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Abstract
Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many 
pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a 
wide variety of chemicals is not currently available. Here, we report a study that uses high-throughput imaging and artificial 
intelligence to build an in vitro pulmonotoxicity assay by automatically comparing and selecting human lung-cell lines and 
their associated quantitative phenotypic features most predictive of in vivo pulmonotoxicity. This approach is called “High-
throughput In vitro Phenotypic Profiling for Toxicity Prediction” (HIPPTox). We found that the resulting assay based on two 
phenotypic features of a human bronchial epithelial cell line, BEAS-2B, can accurately classify 33 reference chemicals with 
human pulmonotoxicity information (88.8% balance accuracy, 84.6% sensitivity, and 93.0% specificity). In comparison, the 
predictivity of a standard cell-viability assay on the same set of chemicals is much lower (77.1% balanced accuracy, 84.6% 
sensitivity, and 69.5% specificity). We also used the assay to evaluate 17 additional test chemicals with unknown/unclear 
human pulmonotoxicity, and experimentally confirmed that many of the pulmonotoxic reference and predicted-positive test 
chemicals induce DNA strand breaks and/or activation of the DNA-damage response (DDR) pathway. Therefore, HIPPTox 
helps us to uncover these common modes-of-action of pulmonotoxic chemicals. HIPPTox may also be applied to other cell 
types or models, and accelerate the development of predictive in vitro assays for other cell-type- or organ-specific toxicities.

Introduction

Human lungs are exposed to inhaled or blood-borne solu-
ble xenobiotics that may originate from the environment, 
food, consumer products, and/or pharmaceuticals. In the 
lungs, bronchial and alveolar epithelial cells (BECs and 
AECs) are major sites of xenobiotic metabolism, and thus 
susceptible to the toxicity induced by these foreign chemi-
cals (Devereux et al. 1993; Foth 1995; Courcot et al. 2012). 
For example, bleomycin, methotrexate, and temsirolimus 
(three intravenously or orally delivered anti-cancer drugs) 
may cause pulmonary fibrosis, pneumonitis, and/or other 
lung diseases (Blum et al. 1973; Lateef et al. 2005; Duran 

et al. 2006). Excessive exposures to diacetyl (a food and 
beverage flavoring chemical) or paraquat (an agricultural 
chemical) may also lead to bronchiolitis obliterans (Kre-
iss et al. 2002) or pulmonary edema (Dinis-Oliveira et al. 
2008), respectively. Despite the known adverse pulmonary 
effects of these xenobiotics in humans, the key cellular 
effects, or “modes-of-action” (MoA) (Seed et al. 2005), of 
these chemicals in human lung cells are not always clear. 
Do these known pulmonotoxic chemicals, which may have 
diverse chemical structures and intracellular targets, induce 
similar or different MoAs in the lung cells? Are in vitro cell-
viability or death endpoints indicative or even predictive of 
the in vivo pulmonotoxicity of these chemicals? The answers 
to these questions are critical for the development of predic-
tive in vitro pulmonotoxicity assays.

The need of predictive alternative assays is especially per-
tinent to pulmonary toxicity. A survey of 142 drugs approved 
between 2001 and 2010 found that only 19% of the pulmo-
nary adverse drug reactions identified post-marketing could 
have been predicted based on pre-clinical animal studies 
(Tamaki et al. 2013). For example, pre-clinical assessments 
of temsirolimus, carbamazepine, and tenofovir did not find 
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any major adverse pulmonary effect in rodents (Ciba-Geigy 
Corp 1967; Gilead Sciences 2001; Wyeh Pharmaceuticals 
2007), but these drugs were later found to cause interstitial 
lung disease, pneumonitis, or pneumonia in humans (Wils-
chut et al. 1997; Gilead Sciences 2001; Duran et al. 2006). 
On the other hand, there are chemicals, such as butylated 
hydroxytoluene (BHT, an antioxidant and food additive), 
that may induce pulmonary edema or other lesions in ani-
mals but not in humans (Witschi et al. 1993). Furthermore, 
even closely related species may have discrepancies in their 
pulmonary responses. A survey found that there is no con-
cordance between mouse and rat non-carcinogenic lung 
lesions observed in acute and long-term rodent studies of 37 
chemicals (Wang and Gray 2015). All of these findings high-
light the limitations of animal models in predicting human 

pulmonary toxicity, and the urgent need for developing more 
predictive alternative assays.

The construction of a predictive assay for cell-type-
specific toxicity requires systematic optimizations of three 
inter-dependent components (Fig. 1a): (1) an in vitro human 
cell model that can mimic, to a certain extent, in vivo human 
cell-type-specific responses to xenobiotics; (2) quantitative 
in vitro phenotypic readouts based on the cell model that can 
reflect the MoAs of xenobiotics toxic to the cell type; and (3) 
computational models or classifiers based on the readouts 
that can optimally distinguish between the effects of xeno-
biotics that are toxic or non-toxic to the cell type. The devel-
opment of such an assay often requires balancing between 
the performances, requirements, and costs of these three 
individual components (Fig. 1a). For example, advanced 

Fig. 1   Reference chemicals with known human toxicity informa-
tion are required to build a predictive in vitro toxicity assay. a High-
throughput imaging and artificial intelligence can be used to system-
atically and efficiently optimize the three inter-dependent components 
of an in  vitro toxicity assay and achieve a higher overall prediction 
accuracy. We call this approach “High-throughput In-vitro Pheno-
typic Profiling for Toxicity Prediction” (HIPPTox). b Schematic 
showing the reference and test chemical selection process starting 
from a list of 60 candidate chemicals. c Categorization of the refer-

ence and test chemicals according to their sources or applications. d 
Multi-dimensional scaling plot showing the chemical structure dis-
similarities based on Tanimoto coefficients between all the reference 
and test compounds (MDS1/2 = the first and second coordinates of 
the multi-dimensional scaling). e Venn diagram showing the overlap 
between reference chemicals that are known to be directly pulmono-
toxic to humans or animals (mostly rodents). (Red = pulmonotoxic 
reference chemicals, blue = non-pulmonotoxic reference chemicals, 
green = test chemicals.) (Color figure online)
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in vitro human lung-cell models, such as 3D airway epi-
thelial tissue (Kelly BéruBé et al. 2009; Sauer et al. 2013) 
or microfluidic-chip-based (Huh et al. 2010) models, may 
better mimic the in vivo physiology of lung cells or tissues, 
but they often require complicated, expensive, and lower 
throughput experimental procedures or devices. In addition, 
their added values over 2D immortalized lung-cell lines have 
not been clearly demonstrated in large-scale studies (Sauer 
et al. 2013). Furthermore, due to the biological differences 
between different in vitro models, the same chemicals may 
induce different molecular or phenotypic changes in these 
models. Therefore, optimum in vitro toxicity readouts (or 
“markers”) needs to be determined specifically for each 
in vitro model. This would require the evaluation of different 
potential phenotypic readouts using large numbers of refer-
ence chemicals with known human pulmonotoxicity infor-
mation (Fig. 1a). However, most existing approaches simply 
use standard cell-death or viability endpoints, such as lactate 
dehydrogenase (LDH) leakage, tetrazolium salt (MTT) con-
version, or propidium iodide (PI) stains, as in vitro pulmo-
notoxicity markers (Bargout et al. 2000; Sauer et al. 2013; 
Hess et al. 2016). These and other similar endpoints have 
been repeatedly shown in large-scale studies to be poorly 
predictive of cell-type-specific toxicities (Lin and Will 2012; 
Sison-Young et al. 2017). Finally, to construct generalizable 
computational models, evaluations of different modeling 
techniques using large numbers of reference chemicals are 
again required. However, the availability of human data is 
scarce, especially for reference chemicals that are known 
to be non-pulmonotoxic. Thus, systematic evaluations and 
optimizations of these three components have rarely been 
performed. Due to all of these problems, the development 
of a predictive in vitro pulmonotoxicity assay remains very 
challenging.

To build a predictive in vitro pulmonotoxicity assay, our 
strategy is to use high-throughput imaging and artificial 
intelligence to systematically and efficiently optimize the 
three components of the assay (Fig. 1a). This approach is 
called “High-Throughput In vitro Phenotypic Profiling for 
Toxicity Prediction” (HIPPTox), and consists of two main 
steps (Bougen-Zhukov et al. 2017; Loo and Zink 2017). In 
the first step, we automatically measure large numbers of 
cellular phenotypic features based on microscopy images 
of human cells that have been exposed to a set of reference 
chemicals. For example, these features may include all pos-
sible pairwise ratios between the total intensity values of 
different stained fluorescent markers at different subcellular 
regions. Unlike conventional high-content analysis, HIPP-
Tox does not start with pre-assumed toxicity MoAs or spe-
cific phenotypic readouts designed to reflect these MoAs 
(Bougen-Zhukov et al. 2017; Loo and Zink 2017). In the 
second step, we use machine learning methods to automati-
cally search for the most predictive phenotypic readouts 

from all the measured features. Thus, HIPPTox may dis-
cover novel or unexpected MoAs for the reference chemi-
cals. This would also allow us to compare the performances 
of different in vitro cell models. We have previously used 
HIPPTox to build a highly predictive in vitro nephrotoxicity 
assay by systematically comparing the phenotypic features 
of primary and immortalized human proximal tubule cells 
(Su et al. 2016; Loo and Zink 2017).

Here, we report a subsequent study to use HIPPTox to 
build an in vitro pulmonotoxicity assay based on 33 ref-
erence chemicals with published human pulmonotoxicity 
information. For in vitro human cell models, we evaluated 
two different human lung-cell lines, namely, BEAS-2B (a 
BEC line) and A549 (an AEC line). These cell lines do not 
have the problem of inter-individual variability commonly 
observed in primary human lung cells (Cohen et al. 1979; 
Courcot et al. 2012), and can be easily stored and expanded 
for future large-scale experiments. For in vitro pulmono-
toxicity markers, we evaluated 165 candidate phenotypic 
features extracted from microscopy images of these cell 
lines. For the computational model, we developed a cascade 
classifier that used a small subset of the extracted features 
in succession to predict pulmonotoxicity. The result is an 
optimized in vitro assay based on two phenotypic features 
of the BEAS-2B cell line that can achieve 88.8% balance 
accuracy, 84.6% sensitivity, and 93.0% specificity. These 
two features are changes in cell count and spatial cross cor-
relation between DNA and phosphorylated histone H2AX 
(γH2AX). We also applied the pulmonotoxicity assay to test 
17 additional chemicals of interest with unknown/unclear 
human pulmonotoxicity, and experimentally confirmed that 
most of the pulmonotoxic reference and predicted-positive 
test chemicals induced DNA strand breaks and/or activation 
of the DNA-damage response (DDR) pathway. Therefore, 
our results show that DDR is a common toxicity mode-of-
action represented by these two features, and induced by 
many pulmonotoxic chemicals with diverse chemical struc-
tures. Our assay may be used to efficiently predict the poten-
tial pulmonotoxicity of these chemicals.

Results

Compilation of a reference chemical list

To use HIPPTox, a list of reference chemicals that are 
known to be directly toxic or non-toxic to the human lungs 
is required (Fig. 1a). We started with 60 chemicals of inter-
est, many of which are well-established human pulmono-
toxicants, such as bleomycin, amiodarone, and paraquat 
(Blum et al. 1973; Martin and Rosenow 1988; Dinis-Oliveira 
et al. 2008). We also included chemicals with high human 
exposure levels, such as phthalates and naphthalenes, 



2058	 Archives of Toxicology (2018) 92:2055–2075

1 3

whose pulmonary safety are unclear but of major concerns 
and interests. However, we found that ten of the candidate 
chemicals are either poorly soluble, highly autofluorescent 
(Supplementary Material 1—Fig. S1), or producing imag-
ing artifacts, and thus not suitable for our imaging assays 
(Fig. 1b and Supplementary Material 1—Table S1). For 
example, benzo[α]pyrene (a commonly studied lung toxi-
cant that has five aromatic rings) was found to have strong 
autofluorescence in all three fluorescence channels that we 
used for imaging (Supplementary Material 1—Fig. S2 and 
Table S1). Our results show that, to avoid false detection of 
chemical effects, autofluorescence of all chemicals must be 
checked before performing large-scale fluorescence-based 
assays. The remaining 50 chemicals consist of pharmaceuti-
cals, consumer product ingredients, food ingredients or tox-
ins, industrial chemicals, or environmental agents (Fig. 1c). 
They have diverse chemical structures, ranging from simple 
molecules, such as cadmium chloride and sodium chloride, 
to complex molecules, such as temsirolimus and nystatin 
(Fig. 1d). Before our study, it was unclear whether these 
diverse chemicals may directly injure lung cells, and whether 
they induce similar or different MoAs in the lung cells.

In our study, we define “pulmonotoxicity” as the poten-
tial hazard to directly cause pulmonary edema, fibrosis, 
pneumonitis, necrosis, and/or other damages to the lungs 
in humans. The availability of in vivo human pulmonary 
toxicity data for most chemicals is scarce. Among the 50 
chemicals, we could find reliable and relevant human data 
for 33 of them based on published expert reviews/reports, 
clinical studies, post-marketing safety surveillance, poison-
ing-incident reports, and/or epidemiological studies (“Mate-
rials and methods”, Fig. 1b and Supplementary Material 
1—Table S2). We did not use any information from in vitro 
human cell lines. Based on the compiled in vivo human data, 
we assigned 13 of these chemicals to the “pulmonotoxic” 
class and 20 to the “non-pulmonotoxic” class (Fig. 1b). 
Together, these two classes of chemicals were also called 
the “reference” chemicals. The rest of the chemicals had 
unknown or unclear human data, and thus were assigned to 
the “test” class. These chemicals were not used to train or 
evaluate our models or phenotypic readouts, but their pul-
monotoxicity was predicted using the final assay based on 
the reference chemicals.

To illustrate the process, the annotations for a few 
selected chemicals are briefly described here. Occupational 
exposure to diacetyl was found to be associated with bron-
chiolitis obliterans (Kreiss et al. 2002; van Rooy et al. 2007), 
and thus the chemical was annotated as “pulmonotoxic”. 
Ketoconazole (an antifungal drug) and nevirapine (a human-
immunodeficiency-virus drug) may induce acute liver injury 
(Rodríguez et al. 1999; Patel et al. 2004), but no major 
pulmonotoxicity has been reported in patients who took 
the drugs (Sugar et al. 1987; Patel et al. 2004). Similarly, 

monocrotaline, a plant-derived pyrrolizidine alkaloid, may 
cause pulmonary hypertension and edema in rats and other 
animals; but its main targets are liver and endothelial cells, 
and its pulmonary effects are indirectly due to metabolites 
released from the liver (Huxtable 1993). Furthermore, 
“there is no evidence of involvement of organs other than 
the liver and central nervous system ascribed primarily to 
pyrrolizidine alkaloid toxicity in any of the published human 
case reports” (WHO-IPCS 1988). Therefore, all of these 
chemicals were annotated as “non-pulmonotoxic” in our 
study. Overdose of p-phenylenediamine (a hair-dye ingre-
dient) leads to pulmonary obstruction and edema, but the 
effects may be indirectly due to severe muscle damage or 
“rhabdomyolysis” that can damage lung cells (Abidi et al. 
2008; Behera et al. 2015). Therefore, the direct effect of this 
chemical to lung cells was unclear, and it was annotated as 
a “test” chemical. Finally, we could not find any relevant 
human pulmonary information for dibutyl and diethyl phtha-
lates, and naphthalene, and 1-nitronaphthalene. Thus, they 
were also annotated as “test” chemicals. These reference 
chemicals allow us to systematically evaluate our models 
using HIPPTox. They may also be used as standard reference 
chemicals for other further studies or developments of more 
advanced alternative assays for pulmonotoxicity.

We also compiled relevant animal information (mostly 
from rodents) for all the 50 chemicals (Supplementary Mate-
rial 1—Table S2). This information was only used for the 
purpose of comparison, and not used to derive the pulmo-
notoxicity annotations. We found that ten of the reference 
chemicals are known to be pulmonotoxic to both humans 
and animals, and six of the reference chemicals have differ-
ent pulmonary effects in humans vs. animals (Fig. 1e). Spe-
cifically, pre-clinical assessments of carbamazepine, tem-
sirolimus, and tenofovir (three pulmonotoxic drugs) found 
no major pulmonary effect in animals (Supplementary Mate-
rial 1—Table S2). On the other hand, 2-hydroxypropyl-β-
cyclodextrin, BHT, and monocrotaline were found to induce 
adverse pulmonary effects in animals, but similar effects 
have not been observed in humans (Supplementary Mate-
rial 1—Table S2). The discrepancies highlight the impor-
tance of developing toxicity assays based on human and not 
animal information.

High‑throughput imaging of BEAS‑2B and A549 
cells

We compared two human lung-cell lines, namely, BEAS-2B 
(a BEC line) and A549 (an AEC line). A previous study of 
ten different human lung-cell lines, including BEAS-2B and 
A549, found that BEAS-2B has the highest correlation in 
the expressions of 380 genes involved in xenobiotic metabo-
lism and disposition, and the lowest number of dysregu-
lated genes, compared to human non-tumoral pulmonary 
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parenchyma and bronchial mucosa tissues (Courcot et al. 
2012). Thus, BEAS-2B may be more active in xenobiotic 
metabolism than A549. However, we still included A549, 
because it is a commonly used in vitro cell model for pul-
monotoxicity (Kelly BéruBé et al. 2009).

After treating the two cell lines with the 50 chemicals in 
seven concentrations for 16 h, we stained the cells with four 
fluorescent markers, and imaged them using a high-through-
put imaging system (“Materials and methods”, Fig. 2a, and 
Supplementary Material 1—Fig. S3). In theory, HIPPTox 
may be used to screen a large set of fluorescent markers 
that reflect different biological or cellular processes. How-
ever, such a screen was not performed, because we could 
already find phenotypic features with the desired prediction 
accuracy based on these four fluorescent markers. Specifi-
cally, Hoechst and CellMask were used to stain the nucleus 
and whole cell, and may reflect early and late phenotypes 
of apoptotic cells, such as condensation or fragmentation 
of chromosomes, and blebbing or rupture of plasma mem-
branes. Phalloidin was used to stain the actin filaments, 
because cytoskeleton remodeling is a key event during the 
repair of lung epithelial cell injury (Crosby and Waters 
2010). Finally, an antibody that specifically stains phospho-
rylated histone H2AX (γH2AX) was used to measure DDR 
(Rogakou et al. 1998). The marker was motivated by results 
from two recent studies. The first study found that DDR is 
commonly induced by diverse xenobiotics in human proxi-
mal tubule cells, although many of these chemicals are not 
known to target DNA directly (Su et al. 2016). The second 
study found that house-dust mite (a lung allergen) can cause 
DDR in human lung epithelial cells under both in vivo and 
in vitro conditions (Chan et al. 2016). Therefore, we hypoth-
esized that, similar to the proximal tubule cells, DDR may 
also be used as a cellular-stress marker in the lung cells, and 
induced by pulmonotoxic chemicals that do not necessarily 
directly interact with or damage DNA. Importantly, we did 
not manually design phenotypic readouts for any specific 
MoA, and still used HIPPTox to automatically measure and 
screen large numbers of features based on these fluorescent 
markers.

BEAS‑2B cells is more sensitive to the reference 
chemicals

After a relatively short exposure of 16 h, how many of the 
reference chemicals can kill BEAS-2B or A549 cells? For 
most of the tested concentrations, we identified up to ~ 2500 
cells from the acquired images (Fig. 2a and Supplementary 
Material 1—Fig. S3) using automated image processing 
algorithms (Laksameethanasan et al. 2013). The number of 
cells identified from the images (“F1”) can be used as a proxy 
indicator of cell death/health, because dead or injured cells 
would detach from the imaging plates. In BEAS-2B cells, we 

found that 4 of the 13 pulmonotoxic chemicals, namely, ami-
odarone, bleomycin, cadmium(II) chloride, and temsiroli-
mus, caused < 30% cell count at concentrations ≥ 125 µM 
(Fig. 2b). In this report, we denote this condition as “no 
cell” (or “NC”). Among those four NC-causing chemicals, 
cadmium(II) chloride, and amiodarone also caused close to 
100% cell lost at most of the tested concentrations (Fig. 2b). 
Surprisingly, in A549 cells, we only found one NC-causing 
chemical, namely, cadmium(II) chloride (Fig. 2b). We also 
found that most of the non-pulmonotoxic chemicals (17/20) 
caused more or similar levels of cell lost in BEAS-2B cells 
than A549 cells at the highest tested concentration (Fig. 2b). 
All of these results suggest that BEAS-2B is more sensitive 
to the reference chemicals than A549 cells, irrespective of 
whether the chemicals are pulmonotoxic or not. This is con-
sistent to the previous finding that BEAS-2B may be more 
metabolically active than A549 cells (Courcot et al. 2012).

However, the noticeable cell loss at 16 h induced by non-
pulmonotoxic chemicals in both BEAS-2B and A549 cells 
(Fig. 2b) also suggests that cell count (or other related cell 
health/death endpoints) at this timepoint may not be suf-
ficient to predict pulmonotoxicity. We hypothesized that, 
beyond cell death, pulmonotoxic chemicals may induce 
other changes in cellular phenotypes that are more predic-
tive of pulmonotoxicity. In a later section, we will present 
the results on cell-viability measurement based on a stand-
ard resazurin assay after 72 h of chemical exposure, and 
conclusively compare the predictivity of cell-viability and 
phenotypic features.

Among all the reference chemicals, we found an obvious 
outlier, 2,4′-DDT (a constituent of an organochloride insec-
ticide), which was annotated as “non-pulmonotoxic” based 
on published reports (Supplementary Material 1—Table S2). 
The chemical consistently showed high levels of cell loss in 
both cell lines, especially in BEAS-2B cells (Fig. 2b). The 
discrepancy between the in vivo and in vitro effects of 2,4′-
DDT may be due to its rapid metabolism and excretion in 
the human body, as shown in previous in vivo human studies 
(Morgan and Roan 1974). BEAS-2B cells may have much 
higher accumulation of 2,4′-DDT than the lungs in vivo, and 
thus may be more sensitive to the chemical. Another possi-
bility is that DDT and its metabolites (such as dichlorodiphe-
nyldichloroethylene or DDE) may have different affinities 
to their targets. Therefore, a difference in the in vitro and 
in vivo metabolism rates of 2,4′-DDT may lead to different 
downstream effects.

Phenotypic profiling of BEAS‑2B and A549 cells

During the first step of HIPPTox (Fig. 2c), we automati-
cally measured 165 phenotypic features from every single 
cell stained with the four fluorescent markers (Supplemen-
tary Material 1—Table S3). The features include 65 texture 
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features (measuring the statistics of the spatial co-occur-
rence patterns of the markers), 36 intensity features (measur-
ing the staining levels of the markers at different subcellular 
regions), 29 intensity ratio features (measuring the ratios 
between intensity features), 18 correlation features (meas-
uring the spatial correlations between two markers at the 
single-cell level), and 17 morphology features (measuring 
the shape properties of the nuclear and cellular regions). We 
also included cell count as a feature. Compared to our previ-
ous work (Su et al. 2016), we have added two new functions 
to HIPPTox for detecting binary objects (i.e., neighboring 
pixels with similar and relatively high intensity levels of 
the stained fluorescent markers) and “chromosomal” regions 
(i.e., sub-nuclear regions with more intense DNA staining 
levels) (Supplementary Material 1—Fig. S4). These func-
tions allow us to detect, for example, the number of γH2AX 
objects/foci or the average intensity of γH2AX at the chro-
mosomal region. Some of these phenotypic features were 
previously used to build assays for predicting nephrotoxicity 
(Su et al. 2016), cellular sensitivity to cytotoxic agents (Loo 
et al. 2017), drug targets/mechanisms (Loo et al. 2007), or 
protein functions (Loo et al. 2014). Thus, our current phe-
notypic feature set may also be discriminative enough to 
predict pulmonotoxicity.

For each phenotypic feature, we first computed the 
log2-ratios (“∆”) of its values at all the tested concentra-
tions with respect to the solvent controls. Then, we fit the 
feature’s dose response curve using either a standard log-
logistic model or a constant model (“Materials and meth-
ods”), and determined its response value at the highest tested 
concentration based on the fitted curve (“∆max”). For brevity, 
all features that we mention in this article are referring to 

the ∆max values of the respective features (Supplementary 
Material 2), and not the raw measured feature values, unless 
otherwise indicated. Among all the reference chemicals that 
did not cause NC, we found that BEAS-2B cells showed 
bioactivity (defined to be at least 30% change in at least 5% 
of the measured features) for 23 of the 28 chemicals (82.1%), 
but A549 showed bioactivity only for 22 of the 32 chemicals 
(68.8%) (Fig. 2d). These results show that BEAS-2B cells 
are phenotypically more responsive to the reference chemi-
cals than A549 cells, irrespective of the pulmonotoxicity of 
the chemicals. This again agrees with the results from our 
earlier cell count analysis (Fig. 2b).

Then, we performed hierarchical clustering on the refer-
ence chemicals based on the obtained phenotypic feature 
values. For BEAS-2B, the chemicals could be divided into 
four major clusters (Fig. 2d). Cluster 1 consisted of only 
pulmonotoxic chemicals, including aristolochic acid I, car-
bamazepine, nitrofurantoin, paraquat, and tenofovir; and 
was characterized by large increases in several γH2AX fea-
tures, such as mean γH2AX intensity at the chromosomal 
region (“Fa”) and the number of γH2AX objects/foci (“Fb”) 
(Fig. 2d and Supplementary Material 1—Fig. S4a). Cluster 
2 consisted of a mixture of pulmonotoxic and non-pulmono-
toxic chemicals, including cyclophosphamide, dipropylene 
glycol, and methotrexate; and was characterized by large 
increases in γH2AX object features, such as Fb, but lower 
increases in γH2AX intensity features, such as Fa. Cluster 3 
also consisted of both pulmonotoxic and non-pulmonotoxic 
chemicals, including diacetyl and monocrotaline; and was 
characterized by large increases in γH2AX object features, 
such as Fb, and actin intensity and object features, such as 
total cellular actin intensity (“Fc”) and mean actin object size 
(“Fd”). Finally, Cluster 4 consisted of all non-pulmonotoxic 
chemicals, which usually had low or no change in most of 
the measured features.

For A549 cells, we only obtained three major clusters 
(Fig.  2d). Cluster A consisted of mostly pulmonotoxic 
chemicals, and was characterized by large increases in 
many γH2AX and actin features, including Fa, Fb, and Fc. 
However, only three out of the six chemicals in this cluster 
overlapped with Cluster 1 in BEAS-2B, namely, aristolochic 
acid I, nitrofurantoin, and paraquat. Cluster B consisted of a 
mixture of pulmonotoxic and non-pulmonotoxic chemicals, 
and was characterized by large increases in γH2AX object 
features, such as Fb. Finally, cluster C consisted of mostly 
non-pulmonotoxic chemicals, which usually had low or no 
change in most of the features.

For both cell lines, we consistently found that the induc-
tion of γH2AX foci was not always associated with an 
increase in the γH2AX intensity (e.g., Fa vs. Fb in Fig. 2d). 
However, when both phenotypes occurred concurrently, 
the chemicals were more likely to be pulmonotoxic (e.g., 
Clusters 1 and A in Fig. 2d). Our results show that DDR, as 

Fig. 2   Image-based phenotypic profiling shows that BEAS-2B is 
more active than A549 cells. a Fluorescence microscopy images 
showing BEAS-2B and A549 cells that had been treated with six 
of the reference chemicals for 16  h (scale bar = 50  µm). b Percent-
ages of cell count with respect to the solvent controls for all the 30 
reference chemicals (red = pulmonotoxic, blue = non-pulmonotoxic 
reference chemicals). The values were quantified from the cellular 
images. For BEAS-2B cells, five chemicals, namely, 2,4′-DDT, ami-
odarone, bleomycin, cadmium(II) chloride (CdCl2), and temsirolimus 
were found to cause the “no cell” (NC) condition, which is defined 
to be < 30% cell count at ≥ 125 µM. For A549 cells, only CdCl2 was 
found to cause NC. c Schematic showing the key steps of HIPPTox 
used to automatically identify predictive toxicity markers from the 
obtained cellular images. The same procedures were repeated for 
both BEAS-2B and A549 cells. d Heatmaps showing changes in the 
measured phenotypic features of BEAS-2B and A549 cells (“∆max”, 
see main text) induced by the 33 reference chemicals. Only features 
with median absolute deviation (MAD) > 0.05 are shown (Fa = mean 
nuclear γH2AX intensity, Fb = number of γH2AX foci, Fc = total 
cellular actin intensity, Fd = mean actin object size). The vertical or 
horizontal groupings of the feature values were based on hierarchi-
cal clustering of the columns (chemicals) or rows (features) of the 
heatmaps, respectively. The Ward’s method (“ward.D” in the hclust() 
function) was used to agglomerate the clusters. (Color figure online)
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indicated by Fa and Fb, were induced by many pulmonotoxic 
chemicals in these two cell lines, which were originated from 

the bronchial or alveolar epitheliums, respectively. Many 
chemicals also caused changes in the actin cytoskeleton, but 
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the effects appear to be non-specific to pulmonotoxic chemi-
cals (especially for Cluster 3 in BEAS-2B cells, Fig. 2d). 
Therefore, features that are associated with the identified 
clusters may not be sufficient to predict in vivo pulmonary 
toxicity.

γH2AX and DNA co‑localization is predictive 
of pulmonotoxicity

During the second step of HIPPTox (Fig. 2c), we used a 
cascade classifier based on the changes in cell count (F1) and 
one of the measured phenotypic features to systematically 
identify the most predictive phenotypic feature (Fig. 3a). If a 
chemical was found to cause NC (i.e., < 30% cell count rela-
tive to the solvent control in all concentrations ≥ 125 µM), 
the chemical would be assigned to the “positive” class with-
out any further evaluation. Chemicals that did not cause NC 
would be further evaluated using a linear support vector 
machine (SVM) (Ben-Hur et al. 2008) based on a selected 
phenotypic feature (F2), which would then assign the chemi-
cal to either the “positive” or “negative” class (Fig. 3a). We 
chose to use linear SVMs, because they produce continuous 
decision boundaries, which make the relationships between 
feature values and pulmonotoxicity easier to interpret. After 
the most predictive feature was identified, we also checked 
the values of the feature for those NC-causing chemicals at 
lower concentrations to determine if the feature may also 
cover the mechanisms of these chemicals.

After estimating the prediction performances of all the 
166 phenotypic features using a ten-fold cross-validation 
procedure (“Materials and methods” and Supplementary 
Material 3), we found that most of the top performing fea-
tures were related to DNA or γH2AX phenotypes, and less to 
cellular morphology or actin phenotypes (Fig. 3b). Specifi-
cally, the best feature of BEAS2B cells was “spatial cross 
correlation of cellular DNA and γH2AX intensities” (F2), 

which in combination with F1, gave 88.8% balanced accu-
racy, 84.6% sensitivity, and 93.0% specificity, while the best 
feature of A549 cells was “correlation coefficient of cellular 
DNA and γH2AX intensities”, which in combination with 
cell count, gave 82.4% balanced accuracy, 75.4% sensitiv-
ity, and 89.5% specificity (Fig. 3b). These two features are 
closely related to each other. Spatial cross correlation meas-
ures the similarity between the DNA and γH2AX staining 
patterns allowing possible spatial displacements between the 
two patterns; whereas correlation coefficient measures the 
degree of agreement or disagreement between the two pat-
terns at the same subcellular locations (see “Materials and 
methods” for their definitions). The results suggest that, in 
BEAS-2B cells, activated γH2AX was mostly found at the 
vicinity of the DNA regions, whereas in A549 cells, it was 
mostly found at the DNA regions. We also compared the 
performance of different multi-feature sets automatically 
selected using a recursive feature elimination algorithm (Su 
et al. 2016), and found that inclusions of additional phe-
notypic features did not further increase the classification 
accuracy (Supplementary Material 1—Fig. S5). Thus, the 
best BEAS-2B features (F1 and F2) provide the highest accu-
racy and contain most of the discriminative information in 
our data sets.

The best BEAS-2B feature (F2) has both higher sensitiv-
ity and specificity than the best A549 feature. We compared 
the concentration–response curves based on these two fea-
tures, and found that most of the pulmonotoxic chemicals 
(e.g., aristolochic acid I, bleomycin, diacetyl, and tenofovir) 
are more potent, while most of the non-pulmonotoxic chemi-
cals (e.g., BHT, bicalutamide, and d-sorbitol) are less potent 
under the best BEAS-2B feature (Fig. 3c). Interestingly, the 
best features from both cell lines provided the same correct 
or incorrect predictions for most of the reference chemicals 
(Supplementary Material 1—Fig. S6). For example, both 
features failed to correctly predict the pulmonotoxicity or 
non-pulmonotoxicity of 2,4′-DDT, cyclophosphamide, and 
methotrexate. Only two chemicals, namely, nickel sulfate 
and BHT, were correctly predicted by the BEAS-2B fea-
ture, but not by the A549 feature. No chemical was cor-
rectly predicted only by the A549 feature (Supplementary 
Material 1—Fig. S6). These results suggest that pulmono-
toxic chemicals may injure both cell lines, likely via the 
same mechanisms, but BEAS-2B cells have more sensitive 
and specific γH2AX responses than A549 cells. Therefore, 
BEAS-2B cells is a more preferable in vitro cell model for 
pulmonotoxicity prediction.

In BEAS-2B cells, there were five NC-causing 
chemicals, namely, 2,4′-DDT, amiodarone, bleomycin, 
cadmium(II) chloride, and temsirolimus (Fig. 2b). These 
chemicals were predicted to be “positive” without fur-
ther evaluation of their phenotypic responses (Fig. 3a). 
We wondered if these chemicals also induced similar 

Fig. 3   BEAS-2B cell count and co-localization of γH2AX and DNA 
are highly predictive of pulmonotoxicity. a Schematic showing a 
cascade classifier that uses, in succession, the cell count (F1) and a 
selected phenotypic feature (F2) at 16 h to classify pulmonotoxic and 
non-pulmonotoxic reference chemicals. b Bar charts showing the test 
balanced accuracies, sensitivities, and specificities of the top 10 phe-
notypic features estimated using the cascade classifier and a tenfold 
cross-validation procedure (“Materials and methods”). The feature 
with the highest estimated test balanced accuracy is the “spatial cross 
correlation of cellular DNA and γH2AX intensities in BEAS-2B 
cells” (F2). c Concentration–response curves of the reference chemi-
cals (red = pulmonotoxic, and blue = non-pulmonotoxic) based on the 
best performing BEAS-2B (top) and A549 (bottom) phenotypic fea-
tures (BHT = butylated hydroxytoluene). d Concentration–response 
curves of the test chemicals (green) based on F1 (bottom) and F2 (top) 
of BEAS-2B cells. A final assay based on F1 and F2 was trained on 
all the reference chemicals and applied to these test chemicals (solid 
lines = predicted to be positive, dashed lines = predicted to be nega-
tive by the final assay). (Color figure online)
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phenotypic responses as other pulmonotoxic chemicals. 
What were their F2 values at the highest tested concen-
trations before the induction of significant cell lost? We 
found that there were > 10% of BEAS-2B cells left after 
the cells were exposed to up to 31.25  µM 2,4′-DDT, 
31.25 µM amiodarone, 62.5 µM bleomycin, or 500 µM 
temsirolimus. All tested concentrations of cadmium(II) 
chloride caused < 10% cells left, and thus, the chemical 
was not further analyzed. When the F2 values obtained 

under these conditions were compared to the F2 values of 
other chemicals obtained as described earlier, we found 
that 2,4′-DDT, amiodarone, and bleomycin caused sim-
ilarly high increases of F2 as most other pulmonotoxic 
chemicals, but temsirolimus only mildly increased F2 
(Supplementary Material 1—Fig. S7). Therefore, the first 
three chemicals may activate the same molecular pathways 
as other pulmonotoxic chemicals, but at much faster time 
scales. Unlike these three chemicals, temsirolimus may 
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cause pulmonotoxicity through a different but currently 
unknown mechanism.

We decided to build a classifier for our final assay based 
on the changes in cell count (F1) and the best BEAS-2B 
feature (F2), and train the classifier using all the 33 refer-
ence chemicals. Then, the final assay was used to evalu-
ate the 17 test chemicals with unknown or unclear human 
pulmonotoxicity (Fig. 3d and Supplementary Material 
2). Interestingly, the final assay predicted 5 of the 17 test 
chemicals to be positive. They included patulin (a food 
toxin), which caused major cell lost in most of the tested 
concentrations (Fig. 3d, bottom); p-phenylenediamine, 
trans-benzylideneacetone (a favoring agent and fragrance 
additive), and ochratoxin A (a food toxin), which strongly 
activated F2 in the BEAS-2B cells (Fig. 3d, top); and 
1-nitronapthalene (a common air pollutant), which had the 
weakest effect and thus the lowest confidence among the 
five positive predictions (Fig. 3d, top). Eleven of the test 
chemicals were predicted to be negative, including xyla-
zine (a veterinary anesthetic agent and also an abused sub-
stance); thiamethoxam (an agricultural chemical); naph-
thalene and nicotine-derived nitrosamine ketone (NNK); 
3-methylindole, β-myrcene, propyl paraben, diethyl phtha-
late, and dibutyl phthalate (all ingredients of consumer 
products); and 1,1-dichloroethylene and triethylene glycol 
(both industrial chemicals).

Confirmation of DNA strand breaks

What are the MoAs represented by F2 in BEAS-2B cells? 
The feature measures the spatial co-localization of the 
γH2AX and DNA markers (Fig. 4a and Supplementary 
Material 1—Fig. S8). In response to DNA damage, his-
tone H2AX is phosphorylated on Ser139 (i.e., γH2AX) to 
recruit DNA repairing factors to the site of DNA damage 
(Rogakou et al. 1998; Paull et al. 2000). In parallel, tumor 
protein p53 (or “p53”), which plays a main role in activating 
DNA repair proteins, controlling cell cycle, and initiating 
apoptosis, is also being activated (Banin et al. 1998). There-
fore, F2 is likely to represent the activation of this pathway, 
which is also collectively called the DDR pathway (Ciccia 
and Elledge 2010). We found that the mean nuclear γH2AX 
intensity had lower classification accuracy than F2 (78.0 vs. 
88.8%; Fig. 3b), and thus, the feature may not fully represent 
the activation of the DDR pathway (Supplementary Material 
1—Fig. S9). For example, diacetyl induced similar changes 
in mean nuclear γH2AX intensity, but higher changes in F2, 
than most of the non-pulmonotoxic chemicals, while mono-
crotaline was inducing opposite responses in these two fea-
tures (Supplementary Material 1—Fig. S9). The result also 
demonstrates the advantage of using HIPPTox to automati-
cally identify the most predictive phenotypic features.

An increase in F2 may indicate an increase in DNA strand 
breaks (DSBs) (Rogakou et al. 1998). However, there is an 
increasing awareness that other DSB-independent events, 
such as replication stress (Ward and Chen 2001), serum 
starvation (Lu et al. 2008), or even mitosis (McManus and 
Hendzel 2005), may also activate the DDR pathway. To 
confirm if the increase of F2 is due to DSBs, we performed 
single-cell gel electrophoresis (or “Comet”) assays (Singh 
et al. 1988) on ten reference and one test chemicals after 
4 and 16 h of chemical exposure (Fig. 4b and Supplemen-
tary Material 1—Fig. S10). For each replicate, we identi-
fied ~ 300–500 DNA spots from the acquired images, and 
quantified the median percentage (%) of tail DNA for all 
the identified spots (“Materials and methods” and Supple-
mentary Material 1—Table S4). Overall, we found that the 
increase in F2 was positively correlated to the increase in % 
tail DNA (Fig. 4b, c). Bleomycin and p-phenylenediamine 
induced strong DSBs at 4 h (50.8% and 57.0% tail DNA, 
respectively; Supplementary Material 1—Table S4), which 
lead to NC at 16 h. Nitrofurantoin and paraquat had slower 
effects, and only induced strong DNA strand breaks at 16 h 
(20.9 and 47.3% tail DNA, respectively; Supplementary 
Material 1—Table S4).

The rest of the pulmonotoxic reference chemicals show 
either low or no increase of DSBs, but only the effect of dia-
cetyl at 4 h was significantly higher than the controls (FDR-
adjusted P = 0.02; two-sided t test). Although the absolute 
magnitude of the increase was small (only 2.01% tail DNA, 

Fig. 4   Pulmonotoxic chemicals may induce DDR pathway activa-
tions dependent or independent of DNA strand breaks. a Fluores-
cence microscopy images showing the staining patterns of Hoechst 
and anti-γH2AX in single BEAS-2B cells treated with the indicated 
chemicals for 16  h. Cells with raw F2 values (indicated below the 
cells) close to the average raw F2 values across all the cells under the 
same treatment conditions are shown (scale bar = 30  µm). To allow 
visual comparisons, all the shown images have been scaled to the 
same intensity ranges with respect to the solvent controls. b Fluo-
rescence microscopy images showing the DNA spots obtained from 
the Comet assays of BEAS-2B cells treated with the indicated chem-
icals for 4  h. DNA spots with % tail DNA values (indicated below 
the patterns) close to the average % tail DNA values across all the 
spots obtained under the same treatment conditions are shown (scale 
bar = 20  µm). To allow visual comparisons, all the shown images 
have been scaled to the same intensity ranges with respect to the sol-
vent controls. c Changes in the median % tail DNA values obtained 
from the Comet assays of BEAS-2B cells treated with the indi-
cated chemicals or solvent controls for 4 or 16 h (bars = mean of the 
log2-ratio values obtained from at least three independent biological 
replicates, error bars = 95%-tile confidence intervals; X marks = ≤ 5% 
cells left). d Fluorescence microscopy images showing the stain-
ing patterns of Hoechst and anti-phospho-p53 (Ser15) in BEAS-2B 
cells treated with the indicated chemicals for 16 h. e Changes in the 
median nuclear phospho-p53 intensity levels of these cells quanti-
fied from the images with respect to the solvent controls (dots = mean 
of the median values, error bars = 95%-tile confidence intervals.) 
All P values shown in this figure are obtained from two-sided t 
tests and adjusted for false discovery rates (***P-adjusted ≤ 0.01, 
**P-adjusted ≤ 0.05, *P-adjusted ≤ 0.10)
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Supplementary Material 1—Table S4), most of the DNA 
spots under the control conditions were highly circular and 
homogenous (Supplementary Material 1—Fig. S10). For 
example, the standard deviation across all the biological 
replicates of DMSO controls was only 0.243%. Thus, the 
effect of diacetyl was still statistically significant. Interest-
ingly, the DNA strand breaks induced by diacetyl decreased 
after 16 h (Fig. 4c), suggesting that the mild DNA damage 
may had been repaired.

DSB‑independent activation of the DDR pathway

Despite the relatively high induction of F2 by tenofovir, and 
to a lesser extent by carbamazepine, we found that these two 
chemicals caused very low or no increase in DSBs (Fig. 4b, 
c). Do they induce the DDR pathway? We performed 
another immunofluorescent assay to measure the nuclear 
level of phosphorylated p53 at Serine 15 (“p-p53”), which is 
known to be activated under DDR (Banin et al. 1998). Nitro-
furantoin and paraquat were included as positive controls, 
and lithium chloride as a negative control. Interestingly, we 
found that both carbamazepine and tenofovir significantly 
increased the p-p53 level (FDR-adjusted P = 0.0021, and 
0.0001, respectively; two-sided t test; Fig. 4d, e). Therefore, 
the DDR pathway (both γH2AX and p-p53) was activated by 
these two chemicals through DSB-independent mechanisms 
that are yet to be identified.

Our results show that many but not all pulmonotoxic 
chemicals induce mild or severe DSBs. However, F2 is suf-
ficient to detect the effects of pulmonotoxic chemicals that 
cause DSBs or other currently unknown MoAs that activate 
the DDR pathway. Our results also agree with the previous 
observation that γH2AX is activated in lung sections from 
human asthma patients and house-dust-mite-exposed mice 
(Chan et al. 2016). All the results support the hypothesis that 
DDR is a general cellular-stress marker for pulmonotoxicity.

Cell viability is a sensitive but non‑specific marker

Does the induction of F2 eventually lead to cell death? 
How does our pulmonotoxicity assay compare to a 
standard cell-viability assay? We measured the viabil-
ity of BEAS-2B cells treated with the 50 reference and 
test chemicals for 72 h using a standard resazurin assay 
(Fig. 5a). The same timepoint and/or assay were used in 
other previous in vitro studies (Lin and Will 2012; Sison-
Young et al. 2017). We found that pulmonotoxic chemicals 
predicted to be “positive” by our final assay all caused 
cell death after 72 h (Fig. 5a). These chemicals include 
carbamazepine and tenofovir that induced very low or no 
DSBs at 4 and 16 h (Fig. 4c and Supplementary Material 

1—Table S4). Therefore, the results suggest that BEAS-2B 
cells are sensitive to these chemicals, which may induce 
other DSB-independent MoAs. Interestingly, the two pul-
monotoxic chemicals misdetected by our assay, namely, 
methotrexate and cyclophosphamide (Supplementary 
Material 1—Fig. S6 and S9), did not cause major cell 
death even after 72 h (Fig. 5a). Our final assay could not 
capture the effects of these two chemicals, whose effects 
may involve other molecular pathways or response dynam-
ics that are not currently monitored by F1 and F2. Another 
possibility is that the chemicals may require bio-activation 
or other genetic/molecular factors not found in BEAS-2B 
cells or induced by our culturing conditions. This is sup-
ported by the previous findings that cyclophosphamide 
has little in vitro cytotoxic or alkylating activity until it is 
being metabolized, and the metabolism occurs mostly in 
the liver (Hill et al. 1972; Emadi et al. 2009).

We also found that most of the non-pulmontoxic chemi-
cals induced noticeable cell loss (> 50%) at 72 h (Fig. 5a). 
For example, bicalutamide did not induce DNA damage or 
γH2AX activation at 16 h (Figs. 3c, 4c), but caused > 70% 
cell loss at ≥ 125 µM. Other non-pulmonotoxic chemicals, 
such as 2-hydroxypropyl-β-cyclodextrin and ketoconazole, 
also caused > 70% cell loss at concentrations as low as 
125 µM. These results suggest that non-pulmonotoxic 
chemicals are likely to induce non-specific MoAs at longer 
exposure times. Interestingly, monocrotaline only caused 
a small decrease (< 20%) in the number of viable cells, 
despite the increase in mean nuclear γH2AX intensity 
caused by the chemical (Supplementary Material 1—Fig. 
S9), in agreement with our annotation and prediction that 
the chemical is not pulmonotoxic.

We performed a systematic comparison of the perfor-
mances of assays based on either F1 and F2 at 16 h (our 
assay), F1 at 16 h only (an early cell count assay), or cell 
viability at 72 h (a later and more commonly used cell-via-
bility assay) (Fig. 5b). We found that both cell count and 
viability assays could only achieve 60.5 and 77.1% bal-
anced accuracy, 43.1 and 84.6% sensitivity, and 78.0 and 
69.5% specificity, respectively. The results show that cell 
viability is a sensitive but non-specific in vitro marker for 
pulmonotoxicity. Furthermore, the increase in the sensitiv-
ity and the decrease in the specificity of these two assays 
were both positively related to the increase in chemical 
exposure time (Fig. 5b). Therefore, it is very difficult to 
find an optimal timepoint for cell-viability/death assays 
that could yield both maximum sensitivity and specific-
ity. Due to the sensitivity of cell-viability/death assays, 
they may still be used to confirm the “positive” predictions 
made by our imaging-based assay, and determine if cells 
could recover from the toxic effects. However, they should 
not be used alone for pulmonotoxicity assessment.
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Discussion

In conclusion, we have developed an in vitro pulmonotoxic-
ity assay based on F1 and F2 of BEAS-2B cells, which can 
be used to accurately and efficiently evaluate the potential 
pulmonotoxicity of soluble xenobiotics. Importantly, using 
HIPPTox and without making a priori assumptions about 
the MoAs of the reference chemicals, we have found that 
the in vitro lung-cell effects of the reference chemicals can 
be divided into four major sequences of molecular or cel-
lular events (or “pathways”, Fig. 5c). The first two path-
ways are induced by the pulmonotoxic chemicals. “Pathway 
A” rapidly leads to cell death in 16 h or less. Some of the 
chemicals that activate this pathway, such as bleomycin and 
p-phenylenediamine, may induce significant DSBs as early 
as 4 h (Fig. 4c). Other chemicals, such as temsirolimus, 
may cause cell death via a currently unknown but likely 

DDR-independent mechanism (Supplementary Material 
1—Fig. S7). “Pathway B” takes relatively longer times to 
activate DDR (including γH2AX and p53), and then induce 
cell death. Some of the chemicals that activate this path-
way, such as diacetyl, nitrofurantoin and paraquat, may cause 
DSBs; but others, such as carbamazepine and tenofovir, do 
not cause noticeable DSBs (Fig. 4c). The slower dynamics 
of these chemicals may be due to the requirement of their 
bio-activations or other intermediate reactions in the lung 
cells. The DSBs caused by some of these chemicals, such as 
diacetyl, may be mild and “recoverable”, but eventually the 
exposed cells would still die from the insults (Fig. 5a). Many 
of the chemicals that activate these two pathways, includ-
ing carbamazepine, diacetyl, nitrofurantoin, p-phenylenedi-
amine, and tenofovir are not previously known to activate 
DDR in the lung cells. Further studies are required to deter-
mine if the observed phenomena are direct or indirect effects 

Fig. 5   Our imaging-based assay is more predictive than cell count or 
viability assays. a Percentages of viable cells with respect to the sol-
vent controls for all the 33 reference chemicals (red = pulmonotoxic, 
blue = non-pulmonotoxic) and 17 test chemicals (green). The values 
were measured using a standard cell-viability assay with BEAS-2B 
cells exposed to the chemicals for 72 h. Our final assay based on F1 
and F2 and trained on all the reference chemicals was applied to all 

the reference and test chemicals (solid lines = predicted to be posi-
tive, dashed lines = predicted to be negative). b Test balanced accu-
racy, sensitivity, and specificity values of the three indicated assays 
in classifying the reference chemicals estimated using a tenfold cross-
validation procedure. c Schematic showing the four major pathways 
activated by our reference and test chemicals. (Color figure online)
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of these chemicals, which may be due to the generation of 
oxidative stress (Chan et al. 2016). Indirect DDR activations 
may also be facilitated by the binding to nuclear receptors or 
transcription factors, such as the aryl hydrocarbon receptor 
(AhR), that may shuttle reactive chemicals or their metabo-
lites from the cytoplasm into the nucleus (Park et al. 2009). 
DDR activation is commonly used as a marker for genotox-
icity; but in agreement with other previous reports (Chan 
et al. 2016, Su et al. 2016), our results suggest that it may 
also be a cellular-stress marker, and activated by chemicals 
that do not necessary or directly cause DNA damages.

The other two pathways are induced by the non-pulmono-
toxic chemicals (Fig. 5c). “Pathway C” can cause cell death 
without activating the DDR pathway, and is activated, for 
example, by bicalutamide (Figs. 2b, 4c, 5a). The effects of 
the chemicals that activate this pathway are usually posi-
tively correlated with the chemical exposure times or con-
centrations. However, some of them, such as ciprofloxacin 
and nystatin at 500 µM, caused noticeable reduction in cell 
count (to ~ 30.9 and 0% relative to solvent controls, respec-
tively) as early as 16 h. The existence of this pathway is 
a major reason for the low specificity of a cell-viability 
assay. “Pathway D” do not cause major cell death, even 
when activated by chemicals at the highest tested concen-
trations and timepoints. Monocrotaline and lithium chloride 
are two examples of chemicals that activate this pathway 
(Fig. 5a, middle). The lack of cell death effects does not 
necessary imply null cellular effects. For example, we found 
that monocrotaline-induced dramatic changes in the actin 
cytoskeleton and increase of mean nuclear γH2AX level in 
BEAS-2B cells (Fig. 2d and Supplementary Material 1—
Fig. S9). The inclusion of chemicals that can activate Path-
ways C and D as negative reference chemicals during the 
development of in vitro toxicity assay was critical to ensure 
that specific phenotypic endpoints were being identified and 
used for the final assay. In many potential applications of our 
assay, such as screening of chemical candidates during drug 
or other chemical product developments, assays with higher 
specificity are more desirable to ensure that candidates with 
desired efficacy or other beneficial properties are not being 
removed early on the process.

The adverse outcome pathway (AOP) is a toxicology 
knowledge framework for chemical risk assessment based 
on mechanistic reasoning (Ankley et al. 2010). At the time 
of preparing this report, there was no approved AOP for 
any lung adverse effect. Five AOPs were proposed or under 
development for lung fibrosis or irritation (Supplementary 
Material 1—Table S5). While cellular inflammation was 
proposed to be a key event in many of these proposed lung 
AOPs, none of them included oxidative-stress or DNA-
damage responses as key events. However, the interplay 
between oxidative-stress response and inflammation is 
known to play an important role in the pathogenesis of many 

xenobiotic-induced lung diseases (Tuder and Petrache 2012). 
For example, cigarette smoke-induced oxidative stress 
may induce a protein called “Regulated in Development 
and DNA-damage-responses 1” (Redd1/Rtp801), which 
is required and sufficient to activate the nuclear factor-κB 
(NF-κB) signaling pathway in lung cells (Yoshida et al. 
2010). Increase in the γH2AX level was also found in the 
lung lysates of human asthma patients and house-dust-mite-
exposed mice (Chan et al. 2016). Together with our results, 
all of these findings suggest that oxidative-stress or DNA-
damage responses may be a key event, either upstream or 
downstream of cellular inflammation, in the AOPs for lung 
adverse effects.

Currently, our assay may be used to predict the potential 
pulmonary hazards of soluble chemicals. Measurements or 
modeling of the exposure and bioavailability of the predicted 
“positive” chemicals in the lungs are still required to fully 
assess the safety and risk of these chemicals. The toxicoki-
netics of these chemicals may be estimated, for example, 
using the High-throughput Toxicokinetics (HTTK) tools 
developed by the US Environmental Protection Agency 
(Wetmore et al. 2015). Furthermore, our assay currently 
does not cover vaporized or particulate compounds, which 
are two other major sources of potentially pulmonotoxic 
chemicals. However, HIPPTox is a general approach and 
can be applied to other more complex in vitro lung models 
that can better mimic the exposures and uptakes of these 
types of chemical compounds. HIPPTox can also be applied 
to other non-lung-originated cell types, or even non-imaging 
molecular or phenotypic profiling methods, such as RNA 
sequencing or mass spectrometry. It is a general and power-
ful approach that can greatly accelerate the development of 
predictive alternative assays.

Materials and methods

Chemical preparation and quality control

The full list of candidate chemicals and their solvents 
and sources are provided in Supplementary Material 1—
Table S1. All chemicals were prepared either in DMSO or 
in ethanol at a stock concentration of 400 mM, or in water 
at a stock concentration of 20 mM. Four of these chemi-
cals, namely, aristolochic acid I, bleomycin, nystatin, and 
tenofovir, were found to yield highly viscous suspensions 
in DMSO, which made them difficult to be transferred by 
pipetting. To overcome this, we further diluted these four 
chemicals to a stock concentration of 200 mM. Therefore, 
in the final experiments, the highest test concentration for all 
chemicals is 2 mM, except for these four chemicals, 1 mM.

To evaluate the suitability of the candidate chemicals 
for our imaging assay, we performed three different sets 
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of chemical quality-control (QC) experiments. First, we 
checked the solubility of all the 60 chemicals by dilut-
ing them in bronchial epithelium cell growth medium 
(BEGM; #CC-3170; Lonza, Basel, Switzerland) down 
to 1 or 2 mM (see above). The chemicals that were not 
fully soluble were sonicated for at least 5 min and left to 
stand for ~ 15 min. After which, chemicals that yielded 
clear solutions with undissolved compounds settling 
down at the bottom of the sample vials were considered 
to be “insoluble”. They include barium sulfate, ferro-
cene, gallium(III) oxide, and iron(III) oxide. Second, we 
checked the autofluorescence of the chemicals. Please 
refer to the following section on “Autofluorescence 
assay and analysis” for more detailed information. Four 
candidate chemicals were found to have unacceptably 
high autofluorescence levels, namely, benzo[α]pyrene, 
manganese(II) acetate, manganese(II) chloride, and van-
comycin hydrochloride (Supplementary Material 1—Fig. 
S1). Finally, we also visually inspected the fluorescence 
microscopy images of cells treated with these chemicals 
for obvious imaging artifacts, such as the formation of 
highly fluorescent objects/speckles at the background 
(i.e., non-cellular regions), which may be due to the bind-
ing of the chemicals to the coating materials or the assay 
plates. Two candidate chemicals, namely, cotinine, and 
3,3′,5-triiodo-l-thyronine, were removed. In summary, 
we found a total of 50 candidate chemicals that pass all 
the chemical QC checks and are suitable for our imaging 
assays (Supplementary Material 1—Table S1).

Pulmonotoxicity annotations

For 33 of the candidate chemicals, we could obtain pub-
lished human information from expert reviews/reports, 
clinical studies, post-marketing safety surveillance, poi-
soning-incident, reports, and/or epidemiological studies. 
The following databases were used to search for these 
publications: Agency for Toxic Substances and Disease 
Registry (ATSDR, https​://www.atsdr​.cdc.gov), Centres 
for Disease Control and Protection National Biomonitor-
ing Programme (https​://www.cdc.gov/biomo​nitor​ing), US 
National Library of Medicine (NLM)’s DailyMed (https​
://daily​med.nlm.nih.gov/daily​med), National Toxicology 
Program Technical Report (https​://ntp.niehs​.nih.gov), and 
US NLM Hazardous Substances Data Substances Data 
Bank (https​://toxne​t.nlm.nih.gov/newto​xnet/hsdb.htm). 
For pharmaceuticals with safety surveillance data, we 
only assigned them to the “pulmonotoxic” class if their 
adverse pulmonary effects were found in > 1% of patients. 
Detail descriptions and references that we used to assign 
the annotations are provided in Supplementary Material 
1—Table S2.

Cell culture

We expanded BEAS-2B and A549 cells (#CRL-9609 and 
#CCL-185, respectively; ATCC, Manassas, USA) from 
frozen stocks for at least two passages before using them 
for our experiments. We maintained BEAS-2B cells in 
BEGM (#CC-3170; Lonza, Basel, Switzerland), which 
was pre-supplemented with bovine pituitary extract, hydro-
cortisone, human epidermal growth factor, epinephrine, 
transferrin, insulin, retinoic acid, and triiodothyronine, 
as recommended by the manufacturer, and 1% penicil-
lin/streptavidin (#15140122; Gibco, Waltham, USA). We 
maintained A549 cells in Roswell Park Memorial Institute 
(RPMI; #11875119; Gibco, Waltham, USA) supplemented 
with 10% fetal bovine serum (#SV30160; Hyclone, Logan, 
USA) and 1% penicillin/streptavidin. All cells were main-
tained at 37 °C and 5% CO2. All the BEAS-2B cell culture 
flasks were pre-coated with a coating medium, consisting of 
bronchial epithelium cell basal medium (BEBM; #CC-3171; 
Lonza, Basel, Switzerland), 0.01 mg/mL human fibronectin 
(#29011; Santa Cruz Biotechnology, Dallas, USA), 0.01 mg/
mL bovine serum albumin (#7906; Sigma Aldrich, St. Louis, 
USA) and 0.03 mg/mL calf skin collagen type I (#8919; 
Sigma Aldrich, St. Louis, USA) for 60 h at 37 °C, which was 
removed before cell seeding. We also randomly performed 
mycoplasma tests on both cell lines throughout the course 
of our study using a PCR-based mycoplasma detection kit 
(#20-700-20; Biological Industries, Cromwell, USA), and 
found no mycoplasma contamination.

Chemical exposure

We seeded the cells into black 384-well glass-bottom plates 
(#164586; NUNC, Waltham, USA) at 3 × 103 cells/well 
using an automated liquid dispenser (Multidrop Combi 
reagent dispenser; Thermo Fisher Scientific, Vantaa, Fin-
land). For BEAS-2B cells, the plates were pre-coated with 
BEBM coating media containing additional 5 µg/mL human 
fibronectin. For A549 cells, the plates were pre-coated with 
2 µg/mL human fibronectin in sterile phosphate-buffered 
saline (PBS). All plates were coated for 60 h at 37 °C, and 
the coating medium was removed before cell seeding. After 
allowing the cells to grow on the plates for 48 h, we treated 
them with the reference chemicals at 2000, 1000, 500, 250, 
125, 62.5, and 31.3 µM; and for aristolochic acid I, bleomy-
cin, nystatin, and tenofovir, at 1000, 500, 250, 125, 62.5, 
31.3, and 15.7 µM (see “Chemical preparation and quality 
control”). In every assay plate, wells with cells treated with 
10 µM doxorubicin (positive control for the γH2AX anti-
body), 0.5% DMSO, 0.5% ethanol, or 10% water (all solvent 
controls) were also included. Four technical replicates were 
performed for each tested chemical and concentration.

https://www.atsdr.cdc.gov
https://www.cdc.gov/biomonitoring
https://dailymed.nlm.nih.gov/dailymed
https://dailymed.nlm.nih.gov/dailymed
https://ntp.niehs.nih.gov
https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm
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Fluorescent marker staining

After 16 h of chemical exposure, we fixed the cells with 4% 
paraformaldehyde (#28906; Pierce, Waltham, USA) in PBS. 
The cells were permeabilized with TBS-T, which consist of 
tris-buffered saline (TBS) with 0.1% triton X-100 (#H5142; 
Promega, Madison, USA). This was followed by 1 h block-
ing with 20% bovine serum albumin (#A7906; Sigma, St. 
Louis, USA) in TBS-T. We then incubated the cells with 
1:500 rabbit monoclonal antibody to γH2AX (Ser139) 
(#9718; Cell Signaling Technology, Danvers, USA) over-
night at 4 °C, and blocked the cells using the same blocking 
buffer for 15 min. For cells exposed to the chemicals that 
passed the green channel autofluorescence test (see “Auto-
fluorescence assay and analysis”), they were incubated with 
1:500 goat anti-rabbit secondary antibody conjugated to 
Alexa Fluor 488 (#A11034; Invitrogen, Waltham, USA), and 
2.5 µg/mL deep red Whole Cell Stain (#H32721; Molecular 
Probes, Waltham, USA). For cells exposed to the chemi-
cals that failed the green channel autofluorescence test, but 
passed the far-red autofluorescence channel test, they were 
incubated with 1:500 goat anti-rabbit secondary antibody 
conjugated to Alexa 647 (#A21245; Invitrogen, Waltham, 
USA), and 2.5 µg/mL green Whole Cell Stain (H32714; 
Molecular Probes, Waltham, USA). All secondary antibody 
incubations were performed at room temperature for 1.5 h in 
the dark. Lastly, we stained the cells with 0.3 µg/mL nucleic 
acid stain (#H1399; Molecular Probes, Waltham, USA), and 
1:500 fluorescently labeled phalloidin (#13054; Cell Sign-
aling Technology, Danvers, USA) for 15 min at room tem-
perature, followed by washing the cells with TBS before 
imaging. For the p53 imaging assay, similar cell staining 
procedures were performed, except that we stained the cells 
with 1:400 mouse anti-phospho-p53 (Ser15) primary anti-
body (#9286, Cell Signaling Technology, Danvers, USA) 
and 1:500 goat anti-mouse secondary antibody conjugated 
to Alexa 488 (#A21121; Invitrogen, Waltham, USA).

High‑throughput imaging

We imaged the plates automatically using an inverted fluo-
rescence microscope (Axio Observer Z1; Zeiss, Oberkochen, 
Germany) equipped with a 20× objective (0.8 NA), a laser 
auto-focus system (Definite Focus; Zeiss, Oberkochen, Ger-
many), and a scientific charge-coupled-device (CCD) camera 
(CoolSNAP HQ2; Photometrics, Tuscon, USA). We imaged 
four fluorescence channels: Ex: 365/Em: 465 nm (the “blue 
channel”; Zeiss filter set 49), Ex: 470/Em: 525 nm (the 
“green channel”; Zeiss filter set 38), Ex: 545/Em: 605 nm 
(the “red channel”; Zeiss filter set 43) and Ex: 628/Em: 
692 nm (the “far-red channel”; Semrock Cy5-4040B). The 
exposure times were ~ 30–50 ms (the blue channel), ~ 1–3 s 
(the green channel), 500 ms (the red channel), and ~ 1–3 s 

(the far-red channel). Within each well, four images at differ-
ent locations were acquired and saved in 16-bit TIFF format.

Image processing and analysis

All images were corrected using the “rolling ball” algorithm 
implemented in ImageJ (v1.51j8; NIH, USA). Cell segmen-
tation and feature measurements were performed using the 
cellXpress software (v1.4.3; Bioinformatics Institute, Singa-
pore) (Laksameethanasan et al. 2013). We extracted 65 tex-
ture features, 36 intensity features, 29 intensity ratio features, 
18 correlation features, 17 morphology features, and cell 
count from the images. The detail list of features and their 
markers is shown in Supplementary Material 1—Table S3. 
The definition of the texture features can be found in our 
previous report (Su et al. 2016). The mathematical defini-
tions of spatial cross correlation and correlation coefficient 
(TM_CCORR_NORMED and TM_CCOEFF_NORMED, 
respectively) can be found in the online documentation of 
OpenCV Library (https​://docs.openc​v.org), in which the 
cellXpress software is based on.

Autofluorescence assay and analysis

We treated BEAS-2B cells with the chemicals at 2 mM 
(except for BHT, 3-methylindole, ochratoxin A at 500 µM; 
p-phenylenediamine at 250 µM; β-myrcene and aristolochic 
acid I at 125 µM; and amiodarone, bleomycin, cadmium 
chloride, and patulin at 15.7 µM) for 16 h. These lower con-
centrations were used, because the associated chemicals 
caused noticeable cell lost at higher concentrations. The cells 
were fixed and permeabilized as described above, stained 
with 0.3 µg/mL nucleic acid stain for 5 min in the dark, 
and finally washed with TBS before imaging. We imaged 
the cells as described above, except that the exposure times 
were set at 5000 ms for the green, red, and far-red channels. 
Since the cells were not stained in these three channels, the 
signals detected in these channels were likely due to the 
autofluorescence of the cells and/or the exposed chemicals.

The foreground-to-background fluorescence intensity 
ratios (FBRs) were measured using the cellXpress soft-
ware, which automatically identified the foreground (cel-
lular) and background (non-cellular) regions from each 
acquired image based on the nucleic acid stains. Then, we 
measured the 99.9%-tile and 50%-tile intensity values of 
all the foreground and background pixels, respectively. The 
log2-ratio of these two quantities is called the FBRs. For 
each chemical and fluorescence channel, the median FBR 
value across four replicates was determined, and is shown 
in Supplementary Material 1—Figure S1. To determine the 
maximally acceptable FBRs, we also quantified the FBRs for 
BEAS-2B cells under three positive-control conditions: (a) 
treated with 1 mM tenofovir, stained with Alexa-488-labeled 

https://docs.opencv.org
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anti-γH2AX antibody, and imaged at the green channel for 
2000 ms; (b) treated with 0.5% DMSO, stained with phal-
loidin, and imaged at the red channel for 500 ms; or (c) 
treated with 1 mM aristolochic acid I, stained with Alexa-
647-labeled anti-γH2AX antibody, and imaged at the far-red 
channel for 4000 ms. We chose the maximally acceptable 
autofluorescence FBRs to be 1/3 of the FBR values obtained 
for these three conditions (shown as red lines in Supple-
mentary Material 1—Figure S1). Based on these results, we 
determined the fluorescent dyes that can be used to stain the 
cells (see “Fluorescent marker staining”).

Cell‑viability assay and analysis

We seeded BEAS-2B cells into black 384-well optical bot-
tom plates (#3712; Corning, Corning, USA) at 4 × 102 cells/
well using an automated liquid dispenser. Plates were pre-
coated with BEBM coating media for at least 60 h at 37 °C. 
After 48 h, we treated the cells with the 50 reference and test 
chemicals at the same concentrations as the imaging assay. 
Wells with no cell (positive controls for complete cell death) 
or BEAS-2B cells treated with 0.5% DMSO, 0.5% ethanol, 
or 10% water (solvent controls) were also included in each 
plate. At 1 h before measurement, we incubated the cells 
with 1.3 mg/mL of resazurin sodium salt (#14322; Cayman 
Chemical, Ann Arbor, USA) in sterile PBS at 37 °C and in 
the dark. Then, we measured the fluorescence signal using a 
fluorescent plate reader at Ex: 540/ Em: 590 nm.

For the cell-viability assay, we performed five techni-
cal replicates per chemical, and used a more stringent assay 
QC procedure. First, for each plate, we determined the mean 
background level from the positive control wells without cell, 
and subtracted this background level from the measurements 
from all other wells in the same plate. Then, for each chemical, 
we checked the coefficient of variation (CoV) of the solvent-
control wells associated with the chemical. If the CoV was 
> 30%, we identified the wells that contributed to the most 
to the CoV, and discarded either one or two wells until the 
CoV became < 30%. Then, the median of the remaining con-
trol wells was taken as the average control cell-viability value. 
The same QC procedure was repeated for the treatment wells 
for the chemical at each treatment concentration. However, we 
allowed the remaining treated wells for the chemical to have 
CoV > 30% if their median cell-viability value was less than 
20% of the median cell-viability value from the correspond-
ing solvent-control wells. The rationale is that the cell death 
response to a pulmonotoxic chemical may be highly heteroge-
neous. For each chemical, we allowed at most one QC-failing 
concentration. If we could not find at least six concentrations 
(or data points) for the chemical, we would completely discard 
the collected data and perform new experiments for the chemi-
cal. Out of the 50 chemicals, only dibutyl phthalate required 
such an experimental repeat.

Concentration–response‑curve estimation 
and selection

To evaluate the change in a phenotypic feature or cell viabil-
ity induced by a chemical at concentration x , Δ(x) , we first 
computed the baseline response r̃(0) , which is taken as the 
median across all the responses from the solvent-control wells 
associated with the chemical. Then, Δ(x) = log2(r̃(x)∕ r̃(0)) , 
where r̃(x) is the median response of the feature across all 
the cells in wells treated the chemical in concentration x . The 
measured Δ(x) values were used to build continuum models for 
the phenotypic feature as functions of the chemical concentra-
tions. For all phenotypic features, except for cell count and cell 
viability, these models are

where � , � , � , �′ , �′ , and � ′ are all parameters estimated by 
least-square-error minimization of the models to the meas-
ured Δ(x) values. We used the “drc” library (v3.0-1) under 
the R environment (v.3.4.1; The R Foundation, Vienna, Aus-
tria) to fit each of the models. In qualitative terms, Model 1 
represents a log-logistic sigmoidal concentration–response 
curve where increasing concentration of an applied chemical 
increases the value of the phenotypic feature relative to the 
controls; Model 2 represents a similar curve decreasing the 
value of the phenotypic feature relative to the controls; and 
Model 3 is the null model, where application of the chemi-
cal within the tested concentration levels does not alter the 
value of the phenotypic feature relative to the controls. We 
modeled cell count and cell-viability data slightly differ-
ently, in that Δ(x) for these features was not log2-transformed 
prior to curve-fitting, Model 1 was not used, and Model 3 
was replaced with Δmodel(x) = ��� , which is a vertical linear 
model with a y-intercept of �′′.

We evaluated the relative quality of the models by comput-
ing their Akaike information criteria (AIC) (Akaike 1974):

where D is the number of degrees of freedom in a model, �k 
is the residual error for data point k , and m is the number of 
data points (or tested concentrations). After determining the 
best model using the AIC, we estimated maximum response 
values, Δmax , for each feature and compound from their 
selected concentration–response models. In our study, Δmax 
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are equal to the normalized responses estimated at 2000 µM, 
this being equal to the highest sampled experimental concen-
tration. The final result was a 166 (features) × 50 (chemicals) 
matrix of Δmax values (Supplementary Material 2), which 
were used for training and testing the classifiers.

Supervised classification and performance 
estimation

We used the linear SVM (Ben-Hur et al. 2008) to predict 
xenobiotic-induced pulmonary toxicity, and a stratified ten-
fold cross-validation procedure (Su et al. 2016) to estimate 
the prediction performance of our phenotypic features. A 
linear SVM has a key parameter, C , which controls the 
cost of misclassification on the training data. During each 
fold of the cross validation, we automatically determine 
the optimum classifier parameter using a grid search for 
C =

{

100, 101, 102, 103, 104, 105
}

 . Before data classifica-
tion, each feature was normalized to the same range [− 1, 
1]. As described previously (Su et al. 2016), to ensure the 
training and test data sets were independent to each other, 
the feature normalization coefficients and classifier param-
eter were always estimated based on the training data sets 
only, but applied to both training and test data sets. We used 
the LiblineaR() function in the “LiblineaR” library (v2.10-
8) under the R environment, and set the bias parameter of 
the function to 1.

Comet assay

We used an alkali Comet assay to quantify the extent of 
DNA strand breaks (DSBs) (Singh et al. 1988). We seeded 
BEAS-2B cells into 6-well plates (#3506; Costar™, Corn-
ing, New York, USA) at ~ 80–100 × 103 cells/well. The 
plates were pre-coated with BEBM coating media for 60 h 
at 37 °C. After 48 h, we treated the cells with either 2 mM 
paraquat, 2 mM nitrofurantoin, 2 mM carbamazepine, 2 mM 
lithium chloride, 1 mM tenofovir, 0.5% DMSO, 10% water 
(both solvent controls), or 0.1% hydrogen peroxide (posi-
tive control). The cells were harvested 4 or 16 h after the 
chemical exposure (except for hydrogen peroxide, which was 
applied to the cells for only 15 min) using trypsin EDTA 
(#L11-003; PAA, Pasching, Austria) in cold sterile PBS. The 
cell suspension was adjusted to a density of ~ 150 × 103 cells/
mL, and mixed homogenously in a ratio of 1:5 with 1% low-
melting-point agarose gel (#16520100; Invitrogen, Waltham, 
USA) in distilled water maintained in a 40 °C water bath. 
Then, we pipetted a thin layer of cell suspension onto a gel 
bond film (#53759; Lonza, Basel, Switzerland), and left the 
cell-suspension-agarose slides to set for 15 min at room tem-
perature. We lysed the cells for 2–3 h at 4 °C in a freshly 
prepared lysis buffer containing 1.2 M sodium chloride 
(#37144; Kanto Chemical, Tokyo, Japan), 100 mM EDTA 

disodium salt (#H5032; Promega, Madison, USA), and 0.1% 
N-lauroylsarcosine sodium salt (#61747; Sigma Aldrich, St. 
Louis, USA) in distilled water, with pH adjusted to 13. After 
which, the slides were rinsed with an electrophoresis buffer 
containing 2 mM EDTA disodium salt in distilled water, 
with pH adjusted to 12.3. We then performed gel electro-
phoresis with the electrophoresis buffer for 25 min at a volt-
age of 0.6 V/cm, followed by neutralization with distilled 
water for 10 min. The slides were stained for 20 min with 
1:2500 nucleic acid gel stain (SYBR Gold, #S11494; Inv-
itrogen, Waltham, USA) and washed with distilled water 
before imaging. We used the same imaging procedures as 
described above to image at least 30 random locations within 
each slide, and obtained several hundred DNA spots from 
the images. For each chemical, we performed at least three 
biological replicates using different batches of cells.

Quantification of DNA strand breaks

The images obtained from the Comet assays were first pre-
processed to facilitate automated detection and quantifica-
tion of DNA spots. We scripted a macro in Fiji (http://image​
j.net/Fiji/Downl​oads) (Schindelin et al. 2012) to accomplish 
this task. First, we removed bright speckles in the images 
with a 3 × 3 median filter (the “Despeckle” command in 
Fiji), and smoothed the resulting images with a Gaussian 
blur filter (Gaussian Blur 3D plugin in Fiji) with the param-
eters: x = 5, y = 5, z = 0. Then, we applied a Laplacian-of-
Gaussian (LoG) filter (Sage et al. 2005) with the parameters: 
�x = 35, �y = 35, �z = 0. The response of the LoG filter 
is high on the stained DNA spots, but low on background 
regions with high intensity values, which usually correspond 
to imaging artifacts. To isolate all the DNA spots from the 
original images, we binarized the resulting response images 
with an automatic thresholding algorithm. These pre-pro-
cessing and background subtraction steps helped us to mini-
mize interference from the uneven backgrounds.

We detected and quantified the DNA spots on the pre-
processed images using the OpenComet software (v1.3.1, 
http://www.comet​bio.org) (Gyori et al. 2014). The software 
automatically detects DNA spots by exploiting shape infor-
mation, such as the expected convex shape and symmetric-
ity of a comet (Gyori et al. 2014). It further analyzes an 
arbitrary intensity profile along the horizontal axis of the 
detected DNA spots, and marks the position of the larg-
est intensity change as the demarcation between the head 
and tail of a comet. After the automated detection, we 
manually inspected the results, and removed misdetected 
DNA spots, such as neighboring spots with big tails that 
were wrongly merged together, irregular sized and shaped 
debris from the background, or out-of-focus DNA spots. 
We removed around ~ 10–20% of the identified DNA spots, 

http://imagej.net/Fiji/Downloads
http://imagej.net/Fiji/Downloads
http://www.cometbio.org
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and obtained ~ 400–500 usable spots for each treatment 
condition.

The OpenComet software can quantify the continuous 
distributions of different comet parameters, which are more 
informative and systematic than visual scoring (Kumara-
vel et al. 2009). Specifically, we chose to use the percent-
age (%) of tail DNA as a readout for DSBs. This parameter 
measures the percentage of total DNA intensity in the tail 
region compared to the total intensity of the entire DNA 
spot (Møller et al. 2014). For each treatment condition, we 
took the median of % tail DNA values obtained from all the 
DNA spots. Three or more biological replicates (on different 
batches of cells) were performed for each treatment condi-
tion, resulting in a total of 74 Comet assays. By inspect-
ing the distributions of % tail DNA of all the replicates, we 
identified and removed 5 clear outliers from the 74 experi-
ments. Finally, for each treatment condition, we determined 
the mean of the median % tail DNA values from all the 
remaining replicates (Supplementary Material 1—Table S4).

Multi‑dimensional scaling plot

To compare the compounds in the chemical structure space, 
we used the ChemmineR library (v2.30.0) to compute the 
pairwise Tanimoto coefficients between the structures of all 
the reference compounds. To compare the compounds in the 
phenotypic feature space, we first scaled all the phenotypic 
features to the same range [0, 1], and then computed the 
pairwise Euclidean distances between the feature values of 
all the reference compounds. Finally, we used the cmdscale() 
function in the R environment to generate the multi-dimen-
sional scaling plots.

Statistical analysis

The log2-ratio between the mean response of a set 
treated replicates and the mean response of a set of con-
trol replicates is equivalent to the difference between 
the respective values after log2 transformation: 
Δ(x) = log2(r(x)∕ r(0)) = log2(r(x)) − log2(r(0))  .  T h u s , 
under the null hypothesis, Δ(x) = 0 ; and the statistical sig-
nificance of the change, including its P value and 95% confi-
dence interval, can be estimated using a standard two-sample 
t test on the log2-transformed data. To correct for multiple 
hypothesis testing, all the P values from the same experi-
ment were corrected for false discovery rate using the Ben-
jamini and Hochberg procedure (Benjamini and Hochberg 
1995). We used the t.test() and p.adjust() functions in the R 
environment to perform the analysis.
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