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ABSTRACT
With the implementation of competency-based medical education (CBME) in emergency medicine, residency
programs will amass substantial amounts of qualitative and quantitative data about trainees’ performances. This
increased volume of data will challenge traditional processes for assessing trainees and remediating training
deficiencies. At the intersection of trainee performance data and statistical modeling lies the field of medical
learning analytics. At a local training program level, learning analytics has the potential to assist program directors
and competency committees with interpreting assessment data to inform decision making. On a broader level,
learning analytics can be used to explore system questions and identify problems that may impact our
educational programs. Scholars outside of health professions education have been exploring the use of learning
analytics for years and their theories and applications have the potential to inform our implementation of CBME.
The purpose of this review is to characterize the methodologies of learning analytics and explore their potential to
guide new forms of assessment within medical education.

A CASE OF A CLINICAL COMPETENCY
COMMITTEE (CCC) FILE REVIEW

It was time for the CCC committee meeting and Dr.
Zainab Hussain was not looking forward to file prepa-

ration. The data for each resident’s file were presented in
a spreadsheet, which was difficult to manipulate and hard
to interpret. And yet, these were the data that her commit-
tee was supposed to use to guide their recommendations
for annual progress review of the residents’ milestone
achievements. She sighed, remembering that it was her
request for more robust data that led her program director
and department chair to nominate her as the committee
chair. In contrast to 5 years ago when decisions about

resident promotion were made with minimal information,
they now had a lot of data points, but Zainab was not
sure how to organize and analyze the data for effective
interpretation. After all, they had to report residents’ pro-
gress based on the national benchmarks, and she didn’t
want them to fall behind on reporting.

THE (BRIEF) HISTORY OF LEARNING
ANALYTICS IN MEDICAL EDUCATION

Within the past decade, the field of analytics has
exploded, and in medicine this is evidenced by the
exponential growth in literature (see Figure 1). Many
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industries such as finance, sports, and security have
benefitted from using data analytics; however, medi-
cine has been slower to embrace these methods.
Within medicine, the attention on analytics to
improve education and training is less than that of
clinical purposes, such as quality improvement. In
short, the age of data analytics is upon us and medical
education is lingering behind the times.
Building on statistical and computational methods,

the practice of learning analytics applies a variety of
data analysis techniques to describe, characterize, and
predict the learning behaviors of individuals.1 In the
clinical realm, emergency physicians are increasingly
familiar with data dashboards. Many emergency depart-
ments (EDs) have adopted digital interfaces such as
patient tracker boards and patient care dashboards.2,3

These data provide EDs operational teams with infor-
mation that is often used to inform logistic workplace-
based quality improvement initiatives and guide
changes to ensure smooth ED operations and flow.
With the move to competency-based medical educa-

tion (CBME) via the Accreditation Council for Gradu-
ate Medical Education (ACGME) Milestones (2013)
and the Royal College of Physician and Surgeons of
Canada’s Competence by Design (2017), emergency
medicine residency programs have access to ever-increas-
ing amounts of data about the performance of their trai-
nees. However, the systematic application of learning
analytics to interpret these data is sporadic. Some groups
have started using learning analytics to gather informa-
tion and gain insights about learner- or system-level

performance (e.g., the McMaster Modular Assessment
Program for emergency medicine,4–8 online modules
that using learning analytics methods to teach x-ray inter-
pration,9,10 and an internal medicine program’s analyt-
ics dashboards11). The vast majority of residency
programs, however, are attempting to execute program-
matic assessment (i.e., the integrated system of multiple,
longitudinal observations from multiple observers, aggre-
gated into summary performance scores for group adju-
dication of global judgment) without optimized data
collection (e.g., valid testing/simulations, timely and
accurate workplace-based assessments), modern analytic
techniques, or appropriate data representation. These
tools are essential for the successful implementation and
execution of programmatic assessment.12–16

Data are increasingly valued commodities, yet data
collection and interpretation increasingly consume fac-
ulty time. Efficiencies have been limited by resistance
to the amalgamation and security complexities of large
data sets, combined with a lack of technical and con-
textual expertise required for analysis. This challenge
has left data sets with considerable potential unana-
lyzed or underexplored.

THE IMPORTANCE OF THEORY IN
LEARNING ANALYTICS

In 2001, Tollock17wrote that “If you torture the data long
enough, it will confess.”Medical educators would be wise
to keep this quote in mind as digitization provides us
with ever-increasing amounts of data about our trainees.
While larger amounts of data have the potential to
inform trainees and their supervisors about learning and
progression, they can also facilitate the appearance of
meaningless patterns. This occurs both because of “pat-
terns” actually due to chance or particular kinds of mea-
surement error and because interpretations can vary
based upon how the data are presented.18 Furthermore,
as people become aware, they may modify their actions
or aspects of the system to meet expectations (i.e., gaming
the system). Valid interpretations must incorporate educa-
tional theory to ensure that useful questions are asked of
the data and that the answers are used appropriately.19–24

One of the most important concepts to remember
when managing educational data sets is that they are, in
fact, a database. That is to say, data are the foundation
for the analysis and when handling them, it is important
to do so with care and consideration—and only enter
into analyses those data points that are theoretically
grounded or directed by evidence-based rationales. As

Figure 1. Number of PubMed citations over the past decade listing
both the terms “clinical analytics” and “learning analytics.”
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Wise and Shaffer20 question, “What counts as a mean-
ingful finding when the number of data points is so
large that something will always be significant?”
These issues are not new to most clinician educa-

tors; when we critically appraise epidemiology data-
base studies, there is an expectation that examined
variables are linked in some biologically plausible
(theory-driven) or evidence-based (hypothesis-driven)
way. Mining data via subgroup analyses is frowned
upon in the research community for good reason.25

Since the analytic techniques used in learning analyt-
ics are often similar to those used by epidemiologists
(e.g., inspired by regression or correlation statistics),
unprincipled data mining should likewise be mini-
mized in educational data sets. Figure 2 depicts three
places where theory should be integrated within learn-
ing analytics.
There is likely a limited role for not-yet-discovered

questions which arise from data (which begs for an a
posteriori hypothetical approach that big data
allows22); however, such observational analyses must
be interpreted with judiciousness. Specifically, recalling
the limitations of the techniques used (e.g., remember-
ing that correlations are just measures of association
and not causation) will be of utmost importance.

DATA COLLECTION

Educators and clinical supervisors need to be trained to
both observe and effectively document their insights on
a routine basis. By enhancing the data collection from
clinical supervisors, a residency program can enhance
their dataset from a dozen data points (e.g., 12 end of
rotation reports plus other practice examinations over
the course of the year) to several hundred data points
(e.g., the McMAP system can gather about 400 data
points per resident per year).4 System designers and
administrators such as program directors will need to
consider how they engage in quality assurance and mon-
itoring of their systems. Finally, missing data has very-
far-reaching ramifications and should also be considered
in these applied systems.8

COMMONLY USED LEARNING ANALYTIC
TECHNIQUES IN MEDICAL EDUCATION
LEARNING

Learning analytics require large sets of machine-readable
data.26 Such data sets have been available to other areas
of education since the 2000s and before through the col-
lection of data from online learning modules (e.g.,

Figure 2. Where to integrate theory in learning analytics.
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intelligent tutoring system and massive open online
course data).26 However, with the digitization of educa-
tional records and transition to frequent, direct observa-
tion assessments within medical education, databases
meeting these criteria are becoming available to medical
educators at program, institution, and national levels.
In medical education, we rarely have had enough data
to use these techniques, but with the increasing use of
daily encounter cards,27–30 progress testing,31 observed
clinical encounters,32–34 milestones,35 and entrustable
professional activity ratings,11,36,37 we are afforded
opportunities to now employ learning analytics tech-
niques to guide overall assessment decisions. Impor-
tantly, learning analytics offer techniques for examining
not only the outcomes of learning but the process, pro-
viding information that be used to support trainees and
improve their learning. Table 1 shows various analytic
techniques and how these can help with describing, pre-
dicting, explaining, and evaluating assessment data.

ENTER THE MACHINES: MACHINE
LEARNING ALGORITHMS AND THEIR ROLE
IN LEARNING ANALYTICS

In other realms such as banking or website traffic,
data monitoring and pattern recognition are no longer
exclusively a human endeavor. Machine learning algo-
rithms (MLAs) are revolutionizing the way that we har-
ness computer technology to recognize, and at times
predict, patterns within data. With the advent of
MLAs, there are not only inherent opportunities, but
also possible dangers. MLAs can find patterns at the
broad scale or make inferences about classes of peo-
ple, but applying these analytics at the individual level
is still a challenge. One recent study from Canada
showed that MLAs have the potential to assist pro-
gram directors with screening for residents at risk, but
lack the ability to understand trainees’ strengths and
weaknesses and the sophistication to generate specific
remediation plans.38

Nevertheless, MLAs allow large-scale data to inform
our understanding of a trainee’s progression toward
competence and hold great potential as screening tools
or early warning systems. For example, real-time data
on Zainab’s trainees could be continuously analyzed to
identify struggling trainees. With adequate data, MLAs
have the potential to help educators detect difficulties
and problems earlier. More importantly, while learning
analytics cannot always ascertain the “why,” good data
can help you better describe the “what”—i.e., with

good competency data you could describe 1) a trainee’s
individual strengths and weaknesses or 2) common
areas of challenge across a cohort of residents.

AN INTRODUCTION TO LEARNING
ANALYTIC TECHNIQUES

Table 1 outlines various analytical categories and asso-
ciated techniques. Additional techniques that may be
of interest to medical educators have also been
described in the first edition of the Handbook of Learn-
ing Analytics by the Society for Learning Analytics
Research.18 Table 2 contains information about how
we can apply learning analytics to our medical educa-
tion assessment data. To complement this table, Data
Supplement S1 (available as supporting information
in the online version of this paper, which is available
at http://onlinelibrary.wiley.com/doi/10.1002/aet2.
10087/full) contains some examples of learning analyt-
ics using an exemplar data set.

WITH GREAT DATA COMES GREAT
RESPONSIBILITY: THE CONSEQUENCES
AND QUALITY OF DATA

It is important to consider the consequential validity evi-
dence of data analyses.43 Described by Messick in
1989,43 the concept of consequential validity has also
been explained as educational impact44 and refers to
the positive or negative consequences of a particular
assessment. Just as in other educational scenarios,
using a particular construct to make decisions will con-
vey to our trainees that we value that construct.43,45

Similarly, when we make decisions about a trainee
based on our data analyses, we must also bear in
mind the consequences of our decisions affecting their
later behaviors and performances, both good and bad.
While early identification of trainees at risk may be
valuable so programs can offer earlier personalized
remediation plans,6 the very act of labeling a “trainee-
at-risk” may have consequences toward their self-per-
ceptions and future performance.46,47 At the same
time, the implications of not collecting and interpreting
data may also be problematic. Without timely data
inputs (e.g., continuous workplace-based assessment
data from every day/shift in a rotation), we may be
glossing over problems via acts of omission. It is criti-
cal, then, that those who are charged with aggregating
and interpreting larger swaths of data to be aware of
potential pitfalls of missing data8 or cognitive biases
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(e.g., halo effect48) that may affect the meta-rating6

(i.e., interpretation of multiple ratings from multiple
raters) of the presented data.
Indeed, it is key to monitor our data systems for possi-

ble biases. While applying data-driven, actuarial
approaches as described in Table 1 can assist individual
meta-raters to better interpret individual trainee perfor-
mance,48 spinning the data set on its head to place the
raters under the microscope allows us to use evaluative
analyses to examine our assessment systems. Recent litera-
ture has shown that, based on the present EM milestones,
there may be a significant difference in the way that female
trainees are rated when compared to their male counter-
parts.41,42 Studies like these recent ones in our own spe-
cialty,41,42 as well as prior educational measurement
literature,49–51 remind us of how important it is to check
assessment systems for sources of implicit and hidden
bias. The aggregation of data in these studies has allowed
for powerful analyses that have brought these thought-pro-
voking issue to light and may also illuminate other sys-
temic issues.41,42 If a problem occurs at one site, you may
wonder about a specific group’s local culture, but if a
problem occurs across multiple programs, then systemic
biases may be at play and may warrant reexamination of
the system for flaws. Is the data acquisition processes

flawed? Is there insufficient faculty development for rater
training, analysis of terminology, and language used in
assessment systems? One exciting value of learning analyt-
ics for educators is the ability to monitor their data in a
post hoc manner (i.e., the concept of a posteriori hypothe-
ses22) to detect concerning patterns which can prompt
further investigations and improvements.

THE FUTURE

Increasing the yield of educationally informative analy-
ses from CBME is critical. The significant cost and
resources required to transform our residency training
systems requires a return on that investment. Targeted
analyses of trainees and systems demonstrate increased
accountability being asked of medical education by our
leaders, our patients, and our trainees.52,53

Larger-scale data sharing may also allow us to com-
plete analyses that can inform broader policy decisions
(e.g., human resources planning, funding).6 For
instance, if we can predict how long it takes for a typi-
cal trainee to progress through a system compared to
how a gifted or struggling trainee might progress, we
can begin to anticipate what sort of additional funding
or new training opportunities are needed to ensure

Table 3
Key References About Learning Analytics for Clinician Educators

Citation Why This Paper Is Important

Key conceptual papers

Bok HG, Teunissen PW, Favier RP, et al. Programmatic
assessment of competency-based workplace learning: when
theory meets practice. BMC Med Educ 2013;13:123.13

This paper provides a good overview of what the concept
programmatic assessment means and how it can help to
lay basis for mapping out the type of assessment data that
on might wish to gather.

Pusic MV, Boutis K, Hatala R, Cook DA. Learning curves
in health professions education. Acad Med 2015;90:1.9

This provides a conceptual overview about learning curves
and how they might apply to health professions education.

Cirigliano MM, Guthrie C, Pusic MV, et al. “Yes, and . . .”
Exploring the future of learning analytics in medical education.
Teach Learn Med 2017;29:368–72.12

This is a short paper that highlights the opportunities for
using learning analytics in medical education.

Key implementation-related papers

Chan TM, Sherbino J, Mercuri M. Nuance and noise: lessons
learned from longitudinal aggregated assessment data.
J Grad Med Educ 2017;9:724–9.6

This is an example of how assessment data might be
aggregated and mapped, explaining to educators how this
data might be harnessed, and what noise might surround the
emergent data.

Ginsburg S, Regehr G, Lingard L, Eva KW. Reading between
the lines: faculty interpretations of narrative evaluation
comments. Med Educ 2015;49:296–306.54

This paper highlights the importance of qualitative data and how
administrators and competency committee members might
interpret these data.

McConnell M, Sherbino J, Chan TM. Mind the gap:
the prospects of missing data. J Grad Med
Educ 2016;8:708–12.8

This paper highlights a systems-level analysis of how
administrators and competency committee members might
consider “missing data.” It provides a suggestion of applying a
framework similar to Yvonne Steinert’s KSALTS framework to
analyze the problem that missing data presents.

Warm EJ, Held JD, Hellmann M, et al. Entrusting observable
practice activities and milestones over the 36 months of an
internal medicine residency. Acad Med 2016;91:1398–405.11

This is a worked example of a residency program with a large
number of residents and how they visualized and used the
data they acquired about workplace-based assessments for
educational purposes.
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adequate training for all. Identifying a gifted resident
may allow a program director to begin negotiating a
critical care rotation earlier for that talented young
physician. Meanwhile, a struggling trainee may need
extra time in a simulation lab or repetition of a clini-
cal experience for more practice (e.g., an extra anesthe-
sia block for focused airway management skills).
Personalized education paths can better meet individ-
ual needs, and we also must caution against systems
so they do not overly constrain trainees potential tra-
jectories prematurely. “Labeling” trainees based solely
on their early performance trends may prove to be
more detrimental than advantageous.
One of the most important untapped features of

many of our current assessment systems will be the
analysis of the qualitative (i.e., narrative feedback) data
that are generated by faculty members. Analysis of rich
qualitative data promises a better understanding of
context and the nuance of performance that arise in
the clinical sphere. Recent work has shown that writ-
ten comments can be used to reliably discriminate
between high and low performing trainees.54,55 Text-
based applications of MLAs (e.g., natural language
processing, automated content analyses) or other key-
word-based analytic tools may be useful in helping us
to better visualize, interpret, and leverage the rich
information contained within qualitative data. More-
over, the combined interpretation of both qualitative
and quantitative traces of trainees’ assessment may
help to identify gaps in the global analysis.

HOW CAN I LEARN MORE?

Learning and assessment analytics is an exciting area
of health professions education that has great potential
to shape the way we deliver, improve, and customize
our trainee experiences. However, getting started in
this field is admittedly difficult. To help you get
started, we have compiled some resources (Table 3)
that can help educators who are interested in reading
more around learning analytics; many more references
are contained in the references to this paper. For
those interested in learning about how to process and
aggregate their local data, it is useful to consider
attending international medical education conferences
(e.g., International Conference on Residency Educa-
tion, Ottawa Conference on Assessment, the Interna-
tional Competency Based Medical Education
preconference summit before the Association for Med-
ical Education in Europe) where there are more

frequently workshops about data-driven assessments.
For those who are looking for some of these newer
learning analytics techniques, advanced training
through courses on machine learning via massive
open online courses or the Society of Learning Analyt-
ics Research (https://solarrsearch.org) may also be use-
ful.

CASE RESOLUTION

Reviewing the learning analytics literature, Zainab decides
to create a radar graph of each of her trainees’ strengths,
weaknesses, and areas for further development. With the
help of a colleague, she applies a natural language process-
ing algorithm to sort through the large volume of qualita-
tive data reports, highlighting the few comments of
concern or confusion out of the hundreds submitted. She
shares her templates with the rest of the competency com-
mittee members. Knowing that some of these techniques
are new to the discipline of emergency medicine education,
Zainab speaks with her program director and local
research scientist about setting up a new system to continu-
ously survey and improve the process and produce scholar-
ship along the way to help others find best practices.

We thank Dr. Susan Promes and the AEM Education and Train-
ing editorial board for inspiring this piece. Drs. Chan and Sher-
bino thank Drs. Alim Pardhan, Mathew Mercuri, and Ian Preyra
for continuing to support the McMAP program and all of their
local colleagues at McMaster University for their tireless pursuit
improving resident performance. Dr. Pusic thanks his collabora-
tors Drs. Kathy Boutis and Martin Pecaric for their work in the
ImageSim program.
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Data Supplement S1. Examples of Learning Ana-
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