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Key points

� The actin cytoskeleton regulating GTPase, Rac1, is a novel player in insulin-stimulated glucose
uptake in muscle in vivo.

� High-fat diet (HFD) exacerbates muscle insulin resistance in Rac1 muscle knockout (mKO)
mice.

� Muscle Rac1 KO protects against HFD-induced insulin resistance in fat tissue indicating tissue
cross-talk.

� A fatty diet markedly reduces insulin clearance in mice.

Abstract Insulin resistance and perturbations in glucose metabolism underpin common life-
style diseases such as type 2 diabetes and obesity. Insulin resistance in muscle is characterized by
compromised activity of the GTPase, Ras-related C3 Botulinum toxin substrate 1 (Rac1), yet the
role of Rac1 in insulin-stimulated glucose uptake in vivo and diet-induced insulin resistance is
unknown. Inducible muscle-specific Rac1 knockout (Rac1 mKO) and wild type (WT) littermate
mice were either fed a chow or a 60% high-fat diet (HFD). Insulin-stimulated 2-deoxy-glucose
uptake, intracellular signalling, protein expression, substrate utilization, and glucose and insulin
tolerance were assessed. In chow-fed mice, in vivo insulin-stimulated glucose uptake was reduced
in triceps, soleus and gastrocnemius muscles from Rac1 mKO mice. HFD-induced whole body
insulin resistance was exacerbated by the lack of muscle Rac1 and glucose uptake was reduced in all
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muscles, except for soleus. Muscle Akt (also known as protein kinase B) signalling was unaffected
by diet or genotype. In adipose tissue, Rac1 mKO mice were protected from HFD-induced
insulin resistance (with respect to both glucose uptake and phosphorylated-Akt), rendering
their whole body glucose tolerance comparable to WT mice on HFD. Our findings show
that lack of Rac1 exacerbates HFD-induced insulin resistance in skeletal muscle. Whole body
glucose tolerance, however, was largely unaffected in Rac1 mKO mice, likely due to improved
insulin-stimulated glucose uptake in adipose tissue. We conclude that lack of Rac1 in the context
of obesity is detrimental to insulin-stimulated muscle glucose uptake in muscle independently of
Akt signalling.
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Introduction

Obese individuals often develop insulin resistance and
diminished glucose tolerance (Saltiel & Kahn, 2001;
Biddinger & Kahn, 2006) and thereby have a higher risk
for developing metabolic diseases, such as type 2 diabetes.

Accounting for approximately 40% of total human
body mass, skeletal muscle insulin resistance can cause
metabolic disease, in particular because muscles are
responsible for up to 75% of insulin-stimulated glucose
uptake (Defronzo et al. 1985; Abdul-Ghani & Defronzo,
2010). Furthermore, skeletal muscle is a major site
of insulin resistance in obesity and type 2 diabetes
(Bjornholm & Zierath, 2005; Biddinger & Kahn, 2006;
Defronzo & Tripathy, 2009). From a clinical point of view,
it is therefore critical to clarify the mechanisms regulating
insulin-stimulated glucose uptake in muscle in order to
identify potential targets for anti-diabetic and obesity
therapy.

The small GTPase Rac1 regulates insulin-stimulated
actin reorganization and glucose transport in muscle cells
(JeBailey et al. 2007; Sylow et al. 2013a, 2014). Inter-
estingly, insulin-induced Rac1 signalling is reduced in
skeletal muscle of obese and type 2 diabetic subjects (Sylow
et al. 2013a), making Rac1 a clinically relevant target.
Insulin resistance in obesity and type 2 diabetes is not
associated with reduced Rac1 protein, rather a reduced
ability of Rac1 to mediate the relevant signals (Sylow
et al. 2013a). Moreover, insulin-resistant skeletal muscles
display altered actin cytoskeleton morphology, a structure
regulated by Rac1 activity (Tong et al. 2001; JeBailey
et al. 2007; Habegger et al. 2012). Such evidence suggests
that defective Rac1 signalling contributes to the impaired
glucose uptake observed in insulin-resistant muscles and
that Rac1 could play a pivotal role in muscle insulin
sensitivity and metabolic responses to diet. In this study
we therefore examined the effects of muscle-specific Rac1
ablation on insulin-stimulated glucose uptake and muscle
metabolism in the context of a high-fat diet. Based on
Rac1’s role in GLUT4, the primary glucose transporter
for insulin-stimulated glucose uptake in skeletal muscle,

we hypothesized that Rac1 gene ablation would reduce
insulin-stimulated glucose uptake in vivo, worsen insulin
resistance, and alter metabolic function in muscle in
response to a fatty diet.

Methods

Ethical approval

All experiments were approved by the Danish Animal
Experimental Inspectorate and conform to the principles
and regulations as described in Grundy (2015).

Tetracycline-inducible muscle-specific Rac1 knockout
(mKO) mice

Inducible muscle-specific male and female Rac1 mKO
and littermate WT control mice were generated as pre-
viously described (Sylow et al. 2013b, 2016). Rac1 mKO
was induced at 12–16 weeks of age by adding doxycycline
(a tetracycline analogue) in the drinking water (1 g L−1;
Sigma Aldrich, Copenhagen, Denmark) for 3 weeks
followed by a washout period of 3 weeks. This treatment
was repeated at week 10 of the intervention period. An
18 weeks diet intervention was started at 14–18 weeks of
age and mice received either a standard rodent chow diet
(Altromin no. 1324; Brogaarden, Horsholm, Denmark),
or a 60% high-fat diet (HFD) (no. D12492; Brogaarden,
Denmark) and water ad libitum. Body weight was assessed
every week.

For initial experiments to study insulin clearance, diet
intervention was initiated at 14 weeks of age in female
C57BL/6J (Taconic, Lille Skensved, Denmark) mice for
18 weeks. All animals were maintained on a 12 h:12 h
light–dark cycle, and group housed at 20–21°C. We
observed no sex difference in any of our analysis and
therefore results for male and female mice were pooled.
Males (16 mice) and females (50 mice) were evenly (±2)
allocated to each intervention group.
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In vivo 2-deoxy-glucose experiments

To determine 2-deoxy-glucose (2DG) uptake in muscle
and adipose tissue, [3H]2DG (Perkin Elmer) was
injected retro-orbitally in a bolus of saline containing
66.7 μCi mL−1 [3H]2DG corresponding to �9 μCi/mouse
(6 μL g−1 body weight) in Rac1 mKO and WT control
mice. The injectate also contained insulin (Actrapid; Novo
Nordisk, Bagsværd, Denmark) at 0.5 U kg−1 or 0.3 U kg−1

body weight for chow or HFD mice, respectively, or a
comparable volume of saline. (Different insulin doses
were used due to reduced insulin clearance in HFD
rodents as shown in this study and by others (Stromblad
& Bjorntorp, 1986; Kurauti et al. 2016) to obtain the
same absolute plasma insulin concentration.) Prior to
stimulation, mice were fasted for 3–5 h from 07:00 h
and anaesthetized (intraperitoneal injection of 7.5/9.5 mg
(chow/HFD) pentobarbital sodium 100 g−1 body weight)
for 15 min. Blood samples were collected from the tail vein
immediately prior to insulin or saline injection and after 5
and 10 min and analysed for glucose concentration using
a glucometer (Bayer Contour; Bayer, Münchenbuchsee,
Switzerland). At 10 min, blood plasma samples were also
analysed for specific 2-[3H]DG tracer activity and insulin.
After 10 min, soleus, quadriceps, tibialis anterior, triceps,
gastrocnemius muscles, epididymal adipose tissue, and the
liver were excised and quickly frozen in liquid nitrogen
and stored at −80°C until processing. 2DG uptake was
analysed as described (Fueger et al. 2004; Sylow et al. 2016).
Once tissues were removed, mice were killed by cervical
dislocation.

Respiratory exchange ratio measurements

O2 uptake and CO2 production were measured at week
15 into diet intervention using a CaloSys apparatus (TSE
Systems, Bad Homburg, Germany) and the data presented
are the average for light and dark periods measured over
three consecutive days in Rac1 mKO or WT mice. The
respiratory exchange ratio (RER) was calculated as CO2

production/O2 uptake.

Body composition analysis

Fat mass and lean body mass were determined using an
Echo MRI scanner at week 17 into the diet intervention.

Glucose tolerance test

Mice were fasted for 6 h from 07:00 h. Glucose (2 g kg−1

body weight) was administered intraperitoneally and
blood was collected from the tail vein at time points
0, 30, 60, 90 and 120 min; blood glucose concentration
was determined using a glucometer. Area under the curve
was calculated using the trapezoidal rule with the base-
line values for each group subtracted. For measurements

of plasma insulin, a separate experiment was performed
and tail vein blood was sampled at time points 0 and
20 min after intraperitoneal glucose injection (2 g kg−1

body weight) and insulin was analysed in duplicates
in plasma (80-INSTRU-E10; ALPCO Diagnostics). The
glucose tolerance test and measurements of plasma
insulin were performed at week 17 into the diet
intervention.

In vitro 2DG transport measurement in incubated
muscle

Soleus and extensor digitorum longus (EDL) muscles
were excised from anaesthetized mice (9.5 mg pento-
barbital + lidocaine (lignocaine) (100 g)−1 body
weight, intraperitoneally) and pre-incubated for 30 min
in incubation chambers (Multi Myograph System,
Danish Myo-Technology) containing 30°C Krebs–
Ringer–Henseleit buffer supplemented with 8 mM

mannitol and 2 mM pyruvate. Muscles were stimulated
with 60 nM insulin for 20 min and 2DG transport
was measured for the last 10 min using [3H]2DG and
[14C]mannitol radioactive tracers as described in Sylow
et al. (2013b).

Tissue analyses

Muscle, white adipose and liver tissue were pulverized
in liquid nitrogen and homogenized 2 × 0.5 min at
30 Hz using a TissueLyser II bead mill (Qiagen, USA)
in ice-cold homogenization buffer (10% glycerol, 1%
NP-40, 20 mM sodium pyrophosphate, 150 mM NaCl,
50 mM Hepes (pH 7.5), 20 mM β-glycerophosphate, 10 mM

NaF, 2 mM phenylmethylsulfonyl fluoride (PMSF), 1 mM

EDTA (pH 8.0), 1 mM EGTA (pH 8.0), 2 mM Na3VO4,
10 μg mL−1 leupeptin, 10 μg mL−1 aprotinin, 3 mM

benzamidine). After rotation end-over-end for 30 min
at 4°C, supernatants were collected by centrifugation
(10,000 g) for 20 min at 4°C. Muscle tissue was submitted
to centrifugation once, while adipose tissue and liver tissue
were centrifuged twice.

Immunoblotting

Lysate protein concentrations were measured using the
bicinchoninic acid (BCA) method with bovine serum
albumin (BSA) as standard (Pierce). Total protein
and phosphorylation levels of relevant proteins were
determined by standard immunoblotting techniques
loading equal amounts of protein. The primary antibodies
used were phospho (p)-AktThr308 (no. 9275), p-AktSer473

(no. 4051), Akt2 total (no. 3063), p-TBC1D4Thr642

(no. 4288), TBC1D4 total (no. 07-741), β-actin (no. 4973)
(Cell Signaling Technology), GLUT4 (no. PA1-1065,
ThermoFisher Scientific) and Rac1 (no. ARC03,

C© 2018 The Authors. The Journal of Physiology C© 2018 The Physiological Society



2286 S. H. Raun and others J Physiol 596.12

Cytoskeleton Inc.). Polyvinylidene difluoride membranes
(Immobilon Transfer Membrane; Millipore) were blocked
in Tris-buffered saline (TBS)-Tween 20 containing 2%
skimmed milk or 5% BSA protein for 30–60 min at room
temperature. Membranes were incubated with primary
antibodies overnight at 4°C, followed by incubation with
horseradish peroxidase-conjugated secondary antibody
for 30 min at room temperature. Coomassie brilliant
blue staining was used as a loading control (Welinder &
Ekblad, 2011). Due to uneven protein content in parts of
the fat samples, we related protein data to the Coomassie
blue staining as indicated. Bands were visualized using the
Bio-Rad ChemiDoc MP Imaging System and enhanced
chemiluminescence (ECL+; Amersham Biosciences).

RNA isolation, reverse transcription and real time PCR

RNA was isolated from 20 mg gastrocnemius muscle
and 40 mg adipose tissue, using a modified
guanidinium thiocyanate–phenol–chloroform extraction
method (Chomczynski & Sacchi, 1987; Pilegaard et al.
2000). The concentration of RNA in each sample
was determined using the ND-1000 spectrophotometer
(Thermo Scientific). Reverse transcription was performed
on 2 μg muscle RNA and 1 μg adipose tissue
RNA using SuperScript II Reverse Transcriptase and
Oligo(dT) (Life Technologies). Real-time PCR was
performed on the cDNA using TaqMan Universal
Master Mix II (Applied Biosystems). Primers and
TaqMan probes were designed using the mouse-specific
database from Ensemble (www.ensembl.org) and Primer
Express (Applied Biosystems), except β-actin, which was
a pre-developed assay reagent (Applied Biosystems).
Samples were loaded in triplicates and quantification
performed using the ABI PRISM 7900 Real-Time PCR
System (Applied Biosystems). The mRNA levels were
normalized to total cDNA content determined by use of
OliGreen (Invitrogen) (Lundby et al. 2005).

Statistical analyses

Results are shown as means ± standard deviation
(SD). Statistical testing was performed using t tests or
two-way (repeated measures when appropriate) ANOVA
as applicable. Tukey’s post hoc test was performed when
ANOVA revealed significant main effects and interactions.
Statistical analyses were performed using GraphPad Prism,
version 7 (GraphPad Software, La Jolla, CA, USA). The
significance level was set at α = 0.05.

Results

High-fat diet reduced insulin clearance in mice

Previous studies have reported decreased insulin clearance
by the liver in obese rats (Stromblad & Bjorntorp, 1986;

Brandimarti et al. 2013). Because of that we analysed
plasma insulin in mice on a chow diet or 60% HFD
to evaluate if the same insulin dose would elicit similar
plasma insulin concentrations in both lean and obese
C57BL/6J mice. Eighteen weeks of HFD increased body
weight by an average of 9 g (Fig. 1A) and reduced glucose
tolerance (Fig. 1B) compared with chow. The experimental
design for evaluating in vivo insulin stimulation is outlined
in Fig. 1C. Saline with or without 0.5 U kg−1 insulin was
injected in the retro-orbital (r.o.) vein. Five minutes after
insulin injection, blood glucose was lowered by 2 mM

on average in the chow-fed group but not in the HFD
group (Fig. 1D). Blood glucose was reduced in chow
(−4 mM) and HFD (−2 mM) groups at 10 min after
insulin injection. Plasma insulin concentration 10 min
after injection was increased 3-fold by r.o. injection of
0.5 U kg−1 insulin in the chow-fed group (Fig. 1E). In
stark contrast, 0.5 U kg−1 insulin increased plasma insulin
concentration by 7-fold in the HFD groups. These findings
suggest that HFD reduces insulin clearance in mice. For
subsequent experiments on Rac1 mKO mice, we therefore
used 0.5 U kg−1 and 0.3 U kg−1 insulin for chow- and
HFD-fed mice, respectively, to elicit similar plasma insulin
concentrations for both diet groups.

Glucose tolerance and body composition is unaltered
by Rac1 mKO

During a period of 18 weeks of HFD Rac1 mKO and
WT mice gained on average 9 g (�30% increase in
body weight) and weighed significantly more than the
mice on chow (Fig. 2A). Body composition was similar
in Rac1 mKO and control mice on chow diet and fat
mass was increased 20% by HFD in both genotypes
(Fig. 2B and C). Lean mass was reduced 20% by HFD in
both Rac1 mKO and control mice. HFD reduced glucose
tolerance to a similar degree in both genotypes (Fig. 2D).
We observed no significant difference in whole body
glucose tolerance between genotypes at any time point
although Rac1 mKO mice after 30 min displayed higher
blood glucose than control mice on chow, as has been
observed previously (Sylow et al. 2013a). The relatively
small effect of Rac1 mKO on glucose tolerance is likely
due to compensatory increased insulin secretion, as we
have previously seen in Rac1 mKO mice on a chow diet
(Sylow et al. 2013a). This was also the case in mice on a
HFD where blood glucose (Fig. 2E) and plasma insulin
(Fig. 2F) were measured before and 20 min following
glucose injection. Here we observed a tendency (P<0.068)
towards a 60% increased plasma insulin in response to the
glucose challenge in HFD Rac1 mKO mice compared to
controls.

The respiratory exchange ratio (RER) in chow fed mice
was lower in Rac1 mKO during the day, suggestive of
an increased fat utilization. RER was similar between

C© 2018 The Authors. The Journal of Physiology C© 2018 The Physiological Society
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genotypes during the night (Fig. 2G). High-fat diet
reduced RER during the day by �30% in Rac1 mKO mice
and �50% in WT mice. The respiratory exchange ratio
during the night was reduced by �70% by HFD in both
Rac1 mKO and WT mice (Fig. 2G). Thus, Rac1 mKO mice
exposed to a HFD displayed similar RER to WT littermate
HFD mice. Oxygen consumption was increased with HFD
but, like CO2 production, was not affected by genotype
(Fig. 2H and I, respectively). Activity and food intake were
also similar between genotype (not shown).

Rac1 mKO mice on HFD display reduced glucose
response to insulin

Insulin injection resulted in a drop in blood glucose
in chow (−50%) and HFD (−35%) mice after 10 min
(Fig. 3A). Rac1 mKO mice on HFD displayed higher blood
glucose 5 and 10 min after insulin injection compared
to the WT mice on a HFD, and area under the curve
calculations confirmed a reduced insulin response in Rac1
mKO mice (Fig. 3B). Importantly, injection of 0.5 U kg−1

or 0.3 U kg−1 body weight of insulin for chow or
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HFD mice, respectively, resulted in similar plasma insulin
concentrations (Fig. 3C) and tracer disintegrations per
minute (DPM) counts at time point 10 min were similar
between genotypes (Fig. 3D). We also measured plasma
triacylglycerol (Fig. 3E) and free fatty acids (Fig. 3F) but
found no significant effect of diet or genotype, although
there was a tendency towards a 25% higher triacylglycerol
in Rac1 mKO mice on both diets (P = 0.09). Insulin also
did not alter plasma triacylglycerol and free fatty acids
likely because the 10 min stimulation time was insufficient

to inhibit lipolysis to a degree that is detectable by analysis
of plasma free fatty acids.

In Rac1 mKO mice, Rac1 protein content was reduced
by approximately 85% in all analysed muscles and was not
affected by diet, except for soleus where Rac1 expression
in chow-fed Rac1 mKO soleus muscle was only reduced
by �50% (Fig. 3G and representative blots in 3H).
Because HFD reduced Rac1 protein content, the Rac1
expression in Rac1 mKO chow soleus was similar to the
Rac1 expression levels in control HFD mice. Notably,
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Figure 3. Rac1 mKO mice on a HFD show reduced glucose response to insulin
A, blood glucose before (0 min) and following 5 and 10 min retro-orbital (r.o.) insulin injection in wild type (WT)
or muscle-specific Rac1 knockout (mKO) mice on chow or 60% high-fat diet (HFD) (insulin dose of 0.5 U kg−1 for
chow-fed mice, 0.3 U kg−1 for high-fat fed mice, 10 min). n = 5–8 at week 18 into the diet intervention. B, area
under the curve during insulin stimulation calculated using the trapezoidal rule. C, plasma insulin concentration
in insulin (insulin dose of 0.5 U kg−1 for chow-fed mice, 0.3 U kg−1 for high-fat fed mice)-injected groups 10 min
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post-injection. D, plasma tracer counts. E, plasma triacylglycerol concentration in chow- and 60% HFD-fed WT or
Rac1 mKO mice. n = 9–16. F, plasma free fatty acid concentration. n = 10–16. G, Rac1 protein expression (A.U.;
arbitrary units) analysed by western blotting in triceps, soleus, gastrocnemius (Gast), tibialis anterior (Tib. Ant.) and
quadriceps (Quad) muscle from WT and Rac1 mKO on chow or HFD. n = 10–16. H, representative blots. I and J,
glycogen content in WT and Rac1 mKO gastrocnemius muscle and liver. K, representative blots of Rac1 and Akt2
expression in the liver of WT and Rac1 mKO mice after either chow or HFD for 18 weeks. Shaded areas indicate
HFD. Significant effect of diet is indicated by ∗ (P < 0.05). Significant effect of Rac1 mKO is indicated by (#)/#
(P < 0.09/P < 0.001). Significant effect of insulin is indicated by † (P < 0.001). Interaction between Rac1 mKO and
diet is indicated by § (P < 0.05). For F–K, basal and insulin-stimulated values were pooled for each genotype (no
effect of insulin was observed). Two-way ANOVAs (repeated measurements for A) were performed for statistical
analysis. For D, 2 × two-way ANOVAs were performed analysing the effect of (i) insulin within each genotype and
diet, and (ii) diet and genotype within each stimulus. For G, two-way ANOVAs were performed for each muscle
type. Values are means ± SD.

this effect of HFD in soleus muscle occurred in both
Rac1 mKO and WT control mice. Glycogen content
was reduced by HFD in gastrocnemius muscle (−15%;
Fig. 3I) with no effect of genotype. Due to the importance
of the liver in regulating whole body metabolism, we
analysed triacylglycerol and glycogen content, as well as
Rac1 and Akt2 expression in the liver. As expected, liver
triacylglycerol content was markedly increased (+300%,
data not shown), while glycogen content was reduced
(−60%; Fig. 3J) by HFD, and, importantly, we observed
no effect of our muscle-specific Rac1 deletion on liver
glycogen content, triacylglycerol content, or Rac1 and Akt2
protein expression (Fig. 3K). These findings suggest that
livers from WT and Rac1 mKO mice respond similarly to
a HFD.

HFD-induced insulin resistance was exacerbated in
Rac1 mKO muscle but improved in adipose tissue

Basal glucose uptake was unaffected by Rac1 mKO and diet
in all of the muscles analysed (Fig. 4A). Insulin-stimulated
glucose uptake in chow-fed Rac1 mKO mice was reduced
in triceps (−45%), soleus (−25%) and gastrocnemius
(−15%) compared to control (Fig. 4B). HFD impaired
insulin-stimulated glucose uptake in all analysed muscles
(main effect of diet). Insulin-stimulated glucose uptake
was significantly lower in HFD Rac1 mKO muscle
compared to WT in all analysed muscles, except soleus.
These findings suggest that deficient Rac1 signalling
and fatty diet is additive and together thus markedly
compromise insulin-stimulated glucose uptake. In soleus
and triceps muscles insulin-stimulated glucose uptake
correlated with Rac1 muscle protein content and this was
also the tendency in quadriceps (Fig. 4C).

As expected in this muscle-specific model, Rac1 mKO
did not alter basal- or insulin-stimulated glucose uptake in
adipose tissue of chow-fed mice (Fig. 4D). HFD resulted
in insulin resistance in adipose tissue in both genotypes
as depicted by lower insulin-stimulated glucose uptake
(Fig. 4D). However, unexpectedly, while HFD reduced
insulin-stimulated glucose uptake in adipose tissue of WT
mice by 120%, glucose uptake was only reduced by 60% in

Rac1 mKO HFD mice. Thus surprisingly there seems to be
some adipose tissue compensation for the reduced muscle
glucose uptake. Taken together, our findings show that
Rac1 plays an essential role in insulin-stimulated glucose
uptake in skeletal muscle, in particular when metabolically
challenged with a fatty diet. Furthermore, knockout of
Rac1 in muscle to some degree protects adipose tissue
from HFD-induced insulin resistance.

Akt signalling in muscle is unaffected by Rac1 mKO
but in HFD adipose tissue Rac1 mKO increased
insulin-stimulated p-AktThr308 and Ser473

Rac1 mKO reduced insulin-stimulated glucose uptake in
gastrocnemius muscle, and this effect of Rac1 mKO was
significantly augmented by HFD (Fig. 4B). Gastrocnemius
muscle was therefore further analysed to investigate
potential insulin signalling defects in Rac1 mKO muscle.
In gastrocnemius muscle, insulin stimulated p-AktThr308

(Fig. 5A) and p-AktSer473 (Fig. 5B) equally in WT and
Rac1 mKO muscle and we observed no effect of diet,
despite a reduced (−30%) Akt2 protein abundancy with
HFD (Fig. 5C). Insulin increased the phosphorylation
of p-TBC1D4Thr642 equally in both genotypes (Fig. 5D).
Despite no diet-induced alterations in Akt signalling,
HFD surprisingly augmented p-TBC1D4Thr642 (+30%).
This was likely due to an upregulation (+25%) of
TBC1D4 protein in response to the HFD diet (Fig. 5E).
Representative blots are shown in Fig. 5F.

We also analysed signalling in adipose tissue because
glucose uptake was increased in Rac1 mKO mice on a HFD
compared to WT HFD mice. Surprisingly the Rac1 mKO
HFD mice had twice as high insulin-stimulated AktThr308

in adipose tissue compared to WT HFD mice (Fig. 5G).
In agreement with similar glucose uptake, adipose tissue
insulin-stimulated p-AktSer473 was comparable between
genotypes in chow-fed mice. HFD reduced p-AktSer473

in adipose tissue from WT (−50%), but not in Rac1
mKO mice (Fig. 5H and representative blots in Fig. 5I).
Akt2 protein content was not affected by genotype or
HFD in adipose tissue (Fig. 5K). Unexpectedly, Rac1
protein content was increased by �55% on average in
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adipose tissue of Rac1 mKO mice with no effect of
HFD (Fig. 5J and representative blots in Fig. 5K). These
results indicate that Rac1 mKO and a fatty diet act on
glucose uptake independently of Akt signalling in skeletal
muscle. In contrast, in adipose tissue Rac1 mKO increased
insulin-stimulated p-AktThr308 and preserved p-AktSer473

in HFD mice as well as displaying increased Rac1 protein
content, which could explain the increased adipose tissue
glucose uptake.

The glucose transport step is impaired in
HFD-challenged Rac1 mKO muscle

Glucose uptake in vivo depends on three factors: glucose
delivery, transport across the sarcolemma, and intra-
cellular metabolism (Sylow et al. 2017), which cannot be
distinguished between when measuring glucose uptake
in vivo. To specifically study glucose transport across the
muscle membrane (sarcolemma and transverse tubules),
we therefore isolated and incubated soleus and EDL
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Figure 4. Loss of Rac1 in skeletal muscle exacerbates muscle insulin resistance on a high-fat diet but
improves insulin-stimulated glucose uptake in adipose tissue
A, basal (saline-stimulated) 2-deoxy-glucose (2DG) uptake in wild type (WT) and muscle-specific Rac1 knockout
(mKO) triceps, soleus, gastrocnemius (Gast), tibialis anterior (Tib. Ant.) and quadriceps (Quad) muscle on chow
or 60% high-fat diet (HFD) at week 18. n = 5–8. B, insulin-stimulated (insulin dose of 0.5 U kg−1 for chow-fed
mice, 0.3 U kg−1 for high-fat-fed mice, 10 min) 2DG uptake. n = 5–8. Significant effect of diet is indicated by
∗ (P < 0.001). Significant effect of Rac1 mKO is indicated by # (P < 0.05). Effect of Rac1 mKO within diet is
indicated by † (P < 0.05). C, correlations between muscle Rac1 protein content and insulin-stimulated glucose
uptake in individual muscles. D, basal and insulin-stimulated 2DG uptake in white adipose tissue following chow
diet or HFD in WT or Rac1 mKO mice. Significant effect of insulin is indicated by ∗ (P < 0.001). Significant effect of
Rac1 mKO is indicated by # (P < 0.01). Shaded areas indicate HFD. Significant effect of diet within stimulation is
indicated by § (P < 0.001). Interaction between genotype and stimulation within diet is indicated by † (P < 0.01).
For A and B, several two-way ANOVAs were performed to test for effects of (i) diet, (ii) insulin, (iii) genotype.
Furthermore, two-way repeated measures ANOVAs including all muscle types from each mouse were performed
to test for main effects of diet and genotype. Values are means ± SD.
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Figure 5. Akt signaling in skeletal muscle is not affect by Rac1 mKO
Bar graphs and representative western blots showing p-AktThr308 (A), p-AktSer473 (B), total Akt2 (C), p-TBC1D4Thr642

(D), total TBC1D4 (E), representative western blots, Rac1 protein, and Coomassie staining as a loading control
in wild type (WT) and muscle-specific Rac1 knockout (mKO) in gastrocnemius muscle (F). n = 5–8. Bar graphs
showing phosphorylation of Akt at sites Thr308 (G) and Ser473 (H) in adipose tissue. n = 5–8. I, representative
western blots showing p-AktThr308, p-AktSer473, and as a loading control, actin, in adipose tissue. J, bar graph
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showing Rac1 content in adipose tissue. K, representative western blots of Rac1 and Akt2 content. Shaded areas
indicate HFD. Significant effect of insulin stimulation is indicated by ∗ (P < 0.001). Significant effect of diet is
indicated by † (P < 0.01). Significant effect of Rac1 mKO is indicated by # (P < 0.05). 2 × two-way ANOVAs were
performed analysing the effect of (i) insulin within each genotype and diet, and (ii) diet and genotype within each
stimulus. Values are means ± SD.

muscles (an experimental set-up in which transport of
glucose across the muscle membrane is the rate-limiting
factor; Hansen et al. 1994, 2000) to test Rac1 mKO’s
effect on glucose transport specifically in metabolically
challenged muscles from HFD-fed mice. Soleus and EDL
muscles are thin enough to be incubated without inducing
hypoxia, and represent highly oxidative and glycolytic
muscle fibres, respectively. In all groups insulin increased
glucose transport, and this effect was significantly reduced
in soleus (−50%) and EDL (−70%) muscles from Rac1
mKO on a HFD (Fig. 6A and B). In comparison, only a
20% reduction in Rac1 mKO mice fed a chow diet was
observed in Rac1 mKO mice in previous studies (Sylow
et al. 2013a, 2014). Insulin-stimulated p-AktSer473 (Fig. 6C)
was unaltered by Rac1 mKO, while p-TBC1D4Thr642 was
reduced (−20%) in Rac1 mKO soleus (Fig. 6D). In soleus
and EDL muscles, Rac1 protein was reduced by 80%,
while, importantly, not affecting GLUT4 protein (Fig. 6E).
Representative blots are shown in Fig. 6F. These results
indicate that on a HFD Rac1 mKO significantly impairs
glucose transport step across the muscle membrane.

Rac1 deficiency in muscle does not affect gene
expression of any of the usual suspects involved in
glucose handling, inflammation, and macrophage
infiltration

In an attempt to further elucidate the phenotype, we
investigated the effect of Rac1 mKO on the expression
of genes involved in glucose uptake and intracellular
metabolism (glut4, foxo1 and pparγ), inflammation (IL-6
and TNFα), and macrophage infiltration (F4/80 and
mcp-1). We also analysed β-actin expression, which
partially constitutes the cortical muscle actin cytoskeleton
and is a possible target for Rac1 to induce GLUT4 trans-
location (JeBailey et al. 2007; Prins et al. 2011). In
gastrocnemius muscle, we observed no effect of Rac1
mKO on any of those genes, while HFD reduced F4/80
and mcp-1 (−60%) and β-actin (−40%) (Fig. 7A).
β-Actin mRNA expression was increased �20% in Rac1
mKO adipose tissue but in contrast to muscle, β-actin
mRNA was unaltered by diet (Fig. 7B). However, total
protein expression of β-actin analysed by western blotting
did not follow mRNA expression and we observed
no effect of Rac1 mKO on adipose tissue β-actin
protein expression, while HFD surprisingly increased
β-actin protein expression. Following HFD, adipose tissue
expression of foxo1 and pparγ was �20% increased,
while macrophage infiltration (F4/80 and mcp-1) doubled.

These findings suggest that Rac1 deficiency in muscle
does not affect the mRNA expression of the usual
suspects involved in glucose handling, inflammation, and
macrophage infiltration. However, HFD caused a marked
decrease in muscle β-actin mRNA, but this was not trans-
lated into altered protein β-actin expression.

Discussion

The current study provides evidence that lack of Rac1
exacerbates the detrimental effect of a high-fat diet and
reduces whole body insulin action due to a marked
reduction in insulin-stimulated glucose uptake in skeletal
muscle. Essentially, Rac1 signalling is decreased in
insulin-resistant rat L6 myoblasts (JeBailey et al. 2007),
type 2 diabetic subjects (Sylow et al. 2013a) and obese
ob/ob mice (Sylow et al. 2014). The present findings
are clinically relevant, since they suggest that decreased
Rac1 signalling significantly contributes to muscle insulin
resistance, in particular in diet-induced obesity. Despite
a severe decrease in insulin-stimulated glucose uptake
in skeletal muscles, it was surprising to find normal
glucose tolerance and a relatively mild whole body
insulin-resistant state in the Rac1 mKO mice. This was
likely due to a less impaired adipose tissue glucose uptake
in the HFD Rac1 mKO than WT littermate mice, while the
liver was affected similarly by HFD. Interestingly, other
mouse models of muscular insulin resistance also display
a concomitant increase in adipose tissue glucose uptake
(Kim et al. 2000; Cettour-Rose et al. 2005; Ikonomov
et al. 2013). For example, in mice with a muscle-specific
deletion of the insulin receptor (MIRKO), severe muscular
insulin resistance was partly compensated for by increases
(+200%) in insulin-stimulated glucose transport activity
in adipose tissue (Kim et al. 2000). However, in those
studies, the underlying mechanisms were not explored.
Our results indicate that insulin hyper-responsiveness on
HFD in adipose tissue of Rac1 mKO mice could be due
to increased Akt phosphorylation at both sites Ser473
and Thr308 compared to WT HFD. Another factor that
may have contributed to the increased glucose uptake in
adipose tissue is Rac1 protein content. Rac1 has been
shown to be activated in vivo by insulin in adipose tissue
(JeBailey et al. 2004; Takenaka et al. 2017), and an increase
in Rac1 protein content, as observed in the Rac1 mKO mice
in the current study, may therefore have a positive effect
on insulin-stimulated glucose uptake in adipose tissue
when challenged on a high-fat diet. Another explanation
could be cross-talk between insulin target tissues that has
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been described in the literature (Minokoshi et al. 2003)
and muscle is known to secrete myokines (Whitham &
Febbraio, 2016) and exosomes (Whitham et al. 2018) that
can affect other tissues. It is currently unknown whether
muscle Rac1 affects muscle cross-talk with other organs
or by which secondary factors Rac1 muscle KO improves
insulin-stimulated glucose uptake in adipose tissue. The
interaction between reduced muscle and increased adipose

tissue glucose uptake may also, at least partially, be a simple
process of substrate redistribution from the muscle into
the fat. Certainly, exciting discoveries regarding the roles
of Rac1 and muscular insulin resistance in adipose tissue
glucose uptake lie ahead.

Despite the importance of Rac1 in regulating GLUT4
trafficking in L6 muscle cells (Khayat et al. 2000; JeBailey
et al. 2007) and skeletal muscle in vitro (Sylow et al. 2013a,
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Figure 6. The glucose transport step is impaired in Rac1 mKO after high-fat feeding
A, basal and insulin (60 nM, 20 min) 2-deoxy-glucose (2DG) transport in soleus and extensor digitorum longus
(EDL) muscle from wild type (WT) and muscle-specific Rac1 knockout (mKO) mice following 18 weeks 60%
high-fat diet (HFD). B, insulin-stimulated increase above basal of 2DG transport in soleus and EDL muscle. Basal
and insulin-stimulated p-AktSer473 (C), p-TBC1D4Thr642 (D), and Rac1 and GLUT4 protein expression (E), and
representative western blots (F). Shaded areas indicate HFD. Significant effect of insulin stimulation is indicated by
∗ (P < 0.001). Significant effect of Rac1 mKO is indicated by # (P < 0.001). n = 7–10. Two-way repeated measures
ANOVA was performed for each muscle. Fold changes were analysed using t tests. Values are means ± SD.
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2014), our studies show that Rac1 was actually dispensable
for glucose uptake in several mouse skeletal muscle types
in chow-fed mice in vivo. Also, Rac1 protein content
correlated with insulin-stimulated glucose uptake in only
three out of the five analysed muscles. Alternative pathways
therefore seem to be able to mediate glucose uptake in
the absence of Rac1. An obvious candidate for alternative
Rac1-independent signalling to insulin-mediated glucose
uptake in skeletal muscle is the pathway defined by Akt.
Separate inhibition of either Rac1 or Akt partially reduced
insulin-stimulated glucose transport, while simultaneous
inhibition of both proteins blocked glucose transport in
incubated soleus and EDL muscle (Sylow et al. 2014).
These findings suggest that in the absence of one, the other
signalling pathway can partially take over and mediate
glucose transport. Some (Tremblay et al. 2001; Karlsson
et al. 2005; Frosig et al. 2013; Liu et al. 2015), but not all
(Kim et al. 1999; Timmers et al. 2010; Tonks et al. 2013),
studies have reported downregulation of Akt signalling
in insulin-resistant skeletal muscle. The complexity of
insulin-stimulated phosphorylation and activation of Akt
is evidenced by results obtained in adipocytes in vitro (Tan

et al. 2012). These data suggest that minimal activation of
Akt can lead to close to maximal activation of Akt down-
stream targets including GLUT4 plasma membrane trans-
location. Whether this relationship also exists in vivo in
other tissues such as skeletal muscle, and during different
conditions such as a HFD intervention, is unknown.
However, in the current study Akt phosphorylation was
normal during insulin stimulation in skeletal muscle
following HFD, suggesting that mechanisms other than
reduced Akt activity underlie the reduced insulin action
by high-fat diet in both WT and Rac1 mKO mice.

An important finding in our study is that Rac1 mKO
mice have decreased insulin-stimulated glucose uptake in
skeletal muscle on both diets compared to WT mice during
in vivo insulin stimulation. This phenotype is present with
no change in Akt signalling demonstrating the importance
of Rac1 in insulin-stimulated glucose uptake independent
of Akt. Interestingly, HFD-induced insulin resistance in
skeletal muscle was augmented in muscles lacking Rac1
protein. As investigated in this study, this was likely due to a
defect in the sarcolemmal glucose transport step. Although
Akt phosphorylation is not affected by the loss of Rac1,
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Figure 7. High fat feeding alter β-actin mRNA (muscle) and protein content (adipose tissue) in mice
Total expression of β-actin protein (right bars) and gene expression in gastrocnemius muscle (A) and white adipose
tissue (B) from wild type (WT) and muscle-specific Rac1 knockout (mKO) on chow or 60% high-fat diet (HFD)
of glucose transporter 4 (glut4), forkhead box protein O1 (foxo1), peroxisome proliferator-activated receptor γ

(pparγ ), interleukin 6 (IL-6), tumour necrosis factor α (TNFα), F4/80, monocyte chemoattractant protein-1 (mcp-1),
and β actin related to OliGreen (single-stranded (ss) DNA). n = 8–10, basal and insulin-stimulated samples pooled
for each genotype (no effect of insulin was observed). Significant effect of diet is indicated by ∗ (P < 0.05).
Significant effect of Rac1 mKO is indicated by # (P < 0.05). Two-way ANOVAs were performed for each gene.
Values are means ± SD.
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the exact intracellular mechanism(s) leading to/causing
augmented loss of insulin action during HFD in skeletal
muscle from Rac1 mKO cannot be definitively described
in the present study. With the involvement of Rac1 in
actin reorganization and translocation of GLUT4 to the
plasma membrane (JeBailey et al. 2004, 2007) a lower
abundance of GLUT4 at the plasma membrane during
insulin stimulation seems like an appealing explanation.
This needs further exploration in future studies.

β-Actin constitutes part of the cytoskeleton in skeletal
muscle (Prins et al. 2011) and the actin cytoskeleton
is essential for normal regulation of insulin-stimulated
glucose uptake in vitro (Khayat et al. 2000; Tong et al.
2001; JeBailey et al. 2004, 2007; Chiu et al. 2011; Sylow et al.
2014). Rac1 is a major regulator of the actin cytoskeleton
in various cell types (Ridley et al. 1992; JeBailey et al.
2004, 2007). In an insulin-resistant ceramide-treated L6
muscle cell culture, insulin failed to activate Rac1, and the
actin cytoskeleton was not reorganized by insulin, leading
to impaired GLUT4 translocation (JeBailey et al. 2007).
Reduced actin cytoskeleton F-actin staining has also been
observed in fully differentiated mature insulin-resistant
skeletal muscle (Habegger et al. 2012). In accordance with
those studies, we found that a high-fat diet reduced the
gene expression ofβ-actin in muscle. However, this was not
translated into a reduction inβ-actin protein. Thus, should

the actin cytoskeleton regulate glucose uptake in vivo,
it is likely that actin dynamics rather than amount is a
relevant factor. However, the beta actin isoform is largely
dispensable for glucose uptake in muscle (Madsen et al.
2018). Although future studies should determine the role
for both of the actin cytoskeleton isoforms, β and γ, those
findings suggest that Rac1 could mediate glucose uptake
via other signals.

The current study has certain limitations. We describe
a method to analyse glucose uptake and intracellular
signalling in vivo in a simple, non-expensive and highly
efficient manner in several tissues. Although this is an
excellent method to study glucose uptake in muscle
and adipose tissue, the hyperinsulinaemic euglycaemic
clamp is still the gold standard for such procedures,
as it also provides information about glucose output
from the liver and measures glucose metabolism during
steady state. On the other hand, our method may be
more physiologically relevant, given that during the
hyperinsulinaemic euglycaemic clamp, plasma insulin
concentrations are elevated for several hours during
euglycaemia, which is a non-physiological condition.
We found that HFD markedly reduced insulin clearance.
However, we only investigated plasma insulin following
10 min of insulin injection, and insulin appearance at
earlier time points is therefore unknown. Nonetheless,
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Figure 8. Schematic illustration of the main findings from the current study
Lack of Rac1 is particularly harmful for maintaining insulin-stimulated glucose uptake in muscle that is challenged
by a HFD. Despite reduced muscle glucose uptake, whole body glucose homeostasis was unaffected by muscle
Rac1 KO, likely due to increased phosphorylation of Akt and improved glucose uptake in adipose tissue in Rac1
mKO mice on a fatty diet. [Colour figure can be viewed at wileyonlinelibrary.com]
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plasma insulin concentrations were similar between
genotypes and this limitation is therefore unlikely to
affect the conclusions of this study. A third limitation
to this study is that a high, but still submaximal insulin
concentration was used in vivo and a maximal insulin
concentration used in vitro. As such, the involvement
of Rac1 in insulin action rather than insulin sensitivity
was investigated in this study. Future studies should
determine the role for Rac1 in insulin sensitivity at lower
doses of insulin. Finally, at least two intriguing questions
remain: (i) by which molecular downstream mechanism
Rac1 mediates insulin-stimulated glucose uptake, and
(ii) whether activation of Rac1 can block HFD-induced
insulin resistance. This should be the topic for future
investigations.

Conclusion

Insulin regulates many biological functions in skeletal
muscle and stimulation of skeletal muscle glucose uptake
is one of the most important (Taniguchi et al. 2006). Our
findings show that lack of Rac1 is particularly harmful
for maintaining insulin-stimulated glucose uptake in
muscle that is challenged by a HFD. Despite reduced
muscle glucose uptake, whole body glucose tolerance
was unaffected, likely due to improved glucose uptake
in adipose tissue in Rac1 mKO mice. We conclude that
reduced Rac1 signalling in the context of obesity is
detrimental to insulin-stimulated muscle glucose uptake
independently of Akt signalling. This is depicted in Fig. 8.
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