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SUMMARY

Zinc finger protein ZFP24, formerly known as ZFP191, is essential for oligodendrocyte 

maturation and CNS myelination. Nevertheless, the mechanism by which ZFP24 controls these 

processes is unknown. We demonstrate that ZFP24 binds to a consensus DNA sequence in 

proximity to genes important for oligodendrocyte differentiation and CNS myelination, and we 

show that this binding enhances target gene expression. We also demonstrate that ZFP24 DNA 

binding is controlled by phosphorylation. Phosphorylated ZFP24, which does not bind DNA, is the 

predominant form in oligodendrocyte progenitor cells. As these cells mature into 

oligodendrocytes, the non-phosphorylated, DNA-binding form accumulates. Interestingly, ZFP24 

displays overlapping genomic binding sites with the transcription factors MYRF, SOX10, and 

OLIG2, which are known to control oligodendrocyte differentiation. Our findings provide a 

mechanism by which dephosphorylation of ZFP24 mediates its binding to regulatory regions of 

genes important for oligodendrocyte maturation, controls their expression, and thereby regulates 

oligodendrocyte differentiation and CNS myelination.

In Brief

Elbaz et al. describe a mechanism by which dephosphorylation of the zinc finger protein ZFP24 

mediates its binding to the regulatory regions of genes important for oligodendrocyte maturation, 
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controls their expression, and thereby regulates oligodendrocyte differentiation and CNS 

myelination.

INTRODUCTION

Myelin, which is produced by oligodendrocytes in the CNS, is a multilayer lipid membrane 

structure that ensheathes and insulates axons, allowing the efficient propagation of action 

potentials (Simons and Nave, 2015). Myelination begins before birth in humans and is 

mainly completed by early adulthood. During development, a majority of oligodendrocyte 

progenitor cells (OPCs) originate in the ventricular zone and migrate along vasculature to 

their target axons (Tsai et al., 2016). There, they terminally differentiate to mature 

oligodendrocytes, express myelin-related genes, produce myelin, and provide metabolic 

support to the axons (Simons and Nave, 2015).

Oligodendrocytes differentiation is under tight transcriptional control (Mitew et al., 2014). 

Several regulatory factors have been shown to participate in the differentiation of OPCs into 

mature, myelinating oligodendrocytes. NKX2.2, for example, is required for the generation 

of post-mitotic oligodendrocytes (Qi et al., 2001). Transient downregulation of Nkx2.2 
prompts oligodendrocytes to re-express Nkx6.2, which in turn promotes myelination (Cai et 

al., 2010). OLIG1 is expressed along the lineage of oligodendrocytes and is important at the 

onset of myelination (Dai et al., 2015; Xin et al., 2005). OLIG2 promotes differentiation of 

oligodendrocytes by recruiting the chromatin-remodeling enzyme BRG1 to regulatory 

elements of key genes during differentiation (Yu et al., 2013). SOX10 is also required for the 

maturation of oligodendrocytes and is a direct activator of several myelin genes (Li et al., 

2007), including the transcription factor MYRF (Hornig et al., 2013). Following its 

induction, MYRF mediates the progression of premyelinating oligodendrocytes to a mature, 

myelinating state (Emery et al., 2009). Although MYRF and SOX10 bind many of the same 

myelin gene transcription control regions (Bujalka et al., 2013; Hornig et al., 2013), they 

also appear to be able to bind individual enhancers independently.
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In a mouse forward genetics screen, we discovered that the gene encoding zinc finger 

protein Zfp24 (previously known as Zfp191) is required for oligodendrocyte maturation and 

developmental CNS myelination (Howng et al., 2010). ZFP24 is a Cys2-His2 (C2H2) zinc 

finger protein that contains highly conserved linker domains that intersperse four putative 

DNA-binding zinc finger domains (Mertins et al., 2013, 2016), suggesting that it may act as 

a transcription factor. Here, we sought to identify the molecular mechanism by which ZFP24 

controls CNS myelination.

RESULTS

ZFP24 Binds in Proximity to Genes Involved in Oligodendrocyte Development and 
Function and Mediates Their Expression

To identify ZFP24 target genes in the oligodendrocyte lineage, we performed chromatin 

immunoprecipitation (ChIP) sequencing (ChIP-seq) analysis by immunoprecipitating the 

endogenously expressed ZFP24 and associated chromatin from cultured primary mouse 

OPCs and mature oligodendrocytes using an anti-ZFP24 antibody. OPCs and 

oligodendrocytes derived from the Zfp24-null mice served as a negative control. All peak 

sequences were submitted to multiple expectation maximization for motif elicitation 

(MEME) (Bailey et al., 2006) for de novo motif analysis, which revealed a consensus 

sequence composed of six repeats of the sequence TCAT as the strongest candidate (Figure 

1A). Binding of ZFP24 to several of the peaks identified by next generation sequencing was 

further validated by PCR (Figure S1A). ZFP24 peaks were found to be concentrated around 

known transcription start sites (TSSs), suggesting that ZFP24 binding in the genome is not 

random (Figure S1B). Binding of ZFP24 to the identified consensus sequence was further 

validated by an electrophoretic mobility shift assay (EMSA), which revealed that ZFP24 

bound to the identified consensus sequence (herein TCAT probe) but did not bind a 

scrambled DNA probe, suggesting that this binding is DNA sequence specific (Figure S1C).

In order to understand the biological functions in which the identified peaks are involved, 

the OPC peak coordinates were submitted to Genomic Regions Enrichment of Annotations 

Tool (GREAT). ZFP24 putative target genes were highly enriched for biological functions 

(Gene Ontologies) related to glial cell and oligodendrocyte development, as well as 

regulation of oligodendrocyte differentiation (Figure 1B). This result was based on binding 

of ZFP24 upstream to genes known to play a role in oligodendrocyte differentiation, among 

them Sox10 (Figure 1C). To verify the identified ZFP24-binding sites, we focused on two 

sites upstream to the TSS of Mbp and Sox10, genes that are crucial for CNS myelination. As 

determined by EMSA analysis, ZFP24 specifically bound to both sites (Figure 1D).

The identified binding sites of ZFP24 upstream to Mbp and Sox10 may indicate that ZFP24 

binding is required for their expression. In order to test this, the ZFP24-binding sites that we 

identified upstream to the TSS of Mbp and Sox10 were cloned into luciferase reporter 

vectors, which were introduced into oligodendrocyte lineage cells derived from wild-type 

(WT) or Zfp24-null mice. ZFP24 expression was necessary to induce luciferase expression 

from these vectors (Figure 1E).
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Phosphorylation State of ZFP24 Determines Its DNA-Binding Capacity and Activity

ZFP24 contains a SCAN domain and four DNA-binding C2H2 zinc finger domains that are 

interspersed by linkers that contain potential phosphorylation sites (Figure 2A). Linker 

phosphorylation is a mechanism that potentially results in the deactivation of the C2H2 

proteins: phosphorylation introduces a negative charge to the DNA-binding domain of the 

protein and hence reduces its affinity to DNA (Dovat et al., 2002; Rizkallah et al., 2011). We 

confirmed that ZFP24 linkers undergo phosphorylation in vivo by subjecting ZFP24 

immunoprecipitated from 16-day-old mouse brain to western blot analysis using an antibody 

that specifically recognizes the phosphorylated form of the linkers (Figure 2B). In order to 

study the effect of linker phosphorylation on the affinity of ZFP24 to its DNA consequence 

sequence, we tested the ability of phosphorylated and non-phosphorylated ZFP24 to bind to 

the consensus DNA sequence. Protein samples that were enriched for the phosphorylated 

form of ZFP24 had a lower capability to bind the ZFP24 target DNA sequence than samples 

enriched for the non-phosphorylated ZFP24 isoform (Figures 2C and 2D). To confirm the 

effect of the phosphorylation state of ZFP24 on its DNA-binding capacity, we mutated the 

phosphorylation sites within the three linkers to either alanine, to mimic a non-

phosphorylated form of ZFP24, or to glutamate, to mimic constant phosphorylation (Zhao et 

al., 1994). We enforced the expression of these mutants in HEK293 cells and measured the 

ability of nuclear extracts to bind the ZFP24 target DNA sequence by EMSA. The alanine 

mutant that resembles the non-phosphorylated form of ZFP24 was able to bind the ZFP24 

target DNA sequence comparable with WT ZFP24. In contrast, the glutamate mutant that 

resembles the fully phosphorylated form of ZFP24 failed to bind the ZFP24 target DNA 

sequence (Figure 2E). In addition, we have generated phosphomimetic mutants that 

represent all eight potential states of phosphorylation and tested their capability to bind the 

TCAT target sequence. We found that as long as one linker is not phosphorylated, ZFP24 has 

the capacity to bind to the ZFP24 target DNA sequence (Figures S1D and S1E).

In order to better understand how this phosphorylation may be relevant to myelin-related 

gene expression, we immunoprecipitated ZFP24 from OPCs as well as mature 

oligodendrocytes, then subjected the eluted protein to isoelectric focusing followed by 

western blot (two-dimensional [2D] gel electrophoresis). We found that as OPCs 

differentiate to mature oligodendrocytes, ZFP24 shifts from the acidic side of the gel to the 

basic side, suggesting that ZFP24 loses acidic phosphates as OPCs differentiate to mature 

oligodendrocytes (Figure 2F). Changes in the phosphorylation state were further confirmed 

using the phosphorylated linker antibody (Figures 2G and 2H).

To study the role of the ZFP24 phosphorylation state on oligodendrocyte lineage cell 

differentiation, we enforced the expression of the glutamate and alanine mutants separately 

in Zfp24-null-derived oligodendrocyte lineage cells and measured the ability of each to 

restore MOG expression. MOG is a mature myelinating oligodendrocyte marker that is not 

expressed by oligodendrocytes derived from Zfp24-null mice (Howng et al., 2010). WT 

ZFP24 was able to restore MOG expression in Zfp24-null cells (Figure 3). In contrast, the 

glutamate mutant that resembles the fully phosphorylated form of ZFP24 failed to restore 

MOG expression (Figure 3). Meanwhile, the alanine mutant was able to restore MOG 
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expression (Figure 3), indicating that the non-phosphorylated form of the protein is 

functional.

ZFP24 Targets Genes in Oligodendrocyte Lineage Cells

In order to characterize ZFP24 target genes, we examined the genes with perturbed 

expression in Zfp24-null oligodendrocyte lineage cells (Aaker et al., 2016) for ZFP24-

binding sites in proximity to their TSSs (on the basis of our ChIP data). We identified 700 

potential ZFP24 target genes (Figure 4A), which are listed in Table S1.

The identified ZFP24 target genes include transcription factors that control oligodendrocyte 

differentiation and affect myelination, most notably Sox10 and Myrf. We therefore 

hypothesized that the effect of ZFP24 loss is mediated, at least in part, by the reduced 

expression of its downstream target genes Sox10 and Myrf. In order to test this possibility 

we enforced the expression of SOX10 and MYRF in Zfp24-null-derived oligodendrocyte 

lineage cells and measured the ability of each to restore expression of MBP, an important 

component of myelin, which is reduced approximately 4-fold in Zfp24-null 

oligodendrocytes. We found that enforced expression of MYRF, but not SOX10, in Zfp24-

null oligodendrocyte lineage cells can rescue MBP expression in these cells, suggesting that 

MYRF mediates the expression of myelin genes downstream to ZFP24 (Figures 4B and 4C).

Our data suggest that ZFP24 directly mediates the expression of Sox10 and Myrf. We 

therefore sought to determine whether the ZFP24 DNA-binding sites overlapped with the 

ChIP-seq identified binding sites of the other three transcription factors that are known to 

mediate oligodendrocyte differentiation and myelination: OLIG2 (Yu et al., 2013), SOX10 

(Lopez-Anido et al., 2015), and MYRF (Bujalka et al., 2013). As a control, we compared the 

intersection of ZFP24, OLIG2, SOX10, and MYRF with the identified binding sites of the 

transcription factor JunD in leukemia cells (Yue et al., 2014) and which is also expressed in 

the brain (Zhang et al., 2014). Interestingly, we found that 184 of the ZFP24-binding sites 

overlap with the binding sites of OLIG2, 149 overlap with the binding sites of SOX10, and 

52 overlap with the binding sites of MYRF (Figure 4D). This degree of overlap is 

statistically significant (HOMER, hypergeometric test; Table S2), while for JunD no 

significant overlap was found (Table S2). Interestingly, we found 13 regions that were 

occupied by all four transcription factors. The list of the overlapping binding sites and the 

genes in proximity to the 13 regions that were occupied by all four transcription factors is 

provided in Table S3. Analyzing binding sites near the promoters of these four transcription 

factors, we also found that they bind their own promoter and often bind the promoters of 

each other (Figure 4E).

DISCUSSION

The human genome contains roughly 700 C2H2-containing zinc finger proteins (Vaquerizas 

et al., 2009; Weirauch and Hughes, 2011). Nevertheless, the DNA-binding sequences and the 

biological functions of the vast majority of these proteins remain unknown. Here, we 

elucidate the molecular mechanisms by which ZFP24 acts to drive oligodendrocyte 

differentiation, myelin protein gene expression, and CNS myelination.
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Interestingly, although expression of the putative ZFP24 target genes changes as 

oligodendrocyte lineage cells progress toward maturation, the ZFP24 mRNA and protein are 

expressed at all phases of oligodendrocyte development. ZFP24 cells with nocodazole, 

which is known to induce phosphorylation of C2H2 zinc finger proteins (Experimental 

Procedures). It can be seen that the sample that was contains four zinc finger domains that 

are interspersed by highly conserved linker domains, which have been shown previously to 

be potential phosphorylation targets (Mertins et al., 2013, 2016). Strikingly, the 

phosphorylated status of ZFP24 changes as oligodendrocyte lineage cells differentiate. In 

mitotic OPCs, ZFP24 is phosphorylated, whereas it appears to lose its phosphate groups in 

more mature oligodendrocytes. Using the ZFP24 consensus DNA-binding domain as bait, 

we demonstrated that non-phosphorylated ZFP24 has an increased capacity to bind the 

ZFP24 target DNA sequence, and phosphomimetic substitution abolishes ZFP24’s ability to 

restore myelin protein gene expression in Zfp24-null oligodendrocytes. Therefore, the role 

ZFP24 plays in oligodendrocyte maturation is likely controlled post-translationally through 

phosphorylation.

Oligodendrocyte transcription factor mouse mutants (e.g., Olig2, Myrf, Sox10) do not 

generate detectable numbers of mature oligodendrocytes, indicating that these proteins work 

early in the oligodendrocyte lineage (Emery et al., 2009; Lu et al., 2002; Stolt et al., 2002; 

Takebayashi et al., 2002). We and others speculated previously that ZFP24, in contrast, plays 

a role in the final stages of oligodendrocyte maturation (Emery, 2010; Howng et al., 2010). 

This suggestion was based on our analysis of Zfp24-mutant mice, which, despite having 

normal oligodendrocyte numbers, fail to myelinate (Howng et al., 2010). Our present 

studies, however, raise the possibility that ZFP24 works in collaboration with SOX10, 

OLIG2, and MYRF (Figure 4E) to establish a transcriptional network that is critical for 

proper oligodendrocyte lineage development. ZFP24 binds in the vicinity of the transcription 

initiation sites of the genes that encode SOX10, OLIG2, and MYRF, and Zfp24-mutant 

oligodendrocytes display reduced expression of Sox10 and Myrf, although Olig2 expression 

appears unaltered in the absence of ZFP24 (Aaker et al., 2016). The ability of MYRF to 

rescue the maturation phenotype of Zfp24-mutant oligodendrocytes (Figure 4B) suggests 

that Myrf is a downstream target of ZFP24. Moreover, a number of the ZFP24 DNA-binding 

sites in genes essential to oligodendrocyte function overlap with the binding sites of one or 

more of these oligodendrocyte transcription factors (Figure 4D). Therefore, ZFP24 might 

have a quantitative effect on the expression of genes critical for oligodendrocyte maturation 

and function. The reduced expression of ZFP24 target genes, along with the resulting 

reduced expression of the downstream targets of key oligodendrocyte transcription factors, 

likely combine to contribute to the hypomyelinating phenotype of Zfp24-mutant mice. 

Further studies are required to elucidate how ZFP24, MYRF, SOX10, and OLIG2 cooperate 

to regulate oligodendrocyte development.

Interestingly, it has recently been reported that patients hemizygous for 18q chromosomal 

deletions that include the region that contains the Zfp24 human ortholog, ZNF24, display 

seizures and tremors, suggestive of myelin abnormalities (Cody et al., 2015). This raises the 

possibility that a subset of human disorders with 18q deletions might be due, at least in part, 

to ZNF24 haploinsufficiency.
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Taken together, our findings provide a direct molecular mechanism by which 

dephosphorylation of ZFP24 mediates its binding to regulatory regions of genes critical for 

oligodendrocyte differentiation and myelination, mediates their expression, and as a result, 

controls oligodendrocyte differentiation and CNS myelination. Further examination of this 

critical component of CNS myelination could unveil potential therapeutic targets for 

enhanced myelination and remyelination.

EXPERIMENTAL PROCEDURES

Animals

C57BL/6J mice (The Jackson Laboratory), Zfp24-null mice (Howng et al., 2010), and Rattus 
norvegicus rats (Harlan) were housed according to the University of Chicago’s Institutional 

Animal Care and Use Committee (IACUC) guidelines.

Primary Rat and Mouse Cell Cultures

Mouse OPCs were isolated from C57BL/6J mice and from Zfp24-null mice (Howng et al., 

2010) by immunopanning as previously described (Emery and Dugas, 2013). Rat OPCs 

were similarly isolated from rat pups by immunopanning as previously described (Dugas 

and Emery, 2013). For OPC isolations, 7-day-old pups were used, both males and females. 

OPCs were transfected by electroporation using Amaxa cell nucleofector II device. 

Transfection efficiency was ~40% (as determined by transfection of a GFP-encoding 

plasmid).

ChIP-Seq

OPCs were isolated from WT and Zfp24-null animals by immunopanning as previously 

described (Emery and Dugas, 2013). Cells were then cultured for 5 days in differentiative 

conditions (−PDGF, +40 ng/mL triiodothyronine; Sigma-Aldrich). ChIP was performed on 

formaldehyde cross-linked chromatin (~50 μg/sample) using an anti-ZFP24 antibody 

(Sigma-Aldrich) by Active Motif. Briefly, ChIP samples were used for Illumina library 

construction, and libraries were submitted to 75-base Illumina sequencing (>20 million 

reads/sample). The 75 nt sequence reads were mapped to the mouse genome (mm10) 

assembly using the BWA algorithm (default settings) (Kofler et al., 2016). Peak calling was 

performed with HOMER (Heinz et al., 2010) using only uniquely mapped reads and PCR 

duplicates removed (makeTagDirectory -tbp 1). The peaks for OPC and OLG were 

calculated twice (HOMER findPeaks –style factor): against ChIP data derived from the 

Zfp24-null as control and against input DNA as control. The final list contains only peaks 

that were identified against both controls.

Subsequent Analysis of ChIP-Seq Data

For de novo motif discovery, sequences of identified ZFP24 peaks from HOMER were 

submitted to the MEME-ChIP suite (Machanick and Bailey, 2011). GREAT (McLean et al., 

2010) was used to find enriched annotations with gene association rule set to basal + up to 

100 kb. Occurrence of overlapping peaks (Table S3) for MYRF, SOX10, and OLIG2 peaks 

were identified using mergePeaks from HOMER package and plotted on the University of 

California, Santa Cruz (UCSC), browser. For this purpose, previously reported binding sites 
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for OLIG2 (Yu et al., 2013), SOX10 (Lopez-Anido et al., 2015), and MYRF (Bujalka et al., 

2013) were converted to mm10 using UCSC liftover. The rat ChIP-seq peak coordinates 

were converted to the mouse NCBI37/mm10 genomic assembly using the UCSC browser 

liftover function and the coordinates submitted to GREAT using a 100 or 1,000 kb 

regulatory region setting. Overlapping peaks for MYRF, SOX10, and OLIG2 peaks were 

identified using mergePeaks from the HOMER package (Heinz et al., 2010).

ChIP-Real-Time PCR

Rat OPCs were isolated from rat pups by immunopanning as previously described (Dugas 

and Emery, 2013). The cells were transfected with a plasmid encoding the FLAG-tagged 

ZFP24. Immunoprecipitation was performed using anti-Flag antibody (Sigma-Aldrich). 

Immunoprecipitation and isolation of the ZFP24-bound DNA was performed using the DNA 

ChIP-IT Express kit (Active Motif) according to the manufacturer’s instructions. The 

immunoprecipitated DNA was amplified using iQ SYBR Green Supermix (Bio-Rad) in a 

Bio-Rad C1000 thermocycler. OLIG2 is known to bind upstream to p21 (Ligon et al., 2007). 

We used this known protein-DNA interaction as a control. OLIG2 was immunoprecipitated 

using OLIG2 antibody (R&D). The following set of primers were used: Sox10: distal: 

forward: 5′-GCAGAGGACATGGTTGTGGA-3′, reverse: 5′-

CTGCCTCAGACTGCTGACAA-3′. Sox10: no TCAT: forward: 5′-CA 

TACCCAAGGGCTCTCTGC-3′, reverse: 5′-TCCACAACCATGTCCTCTGC-3′. Sox10: 

TCAT: forward: 5′-GGGTAGGTCACAACCCACTG-3′, reverse: 5′-TG 

CCATCCTTTGTGTGTGGT-3′. Zfp536: forward: 5′-CGGCTCCTCTAACGT GACTG-3′, 

reverse: 5′-CCTCGCCGATGTCTGAAGAA-3′. Elovl7: forward: 5′-

TGCTTATACAGCGTGCACCA-3′, reverse: 5′-TGGACTGAGGATTGAACT CAGA-3′. 

Smad7: forward: 5′-AGGATCTTGTCCCCGAGCAG-3′, reverse: 5′-

CTGCGTCTCAGGCAGCTCTC-3′. p21: forward: 5′-AGGTGTCTAGACTC CAGATT-3′, 

reverse: 5′-AAAATCAAGGCTTTGCTGG-3′.

Luciferase Assays

The identified ZFP24-binding sites upstream to the TSSs of Mbp and Sox10 were amplified 

by PCR from mouse genomic DNA and cloned into pGL3 luciferase reporter assay plasmids 

(pGL3-promter; Promega). Luciferase assays were performed using the Promega luciferase 

reporter assay kit according to the manufacturer’s instructions. OPCs were co-transfected 

with both the test pGL3 luciferase construct and a plasmid encoding GFP, and luciferase 

readings were normalized to the GFP levels. Samples were normalized to the pGL3-p 

plasmid that does not contain an enhancer. Luciferase results are shown as the average and 

SD of at least three independent experiments. The following set of primers were used to 

clone the identified ZFP24-binding sites: Sox10 forward 5′-GGA CAT ATC CAA GGG 

CTC TG-3′, Sox10 reverse 5′-TGC CAT GCA CAT CAG TAT CC-3′; Mbp forward 5′-

TGT GCC TTT CCA GCA CTG T-3′, Mbp reverse 5′-CTG AGG TGC TGT GGA AAG 

GT-3′; MBPshort forward 5′-ctctcctcatctgcgttcgtt-3′, MBPshort reverse 5′-

aggaacagtgccagcaaaca-3′. Insertions sequence was verified by PCR and DNA sequencing.
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EMSA

EMSA was performed using the LightShift Chemiluminescent EMSA kit (Pierce). Nuclear 

extract derived from HEK cells transfected with a ZFP24 encoding plasmid was incubated 

with biotinylated probe and run on 5% TBE PAGE gel. The gels were then transferred to 

nylon membranes (Thermo Fisher Scientific). Biotin-labeled probes were detected by 

primary streptavidin antibody attached to horseradish peroxidase. Biotinylated probes used 

were as follows: TCAT probe: 5′-TCATTCATTCATTCATTCATTCATCAT-3′; scramble 

probe: 5′-AGAGTGGTCAATACCCCCTCTG-3′; Mbp probe: 5′-GTT TTG TTA ATG 

CAT TTA ATT CCT CAC AGT ATA GCT GTT GTC TTC TCT CCT CAT CTG CGT TCG 

TTT CTG ACA GCT ACA GAA TTT AT-3′; Sox10: 5′-GGT AGT TGC TTC ATT CAT 

TCA TTC ACT CAT TCA TTC ATT CAT TCA TTC ATT CAT TCA TTC ATC TTG GAG 

TTT CCT TTA GTA CA-3′. For reactions that contained the unlabeled “cold” probe, the 

same unlabeled probe was added to the reaction in 200-fold excess.

Site-Directed Mutagenesis

Site-directed mutagenesis was performed using a site-directed mutagenesis kit (Agilent) 

according to the manufacturer’s guidelines. Mouse Zfp24 coding sequence was cloned into 

pCMV-AC-GFP mailman expression vector (Origene). For phosphomimetic substitution, 

serine 274 in the first linker, threonine 302 in the second linker, and threonine 330 in the 

third linker were replaced by glutamate. For the mutant that mimics the non-phosphorylated 

state, serine 274, threonine 302, and threonine 330 were replaced by alanine.

DNA-Binding Assay

The expression of ZFP24 was enforced in HEK293 cells, and its ability to bind to its target 

DNA was tested. To enrich for phosphorylated ZFP24, we treated the cells with nocodazole, 

a small molecule that interferes with the polymerization of microtubules (Lee et al., 1980). 

Nocodazole-treated cells enter mitosis but cannot form metaphase spindles, because their 

microtubules can no longer polymerize. It has been shown that cell-cycle arrest at mitosis 

induces phosphorylation of C2H2 zinc finger proteins (Rizkallah et al., 2011).

We therefore treated the cells with either nocodazole to induce cell-cycle arrest or with 

equivalent amounts of DMSO as a negative control, and we found that nocodazole treatment 

increased phosphorylation of ZFP24 (Figure 2). The ability of phosphorylated and non-

phosphorylated ZFP24 to bind to the consensus DNA sequence was tested using biotinylated 

TCAT probe as bait. The biotinylated DNA (and the protein bound to it) was 

immunoprecipitated using streptavidin-coated beads, then subjected to western blot analysis.

Immunocytochemistry

Cells were fixed for 10 min in 4% paraformaldehyde, washed in PBS, and subjected to 

immunostaining. The antibodies used were anti-Flag antibody (Sigma-Aldrich), anti-MBP, 

and anti-MOG antibody (Millipore).
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Immunoprecipitation and Western Blotting

ZFP24 was immunoprecipitated from the brain of P16 pups of Zfp24-null mice (Howng et 

al., 2010) and littermate WT using anti-ZFP24 antibody (Sigma-Aldrich). The eluted 

proteins were subjected to western blot analysis using polyclonal anti-ZFP24 (Sigma-

Aldrich) antibody and the anti-phospho linker antibody (Sigma-Aldrich).

Isoelectric Focusing

ZFP24 was immunoprecipitated from OPCs and from mature oligodendrocytes using anti-

ZFP24 antibody (Sigma-Aldrich). The eluted proteins were subjected to isoelectric focusing 

followed by western blot. Two-dimensional electrophoresis was performed according to the 

carrier ampholine method of isoelectric focusing (Burgess-Cassler et al., 1989; O’Farrell, 

1975).

Statistical Analysis

Data are presented as mean ± SEM unless otherwise noted. Multiple comparisons were 

statistically evaluated using mixed-results ANOVA or two-way ANOVA; single comparisons 

were performed using two-sided unpaired t tests. A p value < 0.05 was considered to 

indicate statistical significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• ZFP24 binds to the regulatory regions of genes important for CNS 

myelination

• The DNA-binding capability of ZFP24 is controlled by phosphorylation

• The phosphorylation state of ZFP24 changes along the oligodendrocyte 

lineage

• ZFP24 displays overlapping genomic binding sites with MYRF, SOX10, and 

OLIG2
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Figure 1. ZFP24 Binds in Proximity to Genes that Are Crucial for Myelination and Mediates 
Their Expression
(A) Chromatin immunoprecipitation was performed on both OPCs and mature 

oligodendrocytes from the brain of WT and Zfp24-null mice. The eluted DNA was subjected 

to next-generation sequencing. ZFP24 peaks were subjected to motif finding by MEME. We 

identified the motif 5′-cattcattcattcattcattc-3′ with an E value of 3.0e–118 as the binding 

motif of ZFP24.

(B) The identified ZFP24 peaks were subjected to GREAT analysis for biological functions 

associated with genes that are adjacent to peaks. We found that the foremost enriched 

categories are “glial cell development,” “regulation of gliogenesis,” “oligodendrocyte 

development,” “regulation of glial cell differentiation,” and “regulation of oligodendrocyte 

differentiation,” with a p value less than 1.26 × 10−5.

(C) An example of the binding of ZFP24 upstream to the TSS of Sox10 is highlighted.

(D) ZFP24 was overexpressed in HEK293 cells, and its ability to bind its identified binding 

site upstream to the TSS of Mbp and Sox10 was assessed by EMSA. ZFP24 was incubated 

with biotinylated DNA composed of the identified binding site upstream to Mbp or Sox10, 

or with the same probe with an excess of non-biotinylated probe, or with biotinylated TCAT 

probe (which we identified as the binding motif of ZFP24) (n = 3).
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(E) The identified ZFP24-binding sites upstream to the TSS of Mbp and Sox10 were cloned 

into pGL3 luciferase reporter assay plasmids (herein pGL3-MBP and pGL3-Sox10). The 

pGL3-control (pGL3-c) plasmid (with SV40 enhancer) served as a positive control. The 

expression of these plasmids was enforced in OPCs derived from WT (blue) or Zfp24-null 

mice (red). The Mbp peak region was placed in a forward (pGL3-MBP-For) and reverse 

(pGL3-MPB-Rev) orientation (n = 3). Error bars represent the SD.
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Figure 2. Phosphorylation State of ZFP24 Determines Its DNA-Binding Capacity and Activity
(A) Schematic diagram of ZFP24 protein structure showing the relative positions of the 

SCAN domain (green), zinc fingers (ZF; yellow), linkers, and potential phosphorus-acceptor 

sites within the linker regions (red).

(B) ZFP24 was immunoprecipitated from 16-day-old WT or Zfp24-null mouse brain using 

an antibody against ZFP24 (Sigma-Aldrich). The eluted protein was subjected to western 

blot using an antibody that recognized ZFP24 (top) or an antibody that recognized the 

phosphorylated linker (anti-HpTGEKP antibody) (n = 3).

(C) ZFP24 was expressed in HEK293 cells, and nuclear extracts from untransfected (U) and 

transfected (T) cells were subjected to western blot using antibodies against ZFP24, the 

phosphorylated linker (anti-HpTGEKP antibody), and actin (used as equal loading control). 

To enrich for phosphorylated ZFP24, we treated the enriched for the phosphorylated form of 

ZFP24 has a lower capability to bind the ZFP24 target DNA sequence.

(D) The ratio between DNA-binding capacity in DMSO-treated (non-phosphorylated) and 

nocodazole-treated (phosphorylated) cells is shown (n = 3). Error bars represent the SEM.

(E) The alanine mutant (S274A, T302A, T330A) that resembles the non-phosphorylated 

ZFP24 is able to bind the identified DNA motif, whereas the glutamate mutant (S274E, 

T302E, T330E) that resembles phosphorylated ZFP24 cannot (n = 3).
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(F) ZFP24 was immunoprecipitated from primary OPCs and from mature oligodendrocytes 

(OLGs) derived from rat. The eluted proteins were subjected to isoelectric focusing followed 

by western blot. In OPCs the majority of the protein migrated to the acidic side, whereas in 

mature OLGs the protein shifted to the basic side, suggesting that the protein loses acidic 

phosphate groups.

(G) Phosphorylation was verified using an antibody that recognizes the phosphorylated 

linker only. Four forms of the ZFP24 protein appear to be represented in this figure: in the 

first form, all three linkers are phosphorylated; the second form is demonstrated by a shift to 

the basic side, consistent with the loss of one phosphate group; the third is represented by a 

larger shift to the basic side, consistent with the loss of two phosphate groups. The most 

basic fourth form is non-phosphorylated and hence was not recognized as the antibody 

recognizes the phosphorylated form only.

(H) The ratio between non-phosphorylated to fully phosphorylated ZFP24 in OPCs and 

OLGs is shown (n = 3). Error bars represent the SEM.
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Figure 3. Expression of an Alanine Mutant (S274A, T302A, T330A) that Resembles the Non-
phosphorylated ZFP24 Rescues MOG Expression, Whereas the Glutamate Mutant (S274E, 
T302E, T330E) that Resembles Phosphorylated ZFP24 Does Not
(A) OPCs isolated from WT and Zfp24-null mice were transfected with a plasmid encoding 

ZFP24 or its mutants fused to GFP. The cells were allowed to differentiate to mature 

oligodendrocytes (OLGs), fixed, and immunostained with anti-MOG antibody, a mature 

myelinating oligodendrocyte marker. WT-derived oligodendrocytes express MOG, whereas 

Zfp24-null-derived cells do not. Reintroduction of WT ZFP24 to the Zfp24-null-derived 

cells is able to restore MOG expression (cells that express the ZFP24:GFP protein are 

green). The alanine mutant has a similar effect, whereas the glutamate mutant failed to 

restore MOG expression. More than 700 cells were counted per sample from three different 

experiments. Green arrows highlight GFP+ cells.

(B) The percentage of GFP-expressing cells that also stain for MOG. Error bars represent 

the SEM.
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Figure 4. ZFP24 Targets Genes in Oligodendrocyte Lineage Cells
(A) The genes that have both a ZFP24-binding site in proximity of 50 kb to their TSSs (on 

the basis of our ChIP-seq data, in blue) and expression that is affected by ZFP24 loss (on the 

basis of our RNA sequencing [RNA-seq] data, in purple) (Aaker et al., 2016) are 

highlighted.

(B) OPCs were isolated from WT and Zfp24-null mice and transfected with a plasmid 

encoding Flag-tagged MYRF or GFP-fused SOX10. The cells were allowed to differentiate 

to mature oligodendrocytes, fixed, then immunostained with anti-MBP antibody, a 

myelinating oligodendrocyte marker. More than 850 cells were counted per sample from 

three different experiments. Green arrows highlight transfected or GFP+ cells.

(C) The percentage of MYRF- or SOX10-expressing cells that also stain for MBP. Error bars 

represent the SEM.

(D) One hundred eighty-four ZFP24-binding sites overlap with the identified binding sites of 

OLIG2, 149 overlap with the identified binding sites of SOX10, and 51 overlap with the 

identified binding sites of MYRF.
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(E) A scheme describing the relation between these factors. The lines (arrowheads) indicate 

the presence of binding site for one factor in vicinity of the promoter of the other factor 

(marked by the arrowhead). Factors also bind their own promoters.
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