
Received: 10 July 2017 Revised: 20 August 2017 Accepted: 28 August 2017
S P EC I A L I S S U E TUTOR I A L

DOI: 10.1002/mrc.4660
Large‐scale NMR simulations in liquid state: A tutorial
Ilya Kuprov
School of Chemistry, University of
Southampton, University Road,
Southampton SO17 1BJ, UK

Correspondence
Ilya Kuprov, School of Chemistry,
University of Southampton, University
Road, Southampton SO17 1BJ, UK.
Email: i.kuprov@soton.ac.uk

Funding information
Engineering and Physical Sciences
Research Council, Grant/Award Number:
EP/F065205/1 and EP/H003789/1
- -

This is an open access article under the terms of the C

original work is properly cited.

© 2017 The Authors. Magnetic Resonance in Chemis

1Spinach drops unpopulated quantum states —
answer. Technical details are published in Ka

Magn Reson Chem. 2018;56:415–437.
Liquid state nuclear magnetic resonance is the only class of magnetic resonance

experiments for which the simulation problem is solved comprehensively for

spin systems of any size. This paper contains a practical walkthrough for one

of the many available simulation packages — Spinach. Its unique feature is

polynomial complexity scaling: the ability to simulate large spin systems

quantum mechanically and with accurate account of relaxation, diffusion,

chemical processes, and hydrodynamics. This paper is a gentle introduction

written with a PhD student in mind.

KEYWORDS

NMR, simulation, spin, spinach, software
1 | INTRODUCTION

Textbooks and introductory lectures make nuclear magnetic resonance (NMR) simulations look deceptively simple: type
in some Pauli matrices, make a Hamiltonian, compute the exponential, and that's ostensibly it— their authors have done
a wonderful job of making the subject easy to understand.[1–3] The reality is rather more brutal: relaxation theory requires
deep knowledge of tensor calculus, interaction specifications and rotation conventions are a veritable minefield, matrix
manipulation is a highly technical subject… and then there are chemical kinetics, diffusion, flow, spatial encoding,
distant dipolar effects, hyperpolarisation, and paramagnetic shifts. With a bit of luck, the simulation would be done by
the end of the PhD project… or maybe not. Fortunately, there is now an app for that, and it is called Spinach.[4]

This paper is a practical walkthrough — it goes through the process of setting up and running liquid state NMR
simulations in the order that most people would be doing it in practice. The purpose of Spinach in this context is to
simplify the process: the program automates all intermediate stages (Hamiltonian generation, relaxation superoperator
calculation, time evolution mathematics, etc.) and offers many standard pulse sequences as pre‐programmed modules
with detailed examples and documentation. Complicated particulars of the internal mathematics and programming
are avoided as much as possible here, with references to the more technical papers.

At the time of writing, Spinach is unique in its ability to simulate, without significant approximations1 and in the
time domain, liquid state NMR systems containing hundreds of interacting spins.[5] Many packages can generate a
reasonable likeness of a 1D NMR spectrum for large spin systems, but complicated combinations of multidimensional
pulse sequences, advanced relaxation and kinetics treatments, shaped pulses and gradients, diffusion, and flow are only
available in Spinach. This is the result of very recent theoretical developments, the primary ones being quantum
- -

reative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the

try published by John Wiley & Sons Ltd.

this reduces the basis set and makes calculations faster but does not influence accuracy of the final
rabanov et al.[28]

wileyonlinelibrary.com/journal/mrc 415

http://orcid.org/0000-0003-0430-2682
mailto:i.kuprov@soton.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/mrc.4660
http://wileyonlinelibrary.com/journal/mrc

416 KUPROV
mechanical simulation algorithms[6,7] that have much lower computational resource requirements than anything
previously available, and the Fokker–Planck equation for the spatial degrees of freedom.[8,9]

Spinach is a Matlab package, the primary reason being convenience: of all available scientific computing environ-
ments, Matlab takes the shortest amount of time to get a calculation going. To set Spinach up, follow the installation
instructions on the website (http://spindynamics.org). The current public version requires Matlab R2016b or later with
Parallel Computing Toolbox and Optimisation Toolbox installed.
2 | WHAT DOES NMR SIMULATION SOFTWARE DO?

Time domain NMR simulation packages solve Liouville ‐ von Neumann's equation (the equivalent of Schrödinger's
equation for spin ensembles) and calculate the observable magnetisation at each point in time[10]:

∂
∂t

ρ̂ tð Þ ¼ − i^̂L tð Þ ρ̂ tð Þ m tð Þ ¼ m̂j ρ̂ tð Þh i; (1)

where ρ̂ tð Þ is a vector that contains information about spin system state, ^̂L is a matrix, called Liouvillian, that depends on
things such as J‐couplings and relaxation rates, and m̂ is the observable magnetisation projector. To a computer,

Equation 1 looks like standard linear algebra; it is solved by calculating the exponential of ^̂L:

ρ̂ t þ dtð Þ ¼ exp − i^̂L tð Þdt
h i

ρ̂ tð Þ: (2)

Technical details may be found in more specialised reviews of magnetic resonance simulation methods.[9–14] Spinach is
designed to automate this process: the user specifies the spin system and the experiment parameters, and receives a free
induction decay at the end of the calculation.

Figure 1 shows the general flowchart of a typical liquid state NMR simulation. The job of the user is to say which
interactions are active at which time, to specify the molecule, and to choose the pulse sequence. Spinach builds and
solves Equation 1, and returns the answer to the user.
3 | SPECIFYING THE SYSTEM

In order to be understood by a simulation package, spin system parameters (chemical shifts, J‐couplings, etc.) must be
specified in a certain formal way that the program expects. Standard formats are starting to emerge,[15] but at the
FIGURE 1 Time‐domain NMR simulation flowchart. All stages except the first are automated in modern magnetic resonance simulation

software

http://spindynamics.org

KUPROV 417
moment, every simulation package has its own way of specifying the spin system. Spinach uses Matlab data structures
that are described in this section.

Any Spinach calculation must begin with a specification of three major aspects of the simulation:

sys - spin system and instrument configuration (isotopes, magnet field, etc.)
inter - interactions present within the system (scalar, dipolar, etc.)
bas - formalism and basis set (Hilbert space, Liouville space, coherence orders, etc.)

Matlab uses dots to separate fields in its data structures. Those fields make a convenient hierarchy that is used to supply
information to Spinach, for example,

sys.magnet=14.1; - main magnet field, 14.1 Tesla
sys.isotopes={'1H','1H','13C'}; - three-spin system, two protons and a carbon.
inter.coupling.scalar{3,5}=7.4; - J-coupling between spin 3 and spin 5, equal to 7.4 Hz
bas.formalism='zeeman−hilb'; - Hilbert space formalism, Zeeman basis

Statements of this kind are described in detail in the manual (http://spindynamics.org/wiki). Once the specification is
typed in, the three data structures sys, inter, and bas must be supplied to create.m and basis.m constructor
functions. These functions process spin system and simulation formalism specifications, write some useful diagnostics
to Matlab console and create the spin_system object — the primary data structure that is used to store spin system
information in Spinach:

spin_system=create(sys,inter); - create spin system data structure
spin_system=basis(spin_system,bas); - add basis set information

Once these functions are run, Spinach has all the necessary information about the spin system and the formalism. The
program performs extensive input validation and will always tell the user if it needs more information. A typical
specification for a simple liquid state NMR case looks like the following:

% Spin system
sys.isotopes={'1H','1H'}; - two protons
inter.zeeman.scalar={0.0 0.01}; - chemical shifts in ppm
inter.coupling.scalar={0.0 3.0;

0.0 0.0}; - J-couplings as a Matlab cell array (curly brackets)
inter.coordinates={[0.00 0.00 0.00];

[0.00 0.00 2.00]}; - coordinate vectors (square brackets) as a cell array
% Magnet field
sys.magnet=14.1; - magnetic field in Tesla

% Simulation formalism
bas.formalism='sphten−liouv'; - spherical tensors in Liouville space
bas.approximation='none'; - no approximations

% Relaxation theory parameters
inter.relaxation={'redfield'}; - the list of relaxation theories
inter.equilibrium='dibari'; - thermal equilibrium correction algorithm
inter.rlx_keep='secular'; - non-secular terms to be dropped
inter.temperature=298; - spin temperature at equilibrium
inter.tau_c={1e−9}; - rotational correlation time

% Spinach housekeeping
spin_system=create(sys,inter); - create spin system data structure
spin_system=basis(spin_system,bas); - add basis set information

http://spindynamics.org/wiki

418 KUPROV
It is clear that the specification is human‐readable — a quick way to get going is to modify one of the many standard
examples supplied with Spinach.Matlab has three types of brackets: round brackets are used for function arguments and
array indices, square brackets are used for vectors and matrices, and curly brackets are used for arrays that can contain
anything — those are called cell arrays. This latter type is needed for arrays with flexible structure, for example, rota-
tional correlation times may be different for different chemical species, and each of those species may have a different
number of them when rotational diffusion is anisotropic. Further details of the input syntax are given in the sections
below. Deeper technicalities are in the online manual.
3.1 | Isotopes and labels

Spin system composition is specified by giving a list of isotope names, for example,

sys.isotopes={'1H','1H','19F','235U'};

All known isotopes are supported, including those with spin zero. Optionally, a label for each spin may be specified by
giving a list of strings, for example,

sys.labels={'CA','CB','HB2','HB3'};

Labels are printed next to spin interaction summaries— this makes diagnostic output easier to read for large spin systems.
Labels are also used by protein NMR spectroscopy modules to identify different types of atoms — when a dedicated pro-
tein pulse sequence (such as hncoca.m) is run, these labels must be set to the standard Protein Data Bank (PDB) atom
identifiers. PDB and Biological Magnetic Resonance Bank (BMRB) import functions set these labels automatically.
3.2 | Interactions

There are three broad classes of interactions in NMR — between spins and the external magnetic field, between
spins and other spins, and inside (or so it looks) a specific spin. Mathematically, all three classes have the same

appearance — as a product of two spin vectors s
→
1 and s

→
2 with a matrix A in the middle:
Interaction type
 Mathematical form
 Examples
Spin–field
 s
→T

1 ⋅A⋅ B
→
 Chemical shift
Spin–spin
 s
→T

1 ⋅A⋅ s
→
2

Dipolar coupling
Internal
 s
→T

1 ⋅A⋅ s
→
1

Quadrupolar coupling
The matrix is called “interaction tensor”. Its orientation‐independent (“isotropic”) part is responsible for the line pattern
in the NMR spectrum, and the part that changes with molecular orientation (“anisotropic”) is responsible for the line
width and other relaxation properties.

For the spin–field interactions, Spinach needs the primary magnet field in units of Tesla, for example,

sys.magnet=14.1;

If the system has chemical shifts, they may be specified as scalars, 3 × 3 matrices, or eigenvalues + Euler angles (in
radians). If multiple specifications are supplied, they are added together.
Variable name
 Variable type
 Content
inter.zeeman.eigs

inter.zeeman.euler
[1 × nspins] cell array
of [1 × 3] row vectors
Eigenvalues of chemical shift tensors (in ppm)
with Euler angles (in radians).
inter.zeeman.matrix
 [1 × nspins] cell array
of [3 × 3] matrices
Full chemical shift tensors (in ppm) as matrices.
inter.zeeman.scalar
 [1 × nspins] cell array
of real numbers
Isotropic chemical shifts (in ppm).

KUPROV 419
Examples:

inter.zeeman.eigs={[7 15 −22] ...
[11 18 −29]};

inter.zeeman.euler={[pi/5 pi/3 pi/11] ...
[pi/6 pi/7 pi/15]};

inter.zeeman.matrix={[5 0 0; 0 5 0; 0 0 5] ...
[5 0 0; 0 5 0; 0 0 5]};

inter.zeeman.scalar={1.0 2.0 3.0};

Spin–spin couplings may also be specified as scalars, 3 × 3 matrices, or eigenvalues + Euler angles. If multiple specifi-
cations are supplied, Spinach adds them together.
Variable name
 Variable type
 Content
inter.coupling.eigs

inter.coupling.euler
[nspins × nspins] cell
array of [1 × 3] matrices
Eigenvalues of coupling tensors (in Hz) with Euler angles (in radians).
Bilinear coupling is introduced by specifying a coupling between two
spins. Quadratic coupling (e.g. quadrupolar) is introduced by
specifying a coupling between a spin and itself.
inter.coupling.matrix
 [nspins × nspins] cell
array of [3 × 3] matrices
Full coupling tensors as matrices (in Hz). Each element of the cell
array is accounted for, so the couplings must be divided by two if a
symmetric cell array is supplied.
inter.coupling.scalar
 [nspins × nspins] cell
array of reals
Isotropic couplings (in Hz).
inter.coordinates
 [nspins × 1] cell array of
[1 × 3] row vectors
Cartesian coordinates of every spin (in Angstroms), used to determine
point dipolar interactions. If a cell corresponding to a particular spin
is left empty, that spin is assumed to not have any dipolar interactions
with the rest of the system.
Examples:

inter.coupling.scalar={0 50; 0 0};

inter.coupling.eigs{2,2}=[1e4 1e4 −2e4];

inter.coupling.euler{2,2}=[0 0 0];

inter.coordinates={[0.0 0.0 0.0] ...
[0.0 0.0 1.5]};

Spin–spin interactions may be specified in a variety of equivalent ways. The table below provides suggestions on speci-
fying all common NMR interactions. Spinach supports most other types of magnetic resonance spectroscopy, but the cor-
responding interactions are outside the scope of this paper.

Ways of specifying NMR interactions
Nuclear chemical shift
 Use inter.zeeman.scalar for isotropic chemical shifts, inter.zeeman.matrix
for anisotropic chemical shift tensors supplied as matrices, or inter.zeeman.eigs &
inter.zeeman.euler for anisotropic chemical shift tensors specified as eigenvalues
and Euler angles.
Inter‐nuclear J‐coupling
 Use inter.coupling.scalar; couplings that are specified multiple times, for example,
between spins 1 and 2, and then again between spins 2 and 1, will be added together.
(Continues)

420 KUPROV
(Continued)

Ways of specifying NMR interactions
Inter‐nuclear dipolar coupling
 Use inter.coordinates if nuclear coordinates are known (they will be converted
into a dipolar interaction matrix internally), or inter.coupling.matrix for dipolar
coupling supplied as a matrix, or inter.coupling.eigs & inter.coupling.euler for
dipolar interactions supplied as eigenvalues and Euler angles.
Nuclear quadrupolar coupling
 Best specified as an “interaction” of the nucleus with itself. Use inter.coupling.matrix

or inter.coupling.eigs & inter.coupling.euler for quadrupolar interactions
specified as eigenvalues and Euler angles.
A word of caution is in order about rotations in general and Euler angles in particular: there is no other subject in
magnetic resonance that appears as innocent, and is actually as deadly, as three‐dimensional rotations. Space agencies
have lost a few satellites to Euler angles, and every magnetic resonance theorist has gained a few grey hairs. Always store
and publish your interactions as 3 × 3 matrices in Hz or ppm. Spinach would help you translate historical conventions—
see the Kernel Utilities section of the online manual.

For partially oriented systems, the order matrix may be supplied to enable the simulation of orientation residuals of
anisotropic interactions, for example,

inter.order_matrix=diag([1e−3 2e−3 −3e−3]);

Magnetic interaction parameters and atomic coordinates may also be imported directly into sys and inter data
structures from Gaussian[16] and ORCA[17] logs. In both cases, the log is first parsed and then the parse data are imported
into Spinach, for example,

% Parse a Gaussian calculation log
props=gparse('../standard_systems/alanine.log');

% Import data into Spinach
[sys,inter]=g2spinach(props,{{'C','13C'},{'N','15N'}},[182.1 264.5],[]);

Further details on the parameters and options for the parser and the import functions are given in the manual. Spin sys-
tem information may also be read from the spinsys{} field of SIMPSON[14] *.in files.

Protein spin system composition and interaction information may be loaded from a pair of protein database files— a
PDB file with atomic coordinates and a BMRB file with chemical shifts. The following call, used in the protein example
set supplied with Spinach

% Protein data import
options.pdb_mol=1;
options.select='all';
options.noshift='delete';
[sys,inter]=protein('1D3Z.pdb','1D3Z.bmrb',options);

would automatically create the necessary data structures, estimate all J‐couplings and some backbone chemical shift
anisotropy (CSA) tensors. The detailed syntax description may be found in the manual. Nucleic acid data may be
imported in a similar way:

% Import RNA data
options.noshift='delete';
[sys,inter]=nuclacid('example.pdb','example.txt',options);

Spinach example set contains several examples of protein and nucleic acid NMR simulations; some of the outputs of
those calculations are shown in Figure 2. Further details may be found in our recent papers.[5–7,18]

FIGURE 2 Left: fully quantum mechanical time‐domain Liouville‐space simulation of ubiquitin NOESY spectrum using full Redfield

relaxation superoperator, performed as described in Edwards et al.[5] Right: the result of a smoothed chirp inversion pulse on a 31‐spin

system with strong nearest‐neighbour J‐couplings, followed by a homospoil gradient and a hard 90‐degree pulse. Both calculations are

included into the standard example set supplied with Spinach

KUPROV 421
NMR calculations on ubiquitin‐size spin systems require 32 GB of RAM for the calculations that do not involve
Redfield relaxation superoperator (such as HSQC and HNCOCA), and 128 GB of RAM for the calculations (NOESY
and NOESY‐HSQC) that do.[5] From about 100 spins onwards, the asymptotic scaling of both RAM requirements and
CPU time with the size of the spin system in liquid state NMR simulations is linear.
4 | RELAXATION AND CHEMICAL KINETICS

Spinach supports a large variety of relaxation theories, the most commonly used ones being T1/T2 approximation
and Bloch–Redfield–Wangsness theory.[19–21] The former simply assigns relaxation times to each spin in the
system, and the latter assumes rotational diffusion and obtains relaxation rates from the interactions present in
the system and the parameters of the diffusion process. Particulars of other relaxation theories may be found in
the online documentation. Relaxation theory module in Spinach is uniquely powerful; it is implemented using very
numerically efficient methods that can handle relaxation superoperators with dimension in excess of a
million.[18,22]

Spinach relaxation theory specification is a cell array listing all active relaxation theories, for example,

inter.relaxation={'redfield','t1_t2'};

requests both Redfield theory and T1/T2 theory. Within the T1/T2 theory, longitudinal and transverse relaxation rates in
Hz should be provided for each spin. For example, in a three‐spin system:

inter.relaxation={'t1_t2'};
inter.r1_rates=[1.0 2.0 5.0];
inter.r2_rates=[5.0 7.0 9.0];

This would make all longitudinal states of each spin relax with rates R1 and all transverse states of each spin with rates
R2. Strictly speaking, the T1/T2 relaxation model makes no mention of what happens to multi‐spin orders. Spinach there-
fore takes the liberty of making multi‐spin orders relax at the sum of the relaxation rates of their constituent operators.
This is a reasonable approximation in most cases.

In order to use Redfield theory, the user must supply anisotropic parts for all relevant interactions, as well as one,
two, or three rotational correlation times for each chemical species present in the system. The call with one rotational
correlation time, for example,

-545-540-535-530-525-520-515-510-505-500

19F linear frequency, Hz

-8

-6

-4

-2

0

2

4

6

8
10-5

m
 = 0.1 s

m
 = 1.4 s

m
 = 1.6 s

m
 = 1.8 s

m
 = 2.0 s

m
 = 2.2 s

m
 = 2.4 s

m
 = 10 s

FIGURE 3 Inversion‐recovery 19F NMR spectrum of 1‐fluoro‐2,4‐dinitrobenzene as a function of mixing time, showing the effect of DD–

CSA cross‐correlation described in detail by Grace and Kumar.[36] The calculation is included into the standard example set supplied with

Spinach

422 KUPROV
inter.tau_c={1e−9};

would make Spinach assume isotropic rotational diffusion of what would be assumed to be a spherical molecule. A call
with two rotational correlation times, for example,

inter.tau_c={[1e−9 2e−9]};

corresponds to axial rotational diffusion of what would be assumed to be an axially symmetric ellipsoid. The two‐element
vector above gives the rotational correlation time around the symmetry axis of the ellipsoid (first element) and around an
axis perpendicular to the symmetry axis (second element). The Z axis of the reference frame used to specify the interac-
tions at the spin system specification stage must coincide with the symmetry axis of the rotational diffusion tensor. A call
with three parameters, for example,

inter.tau_c={[1e−9 2e−9 3e−9]};

is assumed to give the three rotational correlation times of an arbitrary ellipsoid around X, Y, and Z principal axes (in
that order) of its rotational diffusion tensor. The reference frame used to specify the interactions at the spin system spec-
ification stage must coincide with the eigenframe of the diffusion tensor.

The state to which the relaxation superoperator should be driving the system must be specified by setting the
inter.equilibrium parameter. It controls the “thermalization” of the relaxation superoperator — a numerical
correction that makes it drive the spin system to some prescribed thermal equilibrium state. The value of 'zero' causes
the system to relax to the all‐zero state; specifying 'levante' or 'dibari' makes use of Levante–Ernst[23] and
DiBari–Levitt[24] equilibrium correction methods, respectively. In that case, the spin temperature in the equilibrium state
should also be specified, for example,

inter.temperature=298;

Not specifying a temperature makes the program use the high‐temperature approximation. Examples of relaxation
theory simulations (available in the standard example set) are given in Figures 3 and 4.

Spinach has a very general chemical kinetics module that can handle arbitrary reaction networks, the only restriction
being that the corresponding differential equations must be linear and must have the following general form:

FIGURE 4 Longitudinal magnetisation as a function of time in a two‐proton spin system undergoing dipolar cross‐relaxation. The two

spins are placed 2.0 Å apart, the rotational correlation time is set to 1.0 ns, the temperature is set to 298 K, the chemical shift difference is

0.01 ppm; the magnet field is 14.1 Tesla. One of the spins is inverted at time zero. Left: no J‐coupling between the spins. Right: zero‐quantum

beats resulting from a 3.0 Hz J‐coupling. The calculations are included into the standard example set supplied with Spinach

KUPROV 423
d
dt

A½ �
B½ �
C½ �
⋮

0
BBB@

1
CCCA ¼ K

A½ �
B½ �
C½ �
⋮

0
BBB@

1
CCCA; (3)

where K is the reaction rate matrix. For example,

A �!k1þ B⇆
k2−

k2þ
C

d
dt

A½ �
B½ �
C½ �

0
BB@

1
CCA ¼

−k1þ 0 0

k1þ −k2þ k2−

0 k2þ −k2−

0
BB@

1
CCA

A½ �
B½ �
C½ �

0
BB@

1
CCA:

(4)

Spinach expects the user to supply this matrix and the initial concentrations of the molecules. All of the molecules
should be specified in the same input (simply listing their spins one after the other), and then Spinach should be told
which spins belong to which molecule using inter.chem.parts variable, for example,

% Isotopes
sys.isotopes={'1H','13C','15N','1H','13C','15N'};

% Chemical shifts
inter.zeeman.scalar={1.0, 20.0, 15.0, 1.5, 25.0, 16.0};

% Spins 1,2,3 are molecule A; spins 4,5,6 are molecule B
inter.chem.parts={[1 2 3],[4 5 6]};

% Kinetic rate matrix (Hz)
inter.chem.rates=[−0.1 0.2; 0.1 −0.2];

% Initial concentrations (arbitrary units)
inter.chem.concs=[1.0, 2.0];

424 KUPROV
In the general case, the parameters, supplied at the spin system specification stage, must be
Variable name
 Variable type
 Content
inter.chem.parts
 A cell array of vectors containing
integers
Individual vectors in the cell array must contain the numbers of
spins that belong to each of the molecules in the chemical
reaction, for example, {[1 2], [3 4]} indicates that spins 1 and 2
belong to the first molecule and spins 3 and 4 belong to the
second molecule.
inter.chem.rates
 A matrix of real numbers
 Chemical reaction rate matrix between the molecules identified
in inter.chem.parts variable.
inter.chem.concs
 A vector of non‐negative real
numbers
Initial concentrations of the molecules identified in
inter.chem.parts variable.
The systems on either side of the reaction arrow must have the same number of spins, must have those spins specified
in the same order, and must have the same basis set. Within Bloch–Redfield–Wangsness relaxation theory, different
chemical compartments can have different rotational correlation times.
5 | FORMALISM AND BASIS SET SPECIFICATION

Spinach supports three simulation formalisms: the standard |α⟩ and |β⟩ Zeeman basis used in most textbooks (colloqui-
ally known as “the Hilbert space”), the adjoint representation of the same (known as “the Liouville space”[25]), and a
particularly convenient version of Liouville space that uses irreducible spherical tensor operators as the basis set.[4]

The formalism is chosen using bas.formalism parameter, for example,

bas.formalism='sphten−liouv';
Formalism keyword
 Formalism description
'sphten−liouv'
 Liouville space formalism: the fundamental operators from which the basis set is built are
single‐spin irreducible spherical tensors. These operators are ordered with respect to
many common transformations and conservation laws encountered in magnetic resonance.
Many operations may therefore be performed semi‐analytically. A lot of Spinach
functionality either requires this formalism or operates most efficiently within it.
'zeeman−liouv'
 Liouville space formalism: the fundamental operators from which the basis set is built are
single transition operators between the projection states onto the Z axis. The state vector
coefficients in this formalism are easy to interpret because they correspond to populations
of standard textbook spin states. This formalism is essentially a vectorisation of
'zeeman−hilb'; it permits only limited state space reduction; most calculations would
have exponential complexity scaling if this option is chosen.
'zeeman−hilb'
 Hilbert space formalism: the fundamental states from which the basis set is built are the
projection states onto the Z axis. This is the standard density operator formalism described
in most magnetic resonance textbooks. Only the core functionality (operators, states,
propagators, and evolution) is available. This option is mostly useful for backwards
compatibility checks; it cannot support complicated relaxation theories or chemical kinetics.
All calculations within this formalism would have exponential complexity scaling.
Basis sets are a highly technical topic — this tutorial specifically aims to avoid complicated mathematics. It would
suffice to say that 'zeeman−hilb' is essentially the textbook route with Pauli matrices,[1–3] and 'sphten−liouv'
is its modern and very numerically efficient replacement.[5,6,26,27] The fastest algorithms that use incomplete basis
sets[6,7] and have polynomial complexity scaling are only available within 'sphten−liouv' formalism. If the system
has more than 20 spins, 'sphten−liouv' is the only realistic choice.[5]

KUPROV 425
The concept of an incomplete basis set is relatively new in magnetic resonance simulations,[6] and an extended
explanation is perhaps warranted. Every quantum state of the spin system may be described by a density matrix, and
any matrix may be written as a linear combination of some basis matrices. In the simple case of one spin,

ρ̂ ¼ aσ̂X þ bσ̂Y þ cσ̂Z; (5)

where σ̂X; σ̂Y; σ̂Zf g are Pauli matrices and {a, b, c} are complex numbers. In this case, the Pauli matrices are the “basis
set”, and the complex numbers are the “expansion coefficients”. Systems with multiple spins have many more operators
in the basis set: not only single‐spin operators but also multispin operators (e.g. σ̂ 1ð Þ

Z ⊗ σ̂ 2ð Þ
Z) that describe correlated simul-

taneous dynamics of multiple spins. It is here that approximations can be made: many such states are not populated for a
variety of reasons.[6,7,26,27] The smaller the basis set, the faster the calculation becomes — but a balance must be struck
between calculation speed and accuracy.

To run an exact (i.e. complete basis set) calculation in any formalism, set

bas.approximation='none';

This option requests a complete basis set, which is only practical up to about 20 spins in Hilbert space and 10 spins in
Liouville space. Approximate calculations are those that use an incomplete basis set. The user is expected to provide
the information that Spinach would use to build the basis set. The following frequently encountered choices are provided
with the kernel:
Approximation
 Approximation description
 Parameters
'IK−0'
 Includes all product states between up to (and including) bas.level
spins located anywhere within the system. For example, setting
bas.level=5 would generate the basis that contains all spin
correlations that involve five spins or fewer. The location of those
spins is not taken into account.
bas.level
'IK−1'
 Includes all product states between up to (and including) bas.level
directly coupled spins and up to bas.space_level between
spins that are closer together than the proximity cut‐off radius.

This basis starts from IK−0, but then also drops correlations between
very remote spins — if a pair of spins is not coupled in any way, even the
two‐spin order between them is not actually needed. Here, bas.level
controls the maximum correlation order for spins connected by couplings,
and bas.space_level controls the maximum correlation order for
spins that are within the proximity cut‐off radius.
bas.level,

bas.space_level
'IK−2'
 Includes, for every spin, all correlations with all directly coupled spins
and correlations with up to (and including) bas.space_level
with spins that are closer together than the user‐specified proximity
cut‐off.

This basis is similar to IK−1, except the truncation level around each
spin is automatically set to the number of its direct coupling neighbours.
This basis set can be quite large, but it is also very accurate.
bas.space_level
The concept of a basis set in NMR simulations is illustrated in Figure 5. The spin system in question is anti‐3,4‐difluoro‐
n‐heptane — with 16 spins, it is just outside of what is realistically possible to simulate with conventional time‐domain
tools, even if symmetry and sparse matrix algebra is used. It is clear from the right panel of Figure 5 (note the logarithmic
scale) that only correlations involving up to eight spins are populated to a significant extent in this system. This is a fun-
damentally important observation: the dimension of the full Liouville space in this system is in the billions, whereas the
dimension of the reduced subspace is only 1,924,374; it is actually reduced further to 360,770 once the various symme-
tries and conservation laws are taken into account — Spinach does that automatically. It is instructive to go through the
console log, which is reproduced below.

FIGURE 5 Convergence of the 19F NMR spectrum of anti‐3,4‐difluoro‐n‐heptane (16‐spin system) as a function of the basis truncation level.

Top left: six‐spin orders and below. Middle left: seven‐spin orders and below. Bottom left: eight‐spin orders and below; this calculation is

indistinguishable from the exact simulation to within about 10−3 in relative amplitude. Right: contributions from different orders of spin

correlation to the system trajectory. The two traces in the lower part of the figure correspond to 9‐ and 10‐spin correlations — from their

negligible magnitude, it is clear that for practical simulation purposes only correlations of up to eight spins need to be kept in the basis

426 KUPROV
[…]
[…] ==
[…] = =
[…] = BASIS SET =
[…] = =
[…] ==
[…]
[…] spherical tensor basis set using Liouville space matrix formalism.
[…] spin correlations up to order 8 between directly coupled spins.
[…] keeping only coherence orders with M=[1]...
[…] keeping only the zero‐quantum states on 1H...
[…] building the basis set descriptor...
[…] chemical species 1: 1924374 states.
[…] permutation symmetry summary
[…] =====================
[…] Group Spins
[…] −−−−−−−−−−−−−−−−−−−−−

[…] S3 14 15 16
[…] S3 21 22 23
[…] =====================
[…] 9 irreps in the group direct product.
[…] dimensions of the irreps 1 1 2 1 1 2 2 2 4
[…] 36 symmetry operations in the group direct product.
[…] Liouville space symmetry mode − fully symmetric irrep only.
[…] A1g irrep, 373957 states.
[…] trying to reduce the problem dimension...
[…] destination state screening using coil state.
[…] irrep #1, attempting zero track elimination...
[…] state space dimension reduced from 373957 to 360770
[…] evolving subspace 1 of 1...
[…] large Liouvillian, propagating using Krylov algorithm...
[…] taking 511 Krylov steps with 87 substeps each.

KUPROV 427
[…] GPU Krylov step 1 out of 511...
[…] GPU Krylov step 2 out of 511...
[…] GPU Krylov step 3 out of 511...
[…] GPU Krylov step 4 out of 511...
[…] GPU Krylov step 5 out of 511...

Spinach first applies the state space restriction to eight‐spin orders or less,[6] then applies the conservation law with
respect to the coherence order (+1 only in pulse‐acquire simulations with an ideal 90‐degree pulse), then applies the
conservation law with respect to the observer spins (only zero‐quantum states are expected on protons), then applies
the symmetry factorisation for the two methyl groups,[26] then runs the zero track elimination,[7] and finally engages
the Tesla K40 GPU that it has found in the system to push the density matrix through its time evolution using the Krylov
algorithm.[7] The whole calculation takes a few minutes. This ability to reduce matrix dimensions on the fly is the
strongest side of Spinach.

The simulations producing Figure 5 are included into the standard example set supplied with versions 1.10 and later
of Spinach; more technical information on the basis set specification may be found in the online manual and in the
papers cited above — this practical tutorial is not the place for eye‐popping mathematics and computer science. For
the purposes of getting started, the advice is quite simple: increase the basis set until the answer stops changing. In most
liquid state NMR simulations, IK−2 with bas.space_level=3 and a 5 Å proximity cut‐off is sufficient. It is also
possible to specify a completely custom basis set — see the online manual for further details. A technical discussion
of the accuracy considerations when using incomplete basis sets is given in Karabanov et al.[28]
6 | BUILT ‐IN PULSE SEQUENCES

Spinach is designed to be extensible — our users write their own pulse sequences — but the following standard liquid
state NMR experiments have been implemented by the Spinach team or donated by the users over the years: pulse‐
acquire, inversion‐recovery, saturation‐recovery, CLIP‐HSQC, COSY, DQF‐COSY, HETCOR, HMQC, HNCO,
HNCOCA, HSQC, LCOSY, NOESY, ROESY, TOCSY, and NOESY‐HSQC. The sequences rely on a common syntax that
should be used to provide the relevant parameters, for example (HSQC):

% Sequence parameters, HSQC
parameters.J=140; - J-coupling, Hz
parameters.sweep=[2500 950]; - sweep widths, Hz
parameters.offset=[4300 1100]; - transmitter offsets, Hz
parameters.npoints=[128 128]; - number of discretisation points in each dimension
parameters.zerofill=[512 512]; - number of zerofilling points in each dimension
parameters.spins={'13C','1H'}; - isotopes in each channel
parameters.decouple_f1={'1H'}; - spins to decouple in F1
parameters.decouple_f2={'13C'}; - spins to decouple in F2
parameters.axis_units='ppm'; - axis units for plotting

The list of necessary parameters is given in the documentation page for each pulse sequence. The responsibility for pro-
cessing the free induction decay rests with the user. It may either be processed in Matlab (Spinach provides 1D, 2D, and
3D plotting functionality) or exported into a third‐party NMR processing package using Matlab's built‐in ASCII export
functionality.
7 | WRITING CUSTOM PULSE SEQUENCES

Writing Spinach simulations of pulse sequences is easier than writing them for NMR spectrometers because the syntax is
sensible (here the instrument manufacturers get a dirty look) and phase cycles are not a problem — coherence selection
may be performed by simply zeroing unwanted coherences.[26] The next page shows the complete source code of the
current Spinach implementation of the NOESY sequence[29] that simulates anything from aziridine[30] to ubiquitin,[5]

and also supports chemical kinetics. It is instructive to go through the code line by line.

428 KUPROV
function fid=noesy(spin_system,parameters,H,R,K)

% Compose Liouvillian
L=H+1i*R+1i*K;

% Coherent evolution timestep
timestep=1./parameters.sweep;

% Detection state
coil=state(spin_system,'L+',parameters.spins{1});

% Pulse operators
Lp=operator(spin_system,'L+',parameters.spins{1});
Lx=(Lp+Lp')/2; Ly=(Lp−Lp')/2i;

% First pulse
rho=step(spin_system,Lx,parameters.rho0,pi/2);

% F1 evolution
rho_stack=evolution(spin_system,L,[],rho,timestep(1),...

parameters.npoints(1)−1,'trajectory');

% Second pulse
rho_stack_cos_p=step(spin_system,Lx,rho_stack,+pi/2);
rho_stack_sin_p=step(spin_system,Ly,rho_stack,+pi/2);
rho_stack_cos_m=step(spin_system,Lx,rho_stack,−pi/2);
rho_stack_sin_m=step(spin_system,Ly,rho_stack,−pi/2);

% Homospoil
rho_stack_cos_p=homospoil(spin_system,rho_stack_cos_p,'destroy');
rho_stack_sin_p=homospoil(spin_system,rho_stack_sin_p,'destroy');
rho_stack_cos_m=homospoil(spin_system,rho_stack_cos_m,'destroy');
rho_stack_sin_m=homospoil(spin_system,rho_stack_sin_m,'destroy');

% Mixing time
rho_stack_cos_p=evolution(spin_system,1i*R+1i*K,[],...

rho_stack_cos_p,parameters.tmix,1,'final');
rho_stack_sin_p=evolution(spin_system,1i*R+1i*K,[],...

rho_stack_sin_p,parameters.tmix,1,'final');
rho_stack_cos_m=evolution(spin_system,1i*R+1i*K,[],...

rho_stack_cos_m,parameters.tmix,1,'final');
rho_stack_sin_m=evolution(spin_system,1i*R+1i*K,[],...

rho_stack_sin_m,parameters.tmix,1,'final');

% Homospoil
rho_stack_cos_p=homospoil(spin_system,rho_stack_cos_p,'destroy');
rho_stack_sin_p=homospoil(spin_system,rho_stack_sin_p,'destroy');
rho_stack_cos_m=homospoil(spin_system,rho_stack_cos_m,'destroy');
rho_stack_sin_m=homospoil(spin_system,rho_stack_sin_m,'destroy');

% Third pulse
rho_stack_cos_p=step(spin_system,Ly,rho_stack_cos_p,pi/2);
rho_stack_sin_p=step(spin_system,Ly,rho_stack_sin_p,pi/2);

KUPROV 429
rho_stack_cos_m=step(spin_system,Ly,rho_stack_cos_m,pi/2);
rho_stack_sin_m=step(spin_system,Ly,rho_stack_sin_m,pi/2);

% Axial peak elimination in F2
rho_stack_cos=rho_stack_cos_p−rho_stack_cos_m;
rho_stack_sin=rho_stack_sin_p−rho_stack_sin_m;

% F2 evolution
fid.cos=evolution(spin_system,L,coil,rho_stack_cos,timestep(2),...

parameters.npoints(2)−1,'observable');
fid.sin=evolution(spin_system,L,coil,rho_stack_sin,timestep(2),...

parameters.npoints(2)−1,'observable');

end

The pulse sequence does not need to worry about either the spin system or any relaxation/kinetics parameters: the
corresponding operator or superoperator matrices (H for the Hamiltonian, R for the relaxation superoperator, and K
for the kinetics superoperator) will simply be received from Spinach kernel — hence the argument list in the very first
line. The next line puts all three operators together; their sum is called the Liouvillian and denoted L.

The next line deals with the evolution time step, which is inversely related to the sweep width that the user has
specified in the parameters structure as illustrated in Section 6. The sequence then asks Spinach for the detection state

(L̂þ on all spins specified by the user) and the pulse operators (L̂X and L̂Y).
The sequence then performs the first pulse by taking the initial condition (supplied by the user in parameters.rho0)

and using the step function. That function uses Krylov propagation[7,31] and is optimised for one‐off evolution events. The
particulars are rather technical — Spinach manual contains further information.

The evolution command in the next line refers to the indirect dimension evolution. The arguments are the
Liouvillian (L), the starting state (rho), the length of the time step, and the number of steps. Because this evolution
period is incremented during the experiment, it makes sense to only run it once and to keep the entire trajectory —

this is the meaning of the last argument in the function call. The trajectory is returned as a stack of state
vectors (rho_stack), that is, a matrix made of individual column vectors arranged in the order of time from left
to right.

At this point, the simulation splits into four independent batches: the next pulse is applied with four phases to create
the components of the States quadrature[32] and to eliminate the axial peaks in the F2 dimension that result from partial
relaxation of the longitudinal magnetisation during the pulse sequence. A homospoil gradient is then applied to all four

stacks (any states other than L̂Z are simply zeroed out analytically).
The system is then sent through the mixing time using the evolution.m function provided by Spinach kernel. Its

inner workings are complicated,[7] but the user only needs to provide the evolution operator (relaxation and kinetics are
needed here) and the duration of the evolution period. The mixing time is followed by another homospoil gradient and
another pulse, with the same phase on all four batches. Axial peaks are then eliminated by subtracting the simulation
pairs that differed in the direction of the second pulse.

Finally, the direct dimension evolution is run, and the magnetisation is detected on the coil state. The two compo-
nents of the States quadrature are returned to the user.

Pulse sequences live in the experiments folder of Spinach distribution. All of them are extensively documented
and also contain subroutines (called “grumblers”) that run detailed checks on the parameters supplied (or not supplied,
as the case may be) by the user. Following that style is a good idea.
8 | FITTING EXPERIMENTAL DATA

Once a simulation is set up, converting it into a fitting procedure is quite easy — Matlab provides the necessary infra-
structure. The only technicality is matching the X axis: point position and spacing in the simulation are not necessarily
the same as in the experimental data. The experimental spectrum and the simulated one must therefore be interpolated
into a common X axis point grid, for example,

640 645 650 655 660 665 670 675 680 685

2260 2270 2280 2290 2300 2310 2320 2330 2340 2350

1H frequency, Hz

FIGURE 6 The result of the fitting of a 500 MHz 1H NMR spectrum of anti‐2,3‐difluoro‐n‐butane with respect to chemical shifts, J‐

couplings, and line width. Red dots: experimental data. Blue lines: fitted spectrum. This calculation is included into the standard example

set supplied with Spinach

430 KUPROV
sim_spec=interp1(sim_axis,sim_spec,exp_axis,'pchip');

This is a call toMatlab's built‐in 1D interpolation function that tells the program to take the data set with the ppm values
for each point in the simulated spectrum listed in sim_axis, and values in sim_spec, and calculate the values of that
spectrum at the points specified in exp_axis (the X axis of the experimental spectrum). The last option specifies a par-
ticular interpolation method — technical details may be found in Matlab documentation. Once the simulated and the
experimental spectrum have the same X axis, they may be subtracted and the least squares error may be computed:

err=norm(real(expt_data)−real(sim_spec))^2;

This error is then minimised by Matlab as a function of relevant simulation parameters — multiple examples of such
fitting runs are given in the standard example set supplied with Spinach (Figure 6).

Of the many error minimisation algorithms available inMatlab, Nelder–Mead simplex is recommended for situations
when the initial guess is not particularly good,[33] and LBFGS method for the refinement runs.[34] Note that NMR fitting
is a difficult problem — every parameter combination that makes any two lines overlap between the theoretical and the
experimental spectrum is a local minimum on the error surface.
9 | CASE STUDY 1—COSY45 OF ROTENONE
As a simple example that is both sufficiently easy to get started and sufficiently difficult to require Spinach, consider the
simulation of a magnitude‐mode COSY45 spectrum of rotenone — a system with 22 spins and an irregular coupling pat-
tern (Figure 7). This example is available in the example set supplied with Spinach.

The first thing Spinach requires is the function declaration:

function cosy45_rotenone()

This is not strictly necessary, but a good practice because this guarantees that Matlab starts the simulation with a clean
background where no previously assigned variables exist. The second stage is to specify the isotopes, 22 protons in this
case:

sys.isotopes={'1H','1H','1H','1H','1H','1H','1H','1H','1H',...
'1H','1H','1H','1H','1H','1H','1H','1H','1H',...
'1H','1H','1H','1H'};

FIGURE 7 Chemical structure of rotenone

KUPROV 431
See the spin system specification section of the online manual for technical details on how to specify more complicated
spin systems. The next step is to specify the magnet field (in Tesla):

sys.magnet=5.9;

then chemical shifts, in ppm for all protons:

inter.zeeman.scalar={6.72 6.40 4.13 4.56 4.89 6.46 7.79 3.79 2.91...
3.27 5.19 4.89 5.03 1.72 1.72 1.72 3.72 3.72...
3.72 3.76 3.76 3.76};

then all scalar couplings, in Hz:

inter.coupling.scalar{3,4}=12.1;
inter.coupling.scalar{4,5}=3.1;
inter.coupling.scalar{3,5}=1.0;
inter.coupling.scalar{3,8}=1.0;
inter.coupling.scalar{1,8}=1.0;
inter.coupling.scalar{6,7}=8.6;
inter.coupling.scalar{5,8}=4.1;
inter.coupling.scalar{7,9}=0.7;
inter.coupling.scalar{7,10}=0.7;
inter.coupling.scalar{9,10}=15.8;
inter.coupling.scalar{10,11}=9.8;
inter.coupling.scalar{9,11}=8.1;
inter.coupling.scalar{13,14}=1.5;
inter.coupling.scalar{12,14}=0.9;
inter.coupling.scalar{22,22}=0;

where the last line is necessary to tell Matlab that the array is 22 by 22 and all other elements are empty or zero.
The next stage is basis set specification. The complete basis set for a 22‐spin system is too large, and we must

therefore rely on the restricted state space approximation (see the basis set specification section of the online man-
ual and our recent papers[5–7,26,27] for technical details of the basis set selection process). Here, we will be using the
IK−2 basis with Liouville space formalism and no spatial proximity analysis because atomic coordinates are not
supplied:

bas.formalism='sphten−liouv';
bas.approximation='IK−2';
bas.space_level=1;
bas.connectivity='scalar_couplings';

432 KUPROV
The three methyl groups contain magnetically equivalent protons, and this symmetry may optionally be used to
reduce the calculation time:

bas.sym_group={'S3','S3','S3'};
bas.sym_spins={[14 15 16],[17 18 19],[20 21 22]};

This completes the basis set specification. The next stage is to specify the pulse sequence parameters. The full list of
the parameters that Spinach stock pulse sequences require is given in the manual page for each sequence. The spe-
cific parameters required by the COSY sequence in this case are:

parameters.angle=pi/4;
parameters.offset=1200;
parameters.sweep=2000;
parameters.npoints=[512 512];
parameters.zerofill=[2048 2048];
parameters.spins={'1H'};
parameters.axis_units='ppm';

where the field names are intended to be self‐explanatory. This completes the specification of the spin system, of the
basis set, and of the experiment parameters. The next stage is to give all that information to Spinach. This is accom-
plished by running the two housekeeping functions:

spin_system=create(sys,inter);
spin_system=basis(spin_system,bas);

Both print copious output to the console. This output should always be inspected carefully because it might contain
warning messages. The next stage is simulation, which is carried out in liquid state (hence the liquid context function)
with the assumptions set to 'nmr', indicating common high‐field NMR spectroscopy:

fid=liquid(spin_system,@cosy,parameters,'nmr');

The simulation returns the two‐dimensional free induction decay that should undergo apodization (cosine bell in both
dimensions is a good choice here):

fid=apodization(fid,'cosbell−2d');

and Fourier transform (fft2 performs a two‐dimensional transform and fftshift moves the zero frequency to the
centre of the spectrum — Matlab's default is to have it on the edge):

spec=fftshift(fft2(fid,parameters.zerofill(2),parameters.zerofill(1)));

Finally, the spectrum is plotted (the many parameters of the plotting function are explained in the online manual):

plot_2d(spin_system,spec,parameters,20,[0.0025 0.05 0.0025 0.05],2,256,6,'positive');

The whole simulation should take less than a minute on any modern laptop (Figure 8). Note that Matlab auto‐starts the
parallelisation engine when it runs for the first time, that stage only happens once per Matlab session.
10 | CASE STUDY 2 — NOESY OF UBIQUITIN

This section describes the stages of setting up a simulation of a simple protein NMR experiment. Multiple examples of
such simulations are available in the standard example set supplied with Spinach. You would need the following:

FIGURE 8 COSY‐45 simulation for rotenone, performed as described in the main text

KUPROV 433
1. A suitably powerful computer. As a guidance, calculations that do not require a relaxation superoperator (HSQC
and such) would need 16 GB of RAM to run ubiquitin, and the calculations that do need it (NOESY and such)
would require 64 GB.

2. A PDB file containing Cartesian coordinates of every atom in the protein, including protons.

3. A BMRB file containing chemical shifts for those atoms that have been assigned. Unassigned atoms would either
not appear in the simulation or end up with a chemical shift of −1 ppm (depending on the options specified,
placing them at −1 ppm often helps with the subsequent assignment).

Spinach cross‐checks the amino acid sequence between the PDB and the BMRB file— any mismatch would produce
an error message. Use the following command to import data and create Spinach input structures:

[sys,inter]=protein('pdb_file_name','bmrb_file_name',options);

The full list of options and the detailed descriptions of the subfields of sys and inter data structures are available in
the manual. The protein import function above fills and returns the following fields:

sys.isotopes
sys.labels
inter.zeeman.scalar
inter.zeeman.matrix
inter.coupling.scalar
inter.coordinates

Field names are self‐explanatory: isotope names are placed into sys.isotopes, PDB labels of each atom are
placed into sys.labels, chemical shifts are placed into inter.zeeman.scalar, rough guesses for nitrogen
CSAs are placed into inter.zeeman.matrix (if you have accurate CSA tensors, you need to place them
into the corresponding cells of inter.zeeman.matrix array after the import is complete), reasonable guesses
of J‐couplings[5] are placed into inter.coupling.scalar (if you have accurate J‐couplings, you would need
to overwrite the values in inter.coupling.scalar after the import is complete); and PDB atom coordinates
are placed into inter.coordinates; nothing else is imported or guessed. The detailed list of everything that
happens when protein data are imported into Spinach is given in our recent paper[5] and printed to the console
at run time.

434 KUPROV
After the import is finished, the resulting sys and inter structures may be used by Spinach. Dipolar
coupling tensors are computed automatically from atomic coordinates. Any additional information (quadrupolar
coupling, unpaired electrons and associated interactions, etc.) can be added to sys and inter structures at this
point.

At the next stage in the input preparation, you need to specify the magnet field and the cut‐off tolerances for the
various interactions (which distances are “too large” for the dipolar coupling, and which J‐couplings are “too small”
to be consequential). The top of the Matlab file should look similar to the following:

% Protein data
[sys,inter]=protein('1D3Z.pdb','1D3Z.bmrb',options);

% Magnet field
sys.magnet=21.1356;

% Tolerances
sys.tols.prox_cutoff=5.0;
sys.tols.inter_cutoff=2.0;

Cut‐off tolerance for proximity is specified in Angstrom and cut‐off for J‐coupling is specified in Hz. In the
example above, dipolar couplings would not be taken into account between spins that are further than 5.0 Å apart
and any J‐coupling smaller than 2.0 Hz would be ignored.

The next thing to be specified is the relaxation theory. Redfield relaxation theory is a very expensive option from the
computational point of view— NOESY simulation for a 70‐residue protein requires about 64 GB of RAM (it was taking a
terabyte in some of the early versions of Spinach). If you do not require accurate relaxation theory treatment, use some-
thing similar to the following:

% Relaxation theory
inter.relaxation='damp';
inter.damp_rate=5.0;

This requests a non‐selective damping at 5.0 Hz for all states (the relaxation superoperator would be a diagonal matrix
with −5.0 on the diagonal). Alternatively, Spinach supports simple T1/T2 and Lindblad relaxation models — those are
often sufficient; details are in the manual. However, if you do require accurate relaxation treatment (it is strictly
necessary for NOESY spectra), the following should be supplied:

% Relaxation theory
inter.relaxation='redfield';
inter.rlx_keep='kite';
inter.tau_c=5e−9;

This requests full Redfield theory: DD, CSA, NQI, and all cross‐correlations thereof.[18] Dipolar tensors are computed
from atomic coordinates, CSAs and NQIs must be provided as described in Section 3. The middle line in the specification
above requests the “Redfield kite” — cross‐relaxation is included between longitudinal states only. If you require the
treatment of all cross‐relaxation processes, specify “secular” instead of “kite” — note that the simulation time would
increase considerably. The last line specifies the rotational correlation time in seconds. It is important that you get this
number right because all relaxation rates depend on it. Spinach relaxation module supports anisotropic rotational diffu-
sion; further details are given in Section 3.

The next step is to choose a basis set. This is a very complicated topic (see the online manual), but the minimal basis
set that produces quantitatively accurate results for proteins in liquid state is the following:

% Basis set
bas.formalism='sphten−liouv';
bas.approximation='IK−1';

KUPROV 435
bas.connectivity='scalar_couplings';
bas.level=5; bas.space_level=3;

This requests IK−1(5,3) connectivity‐adaptive basis set that includes local correlations of up to five spins on the J‐coupling
graph and local correlations of up to three spins on the spatial proximity graph.[5] In principle, some amino acid side
chains (valine and isoleucine) require correlations of more than five spins to be present in the basis set to get their mul-
tiplicity absolutely right, but the multiplet structure of the corresponding signals is never actually resolved in protein
NMR spectra. An absolutely bulletproof basis here would be IK−1(8,3), but in this case, it simply produces the same
answer after a much longer calculation.

The next stage is to call Spinach constructor functions and generate the spin_system data structure that contains
all information about the spin system and is required by most high‐level Spinach functions as the first argument:

% Create the spin system structure
spin_system=create(sys,inter);

% Kill carbons and nitrogens
spin_system=kill_spin(spin_system,strcmp('13C',spin_system.comp.isotopes));
spin_system=kill_spin(spin_system,strcmp('15N',spin_system.comp.isotopes));

% Build the basis
spin_system=basis(spin_system,bas);

The two lines in the middle are optional — in this case, they request the removal of all carbon and nitrogen spins from
the spin system. This is necessary for the NOESY simulation but should not be done for HSQC, HNCO, and other
sequences that require the presence of 15N and 13C spins.

The next stage is to specify experiment parameters. In the case of 2D NOESY, the following is a reasonable set:

% Sequence parameters
parameters.tmix=0.065;
parameters.offset=4250;
parameters.sweep=10750;
parameters.npoints=[512 512];
parameters.zerofill=[2048 2048];
parameters.spins={'1H'};
parameters.axis_units='ppm';
parameters.rho0=state(spin_system,'Lz','1H');

As the names of the parameters suggest, this requests a mixing time of 65 ms, frequency offset of 4250 Hz, sweep
width of 10750 Hz, 512 points to be acquired in both dimensions, and zerofilled to 2048 points in both
dimensions, the sequence is operating on 1H nuclei, axis units should be ppm, and the initial condition is L̂Z on
protons.

The next stage is the actual simulation. In the case of 2D NOESY, the syntax is

% Simulation
fid=liquid(spin_system,@noesy,parameters,'nmr');

The choice of the outer function reflects the fact that we are running a liquid state simulation (Spinach supports all other
types of magnetic resonance spectroscopy and imaging), spin_system is the data structure containing the information
about the system, noesy is the name of the pulse sequence we are running (@ symbol is a Matlab technicality — it
denotes a function handle), and the various fields of the parameters argument have all been set above. The result is a
2D free induction decay that is ready for standard NMR data processing. Depending on the pulse sequence, it may be
a simple array of complex numbers, or it might contain subfields, such as fid.cos and fid.sin, that are used in
States quadrature processing of phase‐sensitive experiments.

436 KUPROV
The next stage is apodization, which may be accomplished using any of the window functions available in Spinach—

the complete list is in the manual. In this particular case, we will use Gaussian apodization:

% Apodization
fid.cos=apodization(fid.cos,'gaussian‐2d',5);
fid.sin=apodization(fid.sin,'gaussian‐2d',5);

where the last argument is the decay rate (per data set point) of the Gaussian function — this parameter should be
increased until the sinc wiggles disappear from the spectrum. Good practical advice on spectral apodization was
published by Vosegaard and Nielsen.[35]

The next stage is Fourier transform and quadrature processing. For a 2D NOESY simulation, States quadrature
processing is necessary:

% F2 Fourier transform
f1_cos=real(fftshift(fft(fid.cos,parameters.zerofill(2),1),1));
f1_sin=real(fftshift(fft(fid.sin,parameters.zerofill(2),1),1));

% States signal
f1_states=f1_cos−1i*f1_sin;

% F1 Fourier transform
spectrum=fftshift(fft(f1_states,parameters.zerofill(1),2),2);

This is standardMatlab Fourier transform syntax: fft is the command that performs the transform and fftshift per-
forms a cyclic shift that moves the zero frequency to the centre of the spectrum. Finally, the plotting function produces a
contour plot:

% Plotting
plot_2d(spin_system,−real(spectrum),parameters,20,...

[0.01 0.05 0.01 0.05],2,256,6,'positive');

2D and 3D plotting functions in Spinach have a significant number of adjustable parameters that are described in the
manual. The last argument tells the plotter to ignore negative peaks. If those are expected in the spectrum, the argument
should be 'both'. The output is shown in Figure 2.
ACKNOWLEDGEMENTS

A large number of people have contributed ideas, examples, and good advice to Spinach over the last 10 years— the cur-
rent developer team is listed at the website (http://spindynamics.org/wiki/index.php?title=Spinach_developer_team).
The people who have specifically contributed to the functionality described in this tutorial are Luke Edwards, Hannah
Hogben, Matthew Krzystyniak, Dmitry Savostyanov, and Zenawi Welderufael. The funding came from EPSRC (EP/
F065205/1 and EP/H003789/1) and the inspiration from Marina Jay Brassington, Ayn Rand's “Atlas Shrugged” and
sound tracks by Jeremy Soule.
ORCID

Ilya Kuprov http://orcid.org/0000-0003-0430-2682
REFERENCES

[1] M. H. Levitt, Spin dynamics: Basics of nuclear magnetic resonance, Falkreath: John Wiley & Sons 2001.

[2] J. Keeler, Understanding NMR spectroscopy, Falkreath: John Wiley & Sons 2011.

http://spindynamics.org/wiki/index.php?title=Spinach_developer_team
http://orcid.org/0000-0003-0430-2682

KUPROV 437
[3] P. Hore, J. Jones, S. Wimperis, NMR: The toolkit: How pulse sequences work, Oxford University Press, USA 2015.

[4] H. Hogben, M. Krzystyniak, G. Charnock, P. Hore, I. Kuprov, J. Magn. Reson. 2011, 208, 179.

[5] L. J. Edwards, D. Savostyanov, Z. Welderufael, D. Lee, I. Kuprov, J. Magn. Reson. 2014, 243, 107.

[6] I. Kuprov, N. Wagner‐Rundell, P. Hore, J. Magn. Reson. 2007, 189, 241.

[7] I. Kuprov, J. Magn. Reson. 2008, 195, 45.

[8] I. Kuprov, J. Magn. Reson. 2016, 270, 124.

[9] L. Guduff, A.J. Allami, C. van Heijenoort, J.‐N. Dumez, I. Kuprov, (2017).

[10] R. S. Dumont, S. Jain, A. Bain, J. Chem. Phys. 1997, 106, 5928.

[11] T. Allman, A. D. Bain, J. R. Garbow, J. Magn. Reson. A 1996, 123, 26.

[12] P. Hodgkinson, L. Emsley, Prog. Nucl. Magn. Reson. Spectrosc. 2000, 36, 201.

[13] M. Edén, Concepts Magn. Reson. Part A 2003, 17, 117.

[14] Z. Tošner, R. Andersen, B. Stevensson, M. Edén, N. C. Nielsen, T. Vosegaard, J. Magn. Reson. 2014, 246, 79.

[15] A. Biternas, G. Charnock, I. Kuprov, J. Magn. Reson. 2014, 240, 124.

[16] M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson, GAUSSIAN09.
Gaussian Inc., Wallingford, CT, USA, in, 2009.

[17] F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012, 2, 73.

[18] I. Kuprov, J. Magn. Reson. 2011, 209, 31.

[19] R. K. Wangsness, F. Bloch, Phys. Rev. 1953, 89, 728.

[20] A. G. Redfield, IBM J. Res. Dev. 1957, 1, 19.

[21] M. Goldman, J. Magn. Reson. 2001, 149, 160.

[22] D. Goodwin, I. Kuprov, J. Chem. Phys. 2015, 143 084113.

[23] T. O. Levante, R. R. Ernst, Chem. Phys. Lett. 1995, 241, 73.

[24] M. H. Levitt, L. Di Bari, Phys. Rev. Lett. 1992, 69, 3124.

[25] A. D. Bain, J. S. Martin, J. Magn. Reson. 1969, 29(1978), 125.

[26] H. Hogben, P. Hore, I. Kuprov, J. Chem. Phys. 2010, 132, 174101.

[27] M. Krzystyniak, L. J. Edwards, I. Kuprov, J. Magn. Reson. 2011, 210, 228.

[28] A. Karabanov, I. Kuprov, G. Charnock, A. van der Drift, L. J. Edwards, W. Köckenberger, J. Chem. Phys. 2011, 135, 084106.

[29] A. Kumar, R. Ernst, K. Wüthrich, Biochem. Biophys. Res. Commun. 1980, 95, 1.

[30] I. Kuprov, D. M. Hodgson, J. Kloesges, C. I. Pearson, B. Odell, T. D. Claridge, Angew. Chem. 2015, 127, 3768.

[31] R. B. Sidje, ACM Trans. Math. Software (TOMS) 1998, 24, 130.

[32] D. States, R. Haberkorn, D. Ruben, J. Magn. Reson. 1969, 48(1982), 286.

[33] J. A. Nelder, R. Mead, Comput. J. 1965, 7, 308.

[34] D. C. Liu, J. Nocedal, Math. Program. 1989, 45, 503.

[35] T. Vosegaard, N. C. Nielsen, J. Magn. Reson. 2009, 199, 146.

[36] R. C. R. Grace, A. Kumar, J. Magn. Reson. A 1995, 115, 87.

How to cite this article: Kuprov I. Large‐scale NMR simulations in liquid state: A tutorial. Magn Reson Chem.
2018;56:415–437. https://doi.org/10.1002/mrc.4660

https://doi.org/10.1002/mrc.4660

