherwise stated—and plated on the appropriate

support 18 hrs before the experiments.

Primary cortical and hippocampal neurons were prepared at P0 as

described (Beaudoin et al., 2012). Briefly, animals were decapitated, the

brain was rapidly excised and placed into ice-cold Hanks Buffered

Saline Solution (HBSS; Thermo Fisher Scientific, Waltham, MA;

#14180046). Hippocampi and cortex were removed and digested for

15 min at 378C in DMEM-F12 containing 0.1% of trypsin (Thermo

Fisher Scientific). Tissue was transferred in culture medium containing

10% FBS and gently disrupted using a flame-polished Pasteur pipette.

Following centrifugation at 48C for 8 min at 800 rpm, cells were resus-

pended in fresh DMEM containing 1% Glutamax, 10% FBS, 2% B27

supplement (Gibco, Waltham, MA; #17504-044), 6 mg/ml Glucose,

12.5 mM Glutamate, 10 mg/ml Gentamicin (Gibco; #15710-049) and

plated (150,000 cells/coverslip) after proper poly-D-lysine coating

(Sigma-Aldrich, St. Louis, MO; #P1024). Cells were kept at 378C in 5%

CO2. After 12–24 hr, medium was replaced with Neurobasal A medium

(Thermo Fisher Scientific; #10888-022) containing 2% of B27 supple-

ment, 2.5 mM Glutamax, and 10 mg/ml Gentamicin. The second day 2.5

mM AraC (Sigma-Aldrich; #C1768) was added to the medium. The

experiments were performed at DIV 17–19.

2.3 | Immunoblot analysis

NGF signaling: Primary B6129 microglia were plated in six-well plates (5

3 105cells/well) in culture medium. Cells were serum-starved for 16 hr

before the start of the treatments, then they were treated for 0, 5, 15,

and 30 min with NGF 100 ng/ml and sequentially collected and lysed
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in ice-cold RIPA buffer (50 mm Tris-HCl, pH 7.6, 150 mm NaCl, 1% Ige-

pal, 1 mm EDTA, 1% SDS, 0.5% sodium deoxycholate, 13 protease

and phosphatase inhibitor cocktails [Roche, Basel; CH]). After sonica-

tion, cells were collected by centrifugation for 15 min at 48C

(13,000 rpm). Protein concentrations of the cell lysates were measured

using the Bradford method. Lysates (20 mg) were then separated on a

10% SDS-PAGE, transferred to a nitrocellulose membrane, and ana-

lyzed by Western blotting.

Phagocytosis of Ab: Primary B6129 microglia were first plated in

six-well plates (5 3 105cells/well) in culture medium. They were

treated with 1 lM soluble Ab for 3 hr with or without 100 ng/ml NGF.

After collection, they were lysed in ice-cold RIPA buffer and electro-

phoresed on a 4%–12% NuPAGE Bis-Tris precast gel (Thermo Fisher

Scientific; #WG1401BX10). After transfer in nitrocellulose, the mem-

brane was boiled in PBS for 10 min, blocked for 1 hr and incubated

with the appropriate primary antibodies.

Inhibitors of NGF-receptors used: 200 nM K252a (Abcam, Cam-

bridge, UK; #ab120419), 1 mM TAT-pep5 p75NTR (Millipore, Temecula,

CA; # 506181; Yamashita & Tohyama, 2003), were added 30 min

before Ab and NGF.

The following primary antibodies were used: anti-Ab 1–16 1:1000

(clone 6E10 #SIG-39320); anti-TrkA 1:1000 (Millipore; #06–574), anti-

pTrkA 1:1000 (Y794; Rajagopal, Chen, Lee, & Chao, 2004) kindly pro-

vided by M. V. Chao (New York University School of Medicine, New

York, NY) anti-Akt 1:1000 (Cell Signaling Technology, Danvers, MA;

#C67E7), anti p-Akt 1:1000 (Cell Signaling Technology; #130386), ant-

Erk 1:1000 (Promega, Fitchburg, WI; #V114A), anti-pErk 1:1000 (Cell

Signaling Technology; #4370S), anti-c-Jun 1:1000 (Cell Signaling Tech-

nology; #60A8), anti-phospho-c-Jun 1:1000 (Cell Signaling Technology;

#9261), anti-p75 1:1000 (Millipore; AB1554), anti-GAPDH 1:20000

(Fitzgerald, Acton, MA; #10R-G109a), anti-tubulin 1:20000 (Sigma-

Aldrich; #T5168). After incubation with the appropriate HRP-

conjugated secondary antibody (Santa Cruz, Dallas, TX; anti-mouse

#sc-2005, anti-rabbit #sc-2004), membranes were developed using

ECL-enhanced chemiluminescence kit (Bio-Rad, Hercules, CA). Densito-

metric analyses were performed using the NIH ImageJ 1.44p software.

2.4 | Immunocytochemistry

Immunofluorescence for NGF receptors: Primary microglia were plated on

coverslips in 24-well plates coated with poly-D-lysine (1 3 105 cells/

well) in culture medium. Cells were fixed with 2% PFA, and blocked for

1 hr at room temperature. Primary antibodies (O.N. – 48C): anti-Iba1

1:500 (WAKO, Osaka, Japan; #019–19741) or anti-Iba1 1:500 (Abcam;

#Ab107159), anti-TrkA 1:100 (MNAC13 from Cattaneo et al. [1999]),

anti-P75 1:500 (Millipore; AB1554).

Immunofluorescence for Ab uptake: Primary microglia were plated

on coverslips in 24-well (1 3 105 cells/well) in culture medium. They

were treated with 1 lM soluble 555-labeled Ab (s555-Ab; Anaspec,

Fremont, CA; #As-60480) or AbOs (Meli et al., 2014) and 100 ng/ml

NGF for 3 hr. After fixation and permeabilization, cells were blocked

for 1 hr and stained with primary antibodies anti-Iba1 1:500 (WAKO,

Osaka, Japan; #019–19741;) and with anti-Ab oligomers A13 1:1000

(Meli, Visintin, Cannistraci, & Cattaneo, 2009), then incubated with

mouse antibody anti-epitope V5 (Sigma-Aldrich; #V8137;1:5000).

Appropriate secondary antibodies were used (1:500) (anti-rabbit Alexa-

Fluor 555, anti-mouse Alexa-Fluor 488, Thermo Fisher Scientific; A-

21428;A-21201).

2.5 | Immunofluorescence (IF) on slice

IF for NGF receptors/microglia/astrocytes detection: Adult (P80–90)

C57BL6J mice were sacrificed with a lethal dose of carbon dioxide and

immediately underwent a perfusion procedure. Dry ice frozen brains

were cut into 40 mm coronal sections with a cryostat microtome (Leica

Microsystems, Wetzlar, Germany) at 2208C, including neocortex. Sec-

tions were with a mix of primary antibodies in PBS 0.3% Triton X-100

(Applichem, BioChemica, Darmstadt, Germany) overnight at room tem-

perature. Microglia was stained with either rabbit anti-Iba1 1:800

(Wako, Osaka, Japan, 019–19741) or rat anti-CD11b 1:300 (Serotec;

Kidlington, UK, MCA711). Astrocytes were stained with rabbit Anti-

Glial Fibrillary Acidic Protein 1: 500 (Dako, Cytomation, Glostrup, Den-

mark, Z0334) or goat Anti-Glial Fibrillary Acidic Protein 1:300 (Santa

Cruz Biotechnology; sc-6170). NGF receptors were identified by anti-

TrkA 1:300 (clone MNAC13; Cattaneo et al., 1999) and anti-P75 1:300

(Promega Corporation, Madison, WI, G3231). Sections were incubated

for 2 hrs at RT in a mix of the appropriate secondary antibodies—anti-

mouse/rabbit/goat/rat Alexa-Fluor 488/555/649 conjugated (Thermo

Fisher Scientific; A-21428 diluted 1:500). DAPI was applied for 5 min

in the second rinse.

2.6 | Flow cytometry for phagocytosis analysis of

beads, dextran or Ab

Sample preparation: Primary microglia were plated in six-well plates at a

density of 5 3 102 cells/well. The fluorescent material to be phagocy-

tosed was placed in the culture medium 3 hr after treatment with NGF

100 ng/ml. Beads were first opsonized in 50% FBS and PBS for 1 hr

RT (Polybead DyedRed 6 mm, Polyscience, Warrington, PA;

Cat#15714), counted with the Burker chamber and given to cells at a

concentration of roughly three beads/cell. Dextran was used at

2.5 mg/ml (Thermo Fisher Scientific; #D1841 RhodamineB 70,000

MW) while HiLyte Fluor 555 Ab42 (Anaspec, Fremont, CA; #As-

60480) was used 1 mM. Cells were exposed to the material for 1 hr,

then they were washed extensively with PBS, and fixed with 2% para-

formaldehyde for 7 min. Cells were washed again with PBS and col-

lected for analysis. Data acquisition: A Sorter S3 (BioRad) with a single

488 nm (100 mW) excitation laser was used. The gating strategy was

decided on the FSC and SCC scatter plots, in order to gate out debris.

Filters were based on the emission spectra of the fluorochromes: Rho-

damineB for dextran, DyeRed for beads, HiLyte Fluor 555 for Ab42—

580–650 nm (red channel). The total amount of beads, dextran or Ab

internalized by cells was determined by analyzing the population positive

for the fluorescent marker conjugated with the material. The analysis

was performed using the FlowJo software (FlowJo, LLC, Ashland, OR).
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List of concentrations and time of treatment for inhibitors and activa-

tors of macropinocytosis and phagocytosis used to determine the specific

process of internalization activated by NGF administration: IFNg 10 ng/

ml (R&D, Minneapolis MN, USA Cat. Number 485-MI), Amiloride 50

mM (Sigma-Aldrich; #A3085), CytochalasinD 10 mg/ml (Sigma-Aldrich;

#C827). These were added 20 hr before phagocytosis assay. Rho/Rac/

cdc42 Activator I (Cytoskeleton, Denver, CO; cat. #CN04) was added

after a 2 hr FBS starvation period and 1 hr and 30 min before the

beginning of the experiment with beads and dextran. Phorbol 12-

myristate 13-acetate (PMA) 100 nM (Sigma-Aldrich; #P8139) was

added 3 hr before the assay.

2.7 | Microarray transcriptome analysis

Primary microglia were treated with 100 ng/ml NGF for 2, 8, or 24 hr.

RNA isolation, amplification, and labeling was performed using an

RNeasy mini kit according to manufacturer’s protocol (Qiagen, Venlo,

The Netherlands). Total RNA was isolated from these cells using Trizol

(Invitrogen, Carlsbad, CA) and DNAse treated by Qiagen columns.

Quality and integrity of each sample was checked using the Agilent

BioAnalyzer 2100 (Agilent RNA 6000 nano kit): samples with a RNA

Integrity Number (RIN) index lower than 8.0 were discarded. All the

experimental steps involving the labeling, hybridization, and washing of

the samples were done following the standard one-color microAgilent

protocol. The gene expression profiling was performed using the

Microarray Agilent Platform. 200 ng of RNA was labeled with Low

Input Quick Amp Labeling Kit One-Color (Agilent Technologies, Santa

Clara, CA), purified and hybridized overnight onto the Agilent 8X60K

whole mouse genome oligonucleotide microarrays (Grid ID 028005)

according to the manufacturer’s instructions for one-color protocol.

The Agilent DNA microarray scanner (model G2505C) was used for

slide acquisition and spot analysis was performed with Feature Extrac-

tion software ver 10.7 (Agilent Technologies). Data filtering and analy-

sis were performed using R-Bioconductor and Microsoft Excel. All the

features with the flag gIsWellAboveBG50 (too close to background)

were filtered out and excluded from the following analysis. Filtered

data were normalized by aligning samples to the 75th percentile. Dif-

ferentially expressed genes were selected by a combination of fold

change and moderated t-test thresholds (R Limma test p value <.05; |

Log2 fold-change|>1.0). Principal Component Analysis, Multidimen-

sional Scaling, Hierarchical Clustering of samples and volcano plots

were computed using the open source RStudio (Boston, MA).

2.8 | Live cell imaging

Primary microglia were plated (3 3 104 cells) on Glass Bottom Micro-

well Dishes (35 mm), coated with poly-D-lysine, and left overnight to

rest. Cells were treated with 100 ng/ml NGF for 24 hr. Cells were

imaged for 1 hr through a 403 objective with a Leica SP2 confocal

microscope (1 frame each 30 s). Cell dynamics was analyzed using a

homemade Python script (number of cells imaged per

experiment529). Parameters: Morphing speed measures how many

times, during the acquisition, cells change their morphology. Two

extremes were fixed as opposite morphological endpoints: roundish

and polarized (with at least two ramification). We measured how many

times cells shift between these two cell configurations. The parameter

was used to classify the speed of changes in morphology. Cell mem-

brane changes describes how cells change their Area (A) normalized on

cell perimeter (p), in particular we measured DA/p between two con-

secutive frames (1 frame/min), giving us an intermediary to monitor

membrane motility.

For the experiment of Ab lysosome colocalization, microglial BV-2

cells were plated overnight in RPMI containing 2% FBS on pre-coated

culture plates. Cells were incubated with 1 mg/ml Ab-488 and 100

nmol/l Lysotracker-Red (Thermo Fisher Scientific; #L12492) and

imaged using a Leica SP2 confocal microscope (Leica Microsystems,

Wetzlar, Germany) for 1 hr with a 633/1.4NA HCX PL APO objective.

We used BV-2 cells instead of primary cultures of microglia since live

imaging requires long hours and it is too damaging for primary cultures.

2.9 | Intracellular Ab clearance and degradation

BV2 cells were incubated in culture medium with 1 mM soluble Ab42

(Anaspec, Fremont, CA; #As-64129) and 100 ng/ml of NGF for 3 hr.

Cells were then either collected (the 3 hr time point) or the medium

was changed after extensive washes with PBS to ensure the removal

of Ab42 in the supernatant. Cells were collected and lysed in ice-cold

RIPA buffer (SDS 1%) after either 5, 9, or 21 hr of washout, in order to

allow the measurement of the phagocytosed Ab which could be either

digested (and detected in the cell extracts) or expelled (and detected in

the supernatant) at each time point. After brief sonication, they were

collected by centrifugation at 13,000 rpm at 48C for 15 min. The super-

natant at each time point was also collected. Ab42 levels in the cell

lysates were determined by immunoblotting with the anti-Ab antibody

6E10 (clone 6E10 #SIG-39320; 1:1000, Covance, Princeton, NJ). The

samples were resolved with 4%–15% bis-tris SDS-PAGE. Ab levels

were measured and normalized on the housekeeping GAPDH total pro-

tein levels. The Ab supernatant levels were measured using ELISA Kit

(Human Ab42 Invitrogen KHB3441). Optical density was read at

450 nm on a Bio-Rad plate reader. BV-2 cells—as opposed to primary

microglia—were used because of the high number of cells needed for

this experiment (RRR rule)—each time point is indeed a parallel

experiment.

2.10 | Ab phagocytosis in ex vivo hippocampal slices

Cx3Cr1-GFP mice were deeply anesthetized (20% urethane solution,

0.1 ml/100 g body weight) via i.p. and decapitated to perform the

immediate dissection of brain tissue. Horizontal slices containing the

hippocampal area (200 lm thick) were obtained by a vibratome (Leica

VT1200S). All of the above steps were performed in ice-cold ACSF

solution (artificial cerebrospinal fluid, in mM: NaCl, 119; KCl, 2.5; CaCl2,

2; MgSO4, 1.2; NaH2PO4, 1; NaHCO3, 26.2; glucose, 10) bubbled with

95% O2/5% CO2. Slices were stored in a recovery chamber containing

oxygenated ACSF at room temperature, for at least 30 min prior to the

addition of 100 nM s555-Ab with or without 100 ng/ml of NGF. After
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3 hr, slices were fixed in 4% PFA for 18 hr at 48C. Slices were put in

30% sucrose/PBS, then they were sectioned into 45 mm slices using a

Leica microtome.

2.11 | Electrophysiological recordings from neurons

Adult C57BL6 male mice were deeply anesthetized with isoflurane inha-

lation, decapitated, and brains removed and immersed in cold “cutting”

solution (48C) containing (in mM): 126 choline, 11 glucose, 26 NaHCO3,

2.5 KCl, 1.25 NaH2PO4, 10 MgSO4, 0.5 CaCl2 equilibrated with 95% O2

and 5% CO2. Coronal slices (300 mm) were cut with a vibratome (Leica)

and then incubated in oxygenated artificial cerebrospinal fluid (ACSF)

containing (in mM): 126 NaCl, 26 NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2

MgSO4, 2 CaCl2 and 10 glucose, pH 7.4; initially at 328C for 1 hr, and

subsequently at room temperature, before being transferred to the

recording chamber and maintained at 328C. Recordings were obtained

from visually identified pyramidal neurons in layer 2/3, easily distin-

guished by the presence of an emerging apical dendrite. Experiments

were performed in the whole-cell configuration of the patch-clamp tech-

nique. Electrodes (tip resistance53–4 MX) were filled with an intracel-

lular solution containing (in mM): K-gluconate 135, KCl 4, NaCl 2,

HEPES 10, EGTA 4, MgATP 4 NaGTP 2; pH adjusted to 7.3 with KOH;

290 mOsm. Whole-cell voltage-clamp recordings (–70 mV holding

potential) were obtained using a Muticlamp 700B (Axon CNS, Molecular

Device). Action potential independent spontaneous excitatory postsy-

naptic currents (mEPSCs), recorded in the presence of tetrodotoxin

(TTX) 1 lM and the GABAA receptor antagonist picrotoxin (100 lM),

were filtered at 1 kHz, digitized at 10 kHz, and recorded on computer

using Digidata1440A and pClamp10 software (Molecular Device). Series

resistances were not compensated to maintain the highest possible

signal-to noise and were monitored throughout the experiment. Record-

ings were discarded if Rs changed 25% of its initial value. Spontaneous

events were detected and analyzed with Clampfit 10.4 using amplitude

and area thresholds set as a multiple (3–4X) of the SD of the noise. Each

event was also visually inspected to prevent noise disturbance of the

analysis. Each slice received only a single exposure to NGF (20 g).

2.12 | Electrophysiological recordings frommicroglia cells

Acute cortical slices (250 lm) were obtained from CX3CR11/GFP

male mice (P18–P30) using the identical experimental procedures

described in the above paragraph (recordings from neurons). After

recovering for at least 1 hr at RT, each slice was transferred in the

recording chamber under the microscope and perfused (2 ml/min) with

warmed ACSF (328C). Visually identified GFP-expressing cortical micro-

glial cells were patched in whole-cell configuration. Micropipettes (5–6

MX) were filled with solution containing the following composition (in

mM): KCl 140, EGTA 0.5, MgCl2 2, HEPES 10, and Mg-ATP 2 (pH 7.3

adjusted with KOH, osmolarity 290 mOsm; Sigma-Aldrich). Voltage-

clamp recordings were performed using a Muticlamp 700B (Axon CNS,

Molecular Device). Currents were filtered at 2 kHz, digitized (10 kHz)

and collected using Clampex 10 (Molecular Devices); the analysis was

performed offline using Clampfit 10 (Molecular Devices). Slicing

procedure might activate microglial cells especially near the surface of

the slice, therefore recordings were performed on deep cells. Cells

were clamped to a holding potential of 220 mV. The current/voltage

(I/V) relationship of each cell was determined applying voltage steps

from 2140 to 160 mV (DVm 20 mV) of 250 ms duration with interval

of 5 s after whole-cell configuration was achieved (HP5220 mV

between steps). Current values for each given voltage step were meas-

ured in the last two-thirds to avoid contamination of capacitance arte-

facts. Resting membrane potential and membrane capacitance were

measured at start of recording. NGF was applied in bath for 10

minutes. One to four cells per mice were recorded. At least four ani-

mals per group were used.

2.13 | Neuron/microglia co-cultures

At DIV (days in vitro) 17–19 for neurons, primary microglia were

seeded onto cultured hippocampal neurons (1 3 105 cells/well). The

culture was maintained in Neurobasal-A supplemented with 2% B27,

2 mM L-glutamine and 10 lg/ml gentamicin and used after 24 hr for

experiments. Co-cultures were treated with soluble Ab-555 (100 nM),

and 100 ng/ml NGF for 3 hr, fixed in 2% PFA and 5% sucrose for 10

min, washed in PBS and blocked for 1 hr at room temperature in BSA

1%. Incubation with primary antibody was performed at the following

concentrations: anti-PSD95 1:500 (Abcam; ab9909), anti-actin 1:500

(Sigma-Aldrich; A-3853;), anti GluA1 1:100 (Millipore; #AB1504;).

2.14 | Chemical LTP

Cx3Cr1-GFP microglia (2 3 104 cells/well) were added to DIV 17 cul-

tured hippocampal neurons. After 48 hr, the cultures were treated with

soluble Ab-555 (100 nM), with or without 100 ng/ml NGF for 3 hr. GI-

LTP was induced as reported in the literature (Ahmad et al., 2012).

Briefly, cultures were incubated for 15 min at room temperature in

standard ACSF (in mM: 125 NaCl, 2.5 KCl, 1 MgCl2, 2 CaCl2) with

0.02 mM Bicuculline and 0.001 mM TTX, then washed with Mg-free

ACSF and treated for 7 min with Mg-free ACSF supplemented with

0.2 mM Glycine, 0.02 mM Bicuculline. After 7 min of stimulation, cul-

tures were washed once in ACSF and left in culture medium for 1 hr

and fixed in 2% PFA for 10 min.

2.15 | Measurement of inflammatory markers

Simultaneous detection of multiple cytokines was obtained using the

Mouse Inflammation Antibody Array (Raybiotech, Norcross, GA; Can-

ada; AAM-CYT-6). Primary microglia from B6129 mice were plated in a

6-well at the concentration of 6.5 3 105 cells/well in culture medium.

After 18 hr, cells were serum starved for 4 hr, and later treated with

Ab 1 mM or 100 ng/ml NGF or Ab and NGF simultaneously. Cells were

lysed in ice-cold RIPA buffer (50 mM Tris/HCl, 150 mM NaCl, 1 mM

EDTA, 1% Igepal, 0.5% Sodium Deoxycholate, 0.1% SDS, Protease

Cocktail inhibitor) and sonicated briefly, and then collected by centrifu-

gation at 13,000 rpm at 48C for 15 min. Arrays were incubated with

the appropriate blocking buffer for 2 hr. Eighty mg of protein extract

were diluted in blocking buffer and incubated with the array overnight
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at 48C. Then, arrays were washed accordingly and incubated for 3 hr at

room temperature with the Biotinylated Antibody Cocktail solution.

After washing, arrays were incubated with HRP-streptavidin for 2 hr

and detected using the Detection Buffer. Images were captured using

the Chemidoc detection system (Bio-Rad).

2.16 | Image analysis

Experiments in Figures 1a and 9: 512 3 512 pixel images were

acquired with a confocal microscope (Leica TCS SP2) using an oil objec-

tive: HCX PL APO 63.03 OIL (NA51.40), and pinhole was set to 1

AU. Sequential illumination with Ar 561 and Ar 488 laser lines was

used to detect, sAb-555, ABOs, IBA1, TrkA, p75 immunofluorescence.

Experiments in Figure 2: 2,048 3 2,048 pixel images were

acquired with a confocal microscope (Leica SP5, Leica Microsystems,

Wetzlar, Germany) equipped with four laser lines: violet diode emitting

at 405 nm, argon emitting at 488 nm, and helium/neon emitting at 543

and 633 nm using a HCX PL APO 403 OIL objective, 1 zoom factor,

pinhole 1 AU. Points of colocalization were supposed when a merging

area in the same cell was evident, showing a yellow resulting color

from the overlap of two green-red signals, and they were verified by

analysis on the z-axes with 1 lm-stacks.

Experiments in Figures 12–13 and 14: 512x512 pixel images were

acquired with a confocal microscope (Leica TCS SP5 on DM6000,

equipped with MSD module) using an oil objective HCX PL APO CS

40.03 (NA51.25), digital and pinhole was set to 1.5 AU. Sequential

illumination with HeNe 633, DPSS 561 and Ar 488 laser lines was used

to detect Alexa647 (used for PSD95, actin and GluA1 immunofluores-

cence), sAb-555, and GFP or IBA1 immunofluorescence, respectively.

The Ab intracellular levels was quantified by measuring the mean 555

fluorescence intensity in the area circumscribed by microglial cell

perimeter using the segmented line tool in ImageJ.

Dendritic spines were counted using ImageJ software. For this

analysis, all dendritic protrusions with a clearly recognizable stalk were

counted as spines. Spine number was divided by the length of the den-

dritic segment to generate dendritic spine density, expressed as num-

ber per micrometer. Chemical LTP was measured by quantifying the

integral GluA1 fluorescence intensity of each spine.

2.17 | Data analyses and statistics

Data are presented as means6 SD unless otherwise noted, using Origin

(OriginLab Corporation, Northampton, MA). Means were compared

using the unpaired or paired t test as indicated. Multiple comparisons

were made using one-way ANOVA test, followed by a post-hoc Bonfer-

roni test. The variance of each dataset was measured with an F test;

*p< .05, **p< .01 and ***p< .001.

3 | RESULTS

3.1 | Microglia express NGF receptors in vivo and in vitro

The first step to validate microglia as NGF target cells was to ascertain

whether they express functional NGF receptors. By immunocytochemistry,

we could detect the expression of both TrkA and p75 in primary

microglia (Figure 1a,b; see Section 2 for culture conditions). To assess

the responsiveness of such receptors, primary microglia were treated

with NGF and analyzed by WB (Figure 1c) at different time points.

TrkA exhibited a significant time dependent activation upon treat-

ment with the neurotrophin (measured as the ratio between phospho-

rylated TrkA and the total amount of TrkA; Figure 1d; *p< .05 at 5

min and **p< .01 at 15 and 30 min). Concerning the downstream

intracellular signaling pathways activated by NGF in primary microglia,

FIGURE 1 Primary microglia express NGF receptors and activate
receptor-mediated intracellular signaling after NGF stimulation. (a)
TrkA and p75NTR (green) staining in primary microglia (red). (b)
Western blots for proteins involved in NGF signaling transduction
pathways: TrkA, AKT, Erk, and c-jun. On the right, the histograms
of the quantification of phosphorylated protein normalized on the
total protein level (Data are mean6 SD; all data are representative
of three independent experiments, *p< .05, **p< .01, Student’s t
test) [Color figure can be viewed at wileyonlinelibrary.com]
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we could detect the activation of AKT and c-jun signaling pathways

(Figure 1e,f; p< .05), while the activation state of Erk remained

unchanged (Figure 1g; p> .05).

We then proceeded to assess TrkA and p75NTR expression in

adult ex vivo glial cells. In sections of mouse cortex, we detected

colocalization of TrkA and Iba1 both in the cell bodies and on

branches of microglial cells (Figure 2a; n53; three experimental repli-

cates). In contrast, astrocytes (GFAP1 cells) showed a sparse overlap-

ping with TrkA (Figure 2b; n53; three experimental replicates).

Labeling of the p75 receptor showed some rare points of colocaliza-

tion with CD11b1 cells (Figure 2c, n53/6) while no expression could

be detected on astrocytes’ bodies or branches (n53/3 data not

shown).

Thus, we conclude that both in vivo and in vitro microglia possess

NGF receptors, and—specifically in cell culture—we could observe

standard receptor signaling in response to the neurotrophin, indicating

that these receptors are indeed active.

3.2 | NGF modulates the expression of genes involved

in pathways of cell motility, phagocytosis and protein

degradation

To gain insight into potential functional microglial responses to NGF,

gene expression profiling was performed on primary microglia treated

with NGF (100 ng/ml) either for 2, 8, or 24 hrs (see Section 2). NGF

induced global transcriptomic changes throughout the three time

points. At two hours, the majority of differentially expressed genes

(DEGs) were downregulated, while at 24 hrs there was a reversal, with

a trend toward upregulation (Figure 3a). KEGG gene ontology analysis

was performed, to cluster DEGs into pathways, thus identifying those

primarily modulated by NGF.

At 2 hrs the majority of upregulated genes were linked to focal

adhesion and extracellular matrix interactions, while downregulated

genes were related to cytoskeletal rearrangements (Figure 3b). At

8 hrs, genes of cell adhesion molecules and of the protein digestion and

FIGURE 2 Expression pattern of NGF receptors in murine brain slices. (a) The anti-TrkA MAb MNAC13 (red label) stains cortical microglia

iba1 positive cells (green label). Merging areas (yellow label) and magnification (inset) show that the labeling involves both cytoplasm and
fibers. (b) (middle panels) MNAC13 staining slightly overlapped with the astrocytic marker GFAP (in green). Below, (c) p-75NTR (red label) is
slightly expressed in CD11b1 microglia (green label) from cortical sections. Merging areas (yellow label) [Color figure can be viewed at
wileyonlinelibrary.com]
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absorption pathways were still upregulated (Figure 3b). At 24 hrs, the

majority of upregulated genes were associated with the regulation of actin

cytoskeleton and to the phagosome pathways, while downregulated genes

belonged to endocytosis, focal adhesion, adherens junction, cytokine-cyto-

kine receptor interaction, and chemokine signaling pathways (Figure 3b).

We then focused on the analysis of specific gene clusters high-

lighted by the KEGG analysis—actin cytoskeleton regulation, endocyto-

sis, chemokine signaling, protein digestion, neurotrophin signaling and

genes linked to Alzheimer’s disease (AD)—and represented the total

amount of genes mapped to the specific KEGG category at each time

FIGURE 3 NGF modulates microglial gene expression. (a) The bar plot shows the global number of differentially expressed genes, up-and down-
regulated by NGF at 2, 8, and 24 hr. Gene lists were selected using two different thresholds: 2.0 fold-change in linear scale and Limma p value
<.05 (blue for down-regulated and plum for up-regulated); 4.0 fold-change in linear scale and Limma p value <.05 (green for down-regulated and
red for up-regulated). (b) The horizontal bar plot shows the significantly enriched KEGG terms, following NGF treatment. Enriched pathways refer to
up-regulated genes (right bars) or down-regulated ones (left bars), at 2, 8, and 24 hr (green, grey, light grey bars respectively). The analysis was per-
formed on differentially expressed genes selected by two thresholds: corrected p value (FDR) <.05 and 1.0 fold-change in linear scale. (c) The histo-
grams show the adjusted p value (FDR) of selected enriched KEGG pathway at 2, 8, and 24 hr (green, gray, light gray bars respectively). Each bar
contains the number of differential genes mapping to each specific pathway. Heatmaps show the Log2 fold-change ratio of genes mapping to the
corresponding modulated pathways on the top [Color figure can be viewed at wileyonlinelibrary.com]
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point (Figure 3c) and the corresponding heat maps (Figure 3d). We

found that, for each of these clusters, most changes occurred at 24 hrs.

At this time, NGF induced a significant downregulation of rhoA and

rock2, genes involved in actin dynamics (Julian & Olson, 2014; Sack-

mann, 2015), while most genes related to endocytosis and lysosomal

activity, such as Gm2a (Sandhoff & Kolter, 1998), were up-regulated.

Concerning neurotrophins and AD pathways, we found an upregulation

of sort1 and ApoE, respectively.

Finally, we looked at mRNAs involved in the inflammatory

response, whose modulation is a major functional response of micro-

glia. Interestingly, this mRNA class was not significantly represented

among those upregulated by NGF. The largest modulation was actually

the downregulated expression of cxcl5, ccl12, ccl2.

Overall, our data suggest that NGF might influence the motility,

the phagocytic and protein degradation abilities of microglia, without

activating them in the classical proinflammatory sense.

3.3 | NGF enhances microglial membrane dynamics,

but not their cell speed

The surveillance activity of microglia can be mediated either by the

translocation of their cell body toward sites of injury, where chemoat-

tractant substances are released, or by finer movements of their

branches—by extension and retraction—in response to either

physiological or pathological stimuli (Nolte, M€oller, Walter, & Ketten-

mann, 1996; Stence, Waite, & Dailey, 2001). Since transcriptome analy-

sis revealed changes in cytoskeletal related genes, we asked whether

NGF might induce changes in cell body migration and/or in the motility

of cell membrane and processes.

The chemotactic properties of NGF specifically on rat microglial

cells have been previously documented (De Simone et al., 2007). Our in

vitro approach to assess the effects of NGF on motility—inspired from

transcriptomics results—was that of operating time-lapse recordings of

NGF-treated—freely moving – microglia (See Section 2 for culture con-

ditions). Primary microglia were monitored for 1h in a culture chamber

after treatment. Videos were analyzed by means of a Python script

capable of extracting and quantifying useful features of the microglial

motility behavior. This analysis unveiled that the speed of the cell body

of NGF-treated microglial cells was not significantly different from that

of untreated microglia (Figure 4b), meaning there was no overall trans-

location from one place to another.

We thus concentrated on another parameter of cell motility: cell

membrane changes. These structural changes occurred on a timescale

of minutes and were evaluated as the difference in cell area between

two consecutive frames (DA) normalized over the cell perimeter (p)

(DA/p). Since this parameter evaluates the rate of change in cell area—a

measure of its ability to elongate and retract—this can be thought of as

an in vitro measure of exploratory behavior. We found that NGF-

FIGURE 4 NGF modulates microglial motility dynamics. (a) Bright-field image during a time lapse of primary microglia from CX3CR1-GFP
mice. (b) In the panel, it is shown the pattern recognition from a Python based script that describes (1–3) naive cells and (4–6) NGF cells.
The boxes show in (1, 4) perimeter in violet and cell center in pink, (2, 5) perimeter difference between two consecutive frame, (3, 6) cell
speed. The histograms show the plotted results of these parameters: cell membrane changes and speed (n529; data are mean6 SD; all
data are representative of three independent experiments *p< .05, Student’s t test) [Color figure can be viewed at wileyonlinelibrary.com]
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treatment induced a significant increase in exploratory tendency in

microglia (Figure 4b).

3.4 | NGF promotes microglial macropinocytosis but

not phagocytosis

Microglia are capable of engulfing material through three different

mechanisms: phagocytosis, receptor-mediated endocytosis and pinocy-

tosis. Phagocytosis is used to internalize large particles (Stuart, Ezeko-

witz, & Alan, 2005), while pinocytosis is typically associated with the

uptake of soluble substances, such as, for instance, soluble Ab peptide

(Mandrekar et al., 2009). We evaluated whether the observed NGF-

dependent changes in membrane motility might underlie changes in

engulfing processes. To investigate this, we used an in vitro assay—fol-

lowed by FACS analysis—where primary microglia were incubated with

either fluorescent opsonized latex beads or dextran, in the presence or

absence of NGF (see Section 2 for culture conditions). Beads are

ingested through a phagocytosis process, while dextran through macro-

pinocytosis (BoseDasgupta & Pieters, 2014), different engulfment proc-

esses that can be distinguished by means of known inhibitors and

activators of the cellular mechanisms subserving them. IFN-g was used

as a positive activation control for phagocytosis (Smith, van der Mae-

sen, & Paul Somera, 1998), while PMA and Rac-cdc42 activator-I were

used as positive activation controls of dextran macropinocytosis (Bose-

Dasgupta & Pieters, 2014; Swanson, 1989). NGF was found not to

increase the number of latex beads internalized by microglia (Figure 5a)

but to selectively upregulate the internalization of dextran (Figure 5b).

Thus, we conclude that NGF positively affects macropinocytosis

though sparing other phagocytosis processes in primary microglia.

3.5 | NGF activates microglia currents and modulates

glutamatergic neurotransmission by acting on

microglial cells

An ex vivo correlate to microglial behavior in response to NGF was

obtained by performing patch clamp recordings from microglia in acute

brain slices. Our data reveal that NGF triggers an outward current (Fig-

ure 6a). To study changes in this outward NGF-induced current, we

repetitively clamped the membrane from a holding potential of 220

mV to a series of hyperpolarizing and depolarizing voltage steps before

and after the application of NGF (Figure 6b, left inset). The current-

voltage clamp curve of the response to NGF was outward slightly recti-

fying and reversed at 15 mV (n517, p< .05, Figure 6b). At a holding

potential of 270 mV, NGF induced a current that reverses at 25 mV

(n517, data not shown). These data reveal that NGF modulates micro-

glial currents and as such can be considered functionally active on

microglia in an ex vivo setting.

Emerging evidence is showing that stimulation of microglia by acti-

vation of glial receptors affects neurotransmission (Marrone et al.,

2017; Riazi et al., 2015). Therefore, we hypothesized that also NGF

FIGURE 5 NGF enhances macropinocytosis of dextran but not phagocytosis of beads. (a) Phagocytosis of beads: Primary microglia from
CX3CR1-GFP mice were incubated with 6 mm beads and 10 ng/ml IFNg, 100 ng/ml NGF, 100 nM PMA, and 1 mg/ml Rho/Rac/Cdc42
activator I for 3 hr. (b) Macropinocytosis of dextran: Primary microglia from CX3CR1-GFP mice were incubated with 2.5 mg/ml Dextran and
10 ng/ml IFNg, 50 mM Amiloride, 5 mg/ml Cytochalasin-D, 100 ng/ml NGF, 100 nM PMA, and 1 mg/ml Rho/Rac/Cdc42 activator I for 3 hr.
(mean6 SD, *p< .05, Student’s t test) [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 6 NGF affects microglial currents thereby enhancing excitatory neurotransmission. (a) Time plot of the mean current amplitude
induced by NGF application recorded from microglial cells (n517). (b) Left, current-voltage relationship of the NGF-induced current by applica-
tion of NGF (20 g) in a microglial cell from acute cortical slice of CX3CR11/GFP mouse before (black curve) and after 5 (light gray curve) and 10
min (red curve) NGF application. Right, NGF induces an outward rectifying current with reversal potential at about 15 mV at a holding
potential5220 mV (results obtained by subtracting the current before and after the NGF application). (c) Left, example traces of AMPAR
mEPSCs recorded from a pyramidal neuron at 270 mV, in control (ctrl) and after NGF (20 g), in the presence of picrotoxin (100 mM) and TTX (1
mM). Right, bar histograms of group data showing the NGF-mediated increase of mEPSCs amplitude and frequency. (n522, *p< .05, **p< .01,
paired sample t test. (d) Same as in c but in the presence of the anti-TrkA, MNAC13. Note that 20 g NGF did not enhance mEPSC amplitude
and frequency when TrkA receptors are blocked (n515, p5 .012 and p5 .7 for amplitude and frequency, respectively; paired sample t test). (e)
Left, example recordings of mEPSCs before and during NGF in the presence of 100 nM minocycline (mino). Right, population plots of mEPSC
amplitude and frequency in minocycline, before (black bar) and during NGF (red bar), showing that NGF increased selectively the mEPSC
frequency but not the amplitude when microglia activation was blocked (n513, p< .05 and p5 .5, paired sample t test. Data are values from
single cells (gray filled circle) and mean6 SEM (bars) [Color figure can be viewed at wileyonlinelibrary.com]
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may indirectly modulate glutamatergic neurotransmission by acting on

microglial cells. To test this possibility, we first investigated the action

of NGF on miniature excitatory postsynaptic currents (mEPSCs)

recorded from pyramidal neurons. Bath application of NGF (2 lg/ll)

for ten minutes significantly increased both the amplitude and fre-

quency of mEPSCs (from 20.4560.97 to 22.9061.00 pA and from

5.5060.71 to 7.4361.14, n522; p< .01 and p< .05 respectively;

Figure 6c). These enhancements were, at least partly, due to TrkA

receptor activation, since anti-TrkA mAb MNAC13 counteracted the

increase of both amplitude and frequency by NGF (from 25.856

1.188053 to 26.2898161.621783) and frequency (from 6.306

1.249805 to 7.1061.535248, n515; p5 .12 and p5 .07 respec-

tively; Figure 6d). Then, we carried out experiments in the presence of

minocycline, which prevents microglia activation (Plane, Shen, Pleasure,

& Deng, 2010). Minocycline (100 nM) inhibited the NGF-induced

increase of mEPSC frequency, without affecting the rise in amplitude

(from 2.9860.58 to 3.4360.55 Hz and from 18.2161.25 to 20.016

1.23, p5 .5 and p< .05 respectively). Altogether, these data strongly

suggest that NGF acts on microglia to modulate glutamatergic

neurotransmission.

3.6 | NGF and microglia in pathological conditions:

Alzheimer’s disease

Having established that NGF modulates microglial activity in physiolog-

ical conditions, we then assessed the effect of NGF on microglia in a

pathology-related context, such as Alzheimer’s disease. Microglia are

important players in the pathogenesis of neurodegenerative disorders

and they are being studied either as promoters of disease or physiologi-

cal tools to be exploited to help with disease outcome.

3.7 | NGF counteracts Ab proinflammatory effect on

microglia

The amyloid-b peptide provides an inflammatory stimulus to microglia

(Combs, Karlo, Kao, & Landreth, 2001). Given the above-mentioned

effects of NGF on microglial cells, it was of interest to ask whether and

how NGF can modulate their Ab-induced inflammatory profile. To this

aim, we investigated the expression of inflammatory cytokines and che-

mokines in primary microglia in response to NGF, Ab and Ab with

NGF, with an inflammation antibody array (See Section 2 for culture

conditions). Looking at the heatmaps (Figure 7b), we can macroscopi-

cally see the pro-inflammatory activity of Ab by the prevalence of the

red bars (increased quantity of cytokines). It is apparent that NGF car-

ries out the opposite effect: not only it is intrinsically anti-inflammatory

when administered on his own but, given in concomitance with Ab,

NGF treatment effectively counteracts Ab-induced pro-inflammation,

returning cytokines to levels of untreated microglia. This effect was

quantified by the PCA analysis (Figure 7a), that shows NGF treated

cells to be at opposite sides of the PC1/PC2 plane, with untreated cells

having an intermediate position—closer to the NGF groups—and Ab

treated cells clustering elsewhere (the list of values with each specific

cytokine is provided as Supporting Information).

Thus, NGF is very effective in reverting the microglial pro-

inflammatory state induced by Ab, while it has a moderate effect on

the inflammatory phenotype of naive cells, consistent with the tran-

scriptomic study we presented in Figure 3.

3.8 | NGF promotes the internalization of soluble Ab

oligomers through TrkA signaling

Microglia play an important role in the engulfment of different forms of

the Alzheimer’s hallmark Ab peptide. While microglial cells endocytose

fibrillar Ab by phagocytosis, the soluble forms of the Ab peptide are

engulfed by macropinocytosis (Mandrekar et al., 2009). Thus, we asked

whether NGF, which our previous experiments have shown to increase

macropinocytosis, differentially regulates the engulfment of fibrillar

(fAb) and soluble Ab (sAb). To this aim, we incubated primary microglia

with either fluorescent fAb or sAb and we tested the effect of NGF by

FACS, IF and WB (see Section 2 for culture conditions). Consistently

with our previous results (Figure 5), FACS analysis revealed that NGF

FIGURE 7 Anti-inflammatory effect of NGF on microglia primed
with Ab. (a) PCA analysis of the inflammatory array. In the graph,
two biological replicates of four different treatments were plotted.
PC1 and PC2 represent the first two principal components, the
proportion of variance (POV) held by these components is reported
in brackets as percentages. (b) Inflammation array of primary
microglia treated with NGF, Ab, or Ab and NGF reported as
heatmaps, the scale bar represents the minimum and maximum
levels of protein mean. Analysis was performed on RStudio (Boston,
MA) [Color figure can be viewed at wileyonlinelibrary.com]
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did not increase the engulfment of fAb (Figure 8a) but increased signifi-

cantly the macropinocytosis of sAb (Figure 8b).

The levels of sAb and AbO—pure oligomers produced in vitro

(Walsh et al., 2002)—inside primary microglial cells (from both B6129

and Cx3Cr1-GFP mice) was also measured by immunofluorescence

with anti-oligomer scFv A13 (Meli et al., 2009) confirming an increase

in the internalization of the soluble peptide after NGF treatment (Fig-

ure 9a,b).

To distinguish different Ab species, we performed western blot

analysis for Ab on cell extracts. We found that NGF determines a two-

fold increase of the internalized Ab dimers and trimers (Figure 10a). To

discern the involvement of the different NGF receptors in the internal-

ization of Ab, we interfered with TrkA and p75NTR signaling through

specific inhibitors: K252a, which blocks TrkA phosphorylation and sig-

naling, and TAT-pep5, a p75NTR signaling inhibitor. K252a, and not

TAT-pep5, was able to block the increase in the uptake of AbOs in

response to NGF (Figure 10b). Thus, we conclude that NGF is able to

increase selectively macropinocytosis of soluble Ab oligomers in pri-

mary microglia by a TrkA-dependent mechanism.

3.9 | The fate of internalized sAb following NGF

treatment

What are the consequences of the increased macropinocytosis of Ab

oligomers induced by NGF? The Ab engulfed could be either

accumulated inside the cells, expelled through exocytosis/released in

exosomes, or digested. Transcriptome analysis revealed a strong modu-

lation by NGF of genes involved in protein digestion, giving us cause to

test the hypothesis that, in addition to sAb internalization, also the deg-

radation of internalized sAb might be modulated in response to NGF.

We followed the fate of sAb using lysotracker, a dye that marks

lysosomes. We used, for this experiment, microglia BV2 cells, that also

display functional TrkA and p75 receptors (Supporting Information).

The sAb peptides (green) internalized by BV2 microglial cells following

NGF incubation is increased with respect to control. Moreover, the

internalized Ab colocalizes with lysotracker (red), suggesting that the

engulfed material might go through lysosomal degradation (Figure 11a).

In order to quantify such degradation and the hypothetical release of

Ab—such as suggested by (Joshi et al., 2014)—we proceeded as follows

(Figure 11b): BV2 microglial cells were treated with soluble Ab for 3 hr,

then supernatant was collected and cells were washed to remove the

Ab excess (see Section 2 for culture conditions). We then monitored

Ab intracellular and extracellular levels in parallel experiments at 5, 9,

and 21 hr, by WB of cell extracts—reflective of degradation—and ELISA

of supernatants—to detect material that was expelled.

This experiment reveals that not only NGF-treated cells ingest

more Ab than non-treated cells (Figure 11c,d)—as expected—but also

that NGF-treated BV2 microglial cells digest a greater amount of Ab

(Figure 11d) and release a smaller fraction of it into the extracellular

compartment, compared with untreated control cells (Figure 11e).

FIGURE 8 NGF increases the macropinocytosis of soluble Ab but not the phagocytosis of fibrillar Ab. Primary microglia from wild type
mice were incubated with 1 mM of fAb or sAb and 100 ng/ml NGF. Uptake was quantified using flow cytometry and compared with
control non treated cells (a) Internalization of fAb is not affected by NGF treatment. (b) Internalization of the soluble peptide is increased
after NGF treatment. Controls: NGF has a similar effect to PMA (an activator of macropinocytosis), CytochalasinD: inhibitor of endocytic
processes (mean6 SD, *p< .05, Student’s t test) [Color figure can be viewed at wileyonlinelibrary.com]
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3.10 | NGF increases internalization of sAb by

microglia in ex vivo brain slices

A big question was then to assess whether NGF effect on Ab internal-

ization might also be active on microglial cells integrated in the physio-

logical circuit of the brain. To this aim, Ab phagocytosis was tested in

an ex vivo setting, in acute brain slice preparations from CX3CR1-GFP

adult mice. The acute slice was incubated for 3 hrs with NGF and fluo-

rescent s555-Ab, the slice was then fixed, cut to 45 lm thick slices and

mounted on glass slides to quantify internalization of fluorescent Ab by

GFP1 cells. We found a significant increase of internalized Ab in micro-

glial cells from brain slices that were incubated with NGF (Figure 12),

demonstrating that, indeed, the modulatory effect by NGF can trans-

late to microglia in vivo.

3.11 | NGF protects against Ab-induced spine toxicity

and rescues spine density and LTP deficit, in a

microglia-dependent way

It is known that Ab oligomers decrease spine density both in vitro and

in vivo, and impair synaptic long-term potentiation (LTP; Jekabsone,

Mander, Tickler, Sharpe, & Brown, 2006; Palop & Mucke, 2010; Selkoe,

2008; Wei et al., 2010). Moreover, in the healthy developing and adult

brain, an established physiological function of microglia is precisely the

regulation of synapse number—synaptic pruning (Paolicelli et al., 2011;

Parkhurst et al., 2013; Sipe et al., 2016; Zhan et al., 2014). Therefore,

we asked whether NGF might regulate the activity of microglia on

spines. To this aim, we performed co-cultures of primary microglia with

mature neurons and we quantified spine density following NGF treat-

ment (Figure 12a; see Section 2 for culture conditions). After 24 hrs of

co-culture, the number of PSD95 positive puncta was lower on neu-

rons cultured with microglia than in control neuronal cultures; this

reflects the normal phagocytic activity of microglia on synapses (Ji,

Akgul, Wollmuth, & Tsirka, 2013). In contrast, NGF treatment of micro-

glia does not determine any further reduction—nor increase—of spine

number compared with untreated microglia-neuron co-cultures (Figure

13b). Thus, NGF does not modulate the phagocytosis of synapses by

microglia.

We next asked if NGF-treated microglia could rescue spine loss

mediated by sAb exposure. Surely, in our control experiment in pure

neuronal cultures, sAb significantly decreases spine density by 50%, a

decrease that could not be rescued by NGF treatment; however, in

FIGURE 9 NGF increases the engulfment of sAb peptide and ABOs: Immunofluorescence. Primary microglia from CX3CR1-GFP (a) and wild-type
mice (b) were incubated respectively with 1 mM of fluo-555 sAb peptide and ABOs, from 7pA2 supernatant, in presence or absence of 100 ng/ml
NGF (10 mm scale bar, 20< n<30, *p< .05 **p< .001, Kolmogorov-Smirnov test) [Color figure can be viewed at wileyonlinelibrary.com]
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neuron-microglia co-cultures, where Ab-induced spine loss could still

be detected, concomitant treatment with NGF completely prevented

the decrease in spine density, demonstrating microglia as the mediator

of NGF neuroprotective activity (Figure 13b). We conclude that NGF

can prevent Ab-mediated spine loss in a microglia-dependent manner.

The effect of Ab on spine number is paralleled by its negative

effects on synaptic potentiation in plasticity paradigms (Chen et al.,

2000; Walsh et al., 2002). We therefore sought to investigate the inter-

play between NGF, microglia and spines in a plasticity protocol. We

quantified synaptic potentiation measuring the total amount of GluA1

AMPA receptors in neurons under resting conditions or after glycine-

induced chemical LTP (GI-LTP; as in Fortin et al., 2010; Ahmad et al.,

2012). As previously reported, the staining intensity of synaptic GluA1

AMPA receptors increased in pure neuronal cultures 1 hr after GI-LTP

induction (Figure 14). Under our conditions, in microglia-containing cul-

tures, neurons were found to be more sensitive to GI-LTP induction:

GI-LTP induced a greater increase of GluA1 synaptic staining (36%

increase with respect non-LTP cultures), when microglia were present,

compared with control cultures without microglia (15.76% with respect

to non-LTP cultures; Figure 14). This suggests an enhancement of syn-

aptic potentiation by microglia, an in vitro correlate of the evidence

suggesting a role for microglia in spine formation and potentiation in

vivo (Miyamoto et al., 2016; Parkhurst et al., 2013). sAb exposure pre-

vented the spine potentiation by GI-LTP, since the levels of synaptic

GluA1 were not significantly different between glycine-stimulated and

control cultures. The presence of microglia alone was not sufficient to

rescue the synaptic GluA1 levels after sAb incubation in sister cultures

containing sAb and microglia (Figure 14). Instead, NGF-stimulated

microglia cells were able to fully rescue the impairment of synaptic

potentiation caused by sAb. In fact, in NGF-treated microglia-neurons

co-cultures, synaptic GluA1 levels were significantly higher after GI-

LTP, even in the presence of sAb (Figure 14). This was not due to a

direct action of NGF alone on neurons, since in pure neuronal cultures

NGF exposure was not sufficient, per se, to drive a significant change

of synaptic GluA1 levels after GI-LTP in the presence of sAb (Figure

14). From these data, we conclude that—in our in vitro model of

FIGURE 10 The modulation of microglial phagocytic activity is TrkA dependent. (a) Western blot of primary microglia treated with 1 mM of sAb
with or without NGF. Values are expressed as relative levels to controls (mean6 SD, *p< .05, Student’s t test). (b) Primary microglia treated with
200 nM K252a, intracellular TrkA inhibitor and with 1 mM TAT-pep5 p75NTR, inhibitor of p75NTR intracellular signaling. Values are normalized to
the signal of samples treated with only sAb (mean6 SD, *p< .05, Student’s t test) [Color figure can be viewed at wileyonlinelibrary.com]
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neuroimmune interface—not only NGF-stimulated microglial cells are

able to block spine loss induced by sAb (Figure 13a,b), but they can

also attenuate the sAb-mediated impairment of spine potentiation (Fig-

ure 14), most likely by sAb removal from the neuron surrounding.

4 | DISCUSSION

In this article, we have provided stringent evidence that microglia are

target cells for NGF—both in vitro and ex vivo—and that the activity

carried out by this neurotrophin might result neuroprotective and anti-

inflammatory in the context of Alzheimer’s disease-related insults.

Indeed, we found that NGF is very effective in reverting the pro-

inflammatory state of microglia induced by Ab, while it has only a mod-

erate effect on the inflammatory phenotype of naive microglial cells.

This finding is highly relevant because, depending on their activa-

tion state and environment, microglia can either be beneficial or detri-

mental for brain physiology (Salter & Stevens, 2017). Indeed, recent

genetic studies have underscored the emerging role of microglia in

FIGURE 11 sAb is digested and not released in the extracellular environment in cells treated with NGF in BV2 microglial cells. (a) Soluble
Ab is rapidly trafficked to lysosomes for degradation. Confocal imaging of live BV-2 microglia 45 min of 1 mM soluble Ab1–42-488 demon-
strated localization of Ab (green) within lysosomes. Lysosomes were stained using LysoTracker (red). (b) Experimental design for the degra-
dation experiment (c) Western blot of cells lysate. (d) The histogram shows the degradation measure as the delta between the protein levels
at the n time point and (n 1 1) time point and thus represents the amount of protein that has been digested from one time point to the
other. (e) Extracellular Ab levels measured by ELISA. The data represent the outcome of three independent experiments (mean6 SD,
*p< .05) [Color figure can be viewed at wileyonlinelibrary.com]
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Alzheimer’s disease pathogenesis (Keren-Shaul et al., 2017). Microglia

lose their amyloid-b-clearing capabilities with age and as AD progresses

(Galatro et al., 2017; Krabbe et al., 2013). Therefore, affecting micro-

glial homeostatic activities offers a potentially promising therapeutic

avenue for AD pathology. However, approaches currently pursued to

stimulate innate immunity via the Toll-like receptor (TLR) pathway,

such as the use of class B CpG (cytosine-phosphate-guanine) oligo-

deoxynucleotides (ODNs; Scholtzova et al., 2009, 2014, 2017), suffer

from the problem that TLR ligands need to be very carefully titrated, to

avoid excessive microglial stimulation. Indeed, while stimulation of

innate immunity via TLR signaling pathways has been shown to be

sometimes beneficial in modulating AD pathology (Richard, Filali, Pre-

fontaine, & Rivest, 2008; Su, Bai, Zhou, & Zhang, 2016), it can also

exert adverse effects in AD models (Campbell et al., 2009; Heiken-

walder et al., 2004; Lee et al., 2008; Su et al., 2016).

In this respect, according to the results presented here, NGF

appears to be able to stimulate an anti-inflammatory response in micro-

glia and to steer them to a fully neuroprotective phenotype, at many

different levels, including cytokine and chemokine profile, motility, elec-

trophysiological properties, engulfment of extracellular material, inter-

actions with neurons and dendritic spines. Most notably, the

FIGURE 12 NGF increases the engulfment of sAb ex vivo.
Representative images of confocal stack acquisitions from 45 mm
Cx3Cr1-GFP slices. Ex vivo 200 mm slices were first treated with
0.1 mM sAb and with/without of 100 lg/ml NGF then analyzed by
IF for Ab content (mean6 SD, *p< .05, Student’s t test) [Color fig-
ure can be viewed at wileyonlinelibrary.com]

FIGURE 13 NGF protects against Ab-induced spines toxicity in a microglial dependent fashion. (a) Representative images from confocal acqui-
sition show PSD95 (white) puncta in neurons and in co-cultures 1/2 NGF. (b) Representative images of confocal acquisition of neuronal spines
labeled with actin (white) and the dendrites magnification 1/2 sAb (violet) in microglia (green)-neuronal co-cultures; (200< n spines <500 for
two independent experiments, mean6 SED *p< .05 ***p< .001, one-way ANOVA test, followed by a post-hoc Bonferroni test) [Color figure can
be viewed at wileyonlinelibrary.com]
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inflammation-modulating actions of NGF, such as for instance the tran-

scriptomic changes, cytokine profile and the dendritic spine engulf-

ment, are much more pronounced on Ab treated microglia than on

naive microglia. These properties of NGF could be exploited to harness

the brain innate immunity as a safer in loco neuroprotective agent.

Our analysis shows that the receptor-mediated signaling activated

by NGF in microglia regulates a number of physiological activities of

these cells, even triggering an outward rectifying membrane current.

Although the identity of this current remains to be determined, the

value of its reversal potential leads to propose that this NGF-induced

current may be subserved also by chloride channels (Murana et al.,

2017).

Microglial activity is intimately associated with morphological changes

(Nimmerjahn et al., 2005; Stence et al., 2001)—from the extension and

retraction of their branches in response to physiological stimuli, to the

migration of the entire cell body to the site of injury. Microglia motility has

also been recently correlated with the ability of pruning synapses (Sipe

et al., 2016). Therefore, motility represents an important feature to keep

into account when trying to estimate microglial activity in physiological

and pathological situations. Our gene expression profiling data and time-

lapse recordings respectively suggest a modulation by NGF of genes

involved in cytoskeletal reorganization and of membrane dynamics.

We then focused on the possible consequences of NGF activity on

microglial cells in pathological conditions, challenged with Ab peptide, a

FIGURE 14 NGF protects against Ab-induced loss of potentiation in neuron-microglia cocultures. (a) Effect of GI- LTP induction on GluA1
receptors (white) in different conditions, 1/2 microglia (green), 1/2 NGF, 1/2 sAb. Histograms show the values of each experimental con-
dition. (200< n spines<500 for two independent experiments, mean6 SED *p< .05 ***p< .001, one-way ANOVA test, followed by a post-
hoc Bonferroni test) [Color figure can be viewed at wileyonlinelibrary.com]
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well-established neurodegenerative insult. We found that, while the

effects of NGF on the inflammatory phenotype of naive microglia are

slightly anti-inflammatory, microglia treated with NGF become refrac-

tory to the potent inflammatory stimulus of Ab.

We show that NGF is capable of enhancing specifically one type

of endocytic process in microglial cells, the macropinocytosis, a mecha-

nism of choice through which microglial cells clear sAb (Mandrekar

et al., 2009). Thus, as a further step, we demonstrated that, by enhanc-

ing macropinocytosis, NGF promotes sAb clearance in vitro and, most

remarkably, ex vivo. Increasing the uptake of sAb is, however, might

not actually provide a long term protection over the toxicity of the pep-

tide, since internalized sAb could be shed again into the extracellular

space. In fact, microglia can release internalized Ab and convert it in

neurotoxic forms through the shedding of microvesicles (Joshi et al.,

2014). Moreover, it is still not clear if microglial cells are actually able to

digest sAb efficiently (Lee et al., 2010; Majumdar et al., 2007;

Mandrekar-Colucci & Landreth, 2010), due to evidence suggesting that

microglia near plaques are functionally impaired (Krabbe et al., 2013).

Here, we showed that, in BV2 microglia, NGF not only increases Ab

uptake but enhances its degradation.

Alzheimer’s disease has been described as a synaptopathy, entail-

ing a dysfunction of synaptic function (Brose et al., 2010; Haass & Sel-

koe, 2007; Mucke & Selkoe, 2012). Synapse loss is indeed an early sign

of AD and the process has been directly correlated with Ab as the

most likely culprit (Hong et al., 2016). High concentrations of Ab or Ab

oligomers inhibit synaptic plasticity processes (Selkoe, 2008; Shankar

et al., 2007; Walsh et al., 2002). Ab has proven to be a key player in

synaptic plasticity also at physiological concentrations: while short

exposure with low concentrations of the peptide actually enhance syn-

aptic plasticity, longer exposures lasting several hours reduce it (Kop-

pensteiner et al., 2016). This underlines the importance of the

homeostasis of Ab levels and processing in the brain, and thus of

microglia themselves as an important factor in its clearance. On their

part, under physiological conditions microglial cells regulate dendritic

spines, either pruning away superfluous spines during development

(Schafer et al., 2012) or increasing spine density, as observed in the

developing somatosensory cortex (Kettenmann, Kirchhoff, & Verkhrat-

sky, 2013; Miyamoto et al., 2016). In relation to this microglia-neuron

communication, we demonstrate that NGF rescues the spine loss medi-

ated by Ab, an effect that is strictly dependent on microglia. Plasticity

was also studied in vitro by evaluating the efficacy of chemical LTP in

the presence of microglia. Interestingly, spine potentiation, measured

as AMPAR intensity increase, is stronger in neurons cultured with

microglia. While Ab causes a dramatic loss of efficacy of chemical LTP

in neuron-microglia co-cultures, NGF is able to fully rescue spine

potentiation in these conditions. The effect is completely dependent

on the presence of microglia in the cultures, since the Ab-induced LTP

deficit is not rescued by NGF, when neurons are cultured in the

absence of microglia. Thus, in this assay, NGF exerts its neuroprotec-

tive effects on neurons via microglia.

A further demonstration of NGF as a modulator of the microglia-

to-neuron communication is provided by the observed stimulation by

NGF of glutamatergic transmission in a microglia-dependent manner.

This demonstration adds one more line of evidence to the emerging

theme of microglia as a modulator of neurotransmission (Cantaut-

Belarif et al., 2017; Marrone et al., 2017). Intranasal administration of

an NGF variant was recently proven to be highly neuroprotective in an

AD mouse model: 53FAD mice chronically treated with the neurotro-

phin showed a dramatic reduction of the plaque load, with a clear evi-

dence of the involvement of microglial cells in the clearance of Ab

(Capsoni et al., 2017). In that study, the neurotrophin, added to 53FAD

slices (which present synaptic transmission and LTP deficits), deter-

mined a TrkA-dependent rescue of both synaptic transmission and syn-

aptic plasticity deficits. Our results go in the direction of attributing

those events to the action of NGF on microglial cell. By affecting

microglial physiological activity, NGF is capable of influencing glutama-

tergic transmission. Indeed, along with TrkA expression in microglia, we

found that tampering with NGF-TrkA signaling affects negatively gluta-

matergic neurotransmission.

Thus, NGF-activated microglia might result neuroprotective in Ab

pathology not only by lowering the amount of circulating Ab—per se

toxic to synapses and neurons—but also by aiding neurons in synaptic

plasticity tasks.

Our data point toward these myeloid cells of the brain as the cul-

prit for the severe neurodegeneration observed in anti-NGF or anti-

TrkA mice (Capsoni et al., 2000; Capsoni et al., 2010), a conclusion that

might be relevant also for human brain pathologies. Moreover, our

results add an important element to the rationale for the therapeutic

use of NGF in AD (Cattaneo & Calissano, 2012; Cattaneo et al., 2008;

Eriksdotter J€onhagen et al., 1998; Eriksdotter-J€onhagen et al., 2012;

Eyjolfsdottir et al., 2016; Tuszynski et al., 2005, 2015). These broadly

neuroprotective actions of NGF via microglia enlarge the spectrum of

neurons that can be considered NGF targets—way beyond BFCN—thus

extending the therapeutic potential of NGF and its derivatives (Capsoni

et al., 2017). Future studies will be needed to investigate whether there

are regional differences in the responsiveness to NGF of microglia from

different brain regions and from different ages.

In any case, this demonstration of the broad influence of NGF on

microglial cells vindicates the early and visionary view by Rita Levi-

Montalcini that considered NGF as a neurokine, a mediator of neuroim-

mune communication (Levi-Montalcini, 1987; Levi-Montalcini et al.,

1996).

In conclusion, the evidence presented here corroborates the view

that exploiting the innovative immunomodulatory and neuroprotective

mechanisms displayed by NGF may be a viable clinical approach to

ameliorate all hallmarks of AD pathology and, potentially, a spectrum of

other neurodegenerative diseases.
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