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Abstract

Emerging data suggest that the genetic regulation of the biological response to inflammatory stress
may be fundamentally different to the genetic underpinning of the homeostatic control (resting
state) of the same biological measures. In this paper, we interrogate this hypothesis using a single-
SNP score test and a novel class-level testing strategy to characterize protein-coding gene and
regulatory element-level associations with longitudinal biomarker trajectories in response to
stimulus. Using the proposed class-level association score statistic for longitudinal data, which
accounts for correlations induced by linkage disequilibrium, the genetic underpinnings of evoked
dynamic changes in repeatedly measured biomarkers are investigated. The proposed method is
applied to data on two biomarkers arising from the Genetics of Evoked Responses to Niacin and
Endotoxemia study, a National Institutes of Health-sponsored investigation of the genomics of
inflammatory and metabolic responses during low-grade endotoxemia. Our results suggest that the
genetic basis of evoked inflammatory response is different than the genetic contributors to resting
state, and several potentially novel loci are identified. A simulation study demonstrates appropriate
control of type-1 error rates, relative computational efficiency, and power.
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1. Introduction

Advancing our knowledge of the molecular and physiological underpinnings of complex
diseases will deepen insight into disease etiology while providing opportunity to develop
targeted interventions and lessen disease morbidity and mortality. In this paper, we develop
and evaluate a method, termed classlevel association score statistic for longitudinal data
(CLASS-LD), to reveal and characterize novel regulatory and protein-coding gene (PCG)-
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based determinants of inflammatory biomarkers that change over time in response to
stimulus. The data motivating our research arise from the Genetics of Evoked Responses to
Niacin and Endotoxemia (GENE) study, a National Institutes of Health-sponsored
investigation of the genomics of inflammatory and metabolic responses during low-grade
endotoxemia [1-3]. The aim of this investigation is to identify PCGs and regulatory
elements that impact the time-varying trajectory of inflammatory biomarkers interleukin-6
(IL-6) and C-reactive protein (CRP) in direct response to stimulus. Because activation of
innate immunity is a fundamental pathophysiological process in complex cardiometabolic
disease, for example, atherosclerosis and type 2 diabetes, as well as complex inflammatory
disorders, for example, response to sepsis and trauma, our understanding of the genetic basis
of these evoked inflammatory biomarkers in the GENE study provides clinically relevant
impact toward development of novel prognostic markers and therapeutic targets in complex
diseases [1, 3-7]. In the GENE study, we recently identified and replicated a genome-locus
significant on chromosome 7 for the febrile response to lipopolysaccharides (LPS) and
found that this chromosome 7 locus had no association with body temperature at rest in the
same individuals [3]. In this paper, we further investigate, using more sophisticated analytic
tools, the concept and emerging data [3, 8] that the genetic regulation of the biological and
biomarker response to inflammatory stress may be fundamentally different to the genetic
underpinning of the homeostatic control of the same biomarkers.

We focus our interrogation on known canonical PCGs [9-11] and well-annotated human
long noncoding RNAs (IncRNASs) [12-14]; however, the methodological framework allows
for interrogation of alternative taxonomies, or what we refer to generally as ‘classes’, such
as gene sets annotated in the Molecular Signatures Database (MSigDB), larger emerging
sets of multi-exon human IncRNAs [12-14], super-enhancer elements [15], and splicing
codes. We note that the term class is similar to a single nucleotide polymorphism (SNP) set
as described, for example, in [16, 17]. The aim of our proposed method is to characterize
SNP-level and genomic class associations with longitudinal biomarker trajectories in
response to stimulus for the setting in which classes can potentially influence an overall shift
in the biomarker level as well as the rate of change in the biomarker over time. In order to
accommodate the large number of highly correlated SNPs within a class, we fit separate
models for each SNP, a strategy most commonly applied for cross-sectional investigations
[18], and then derive the covariance structure analytically for corresponding score tests to
account for the within-class linkage disequilibrium (LD) structure.

The application of mixed effects models to repeated measures data is well described [19,
20]. Moreover, methods for testing genetic association in longitudinal studies, including
applications of a mixed modeling framework, are presented in a few notable publications
(e.g., [21-27]). These include a twostage approximation method to address the
computational burden of fitting a linear mixed effects model for analysis of single-SNP
associations [24, 25]; a set-based test for genetic association with longitudinal data based on
a genetic random field model [23]; linear mixed effects penalized-spline models for single
and multi-allelic markers [21]; application of a linear mixed effects model to differentiate
genetic and environmental contributions to the variability in longitudinal data [22]; flexible
semiparametric models to account for repeated measurements nested within individuals and
subjects nested within families [27]; generalized estimating equations for rare variant and
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gene—environment interactions using longitudinal data [26]. Finally, the sequence kernel
association test uses a mixed effects model (with random SNP level effects) and a score-
based statistic to analyze regional association in the cross-sectional data setting [17]. To our
knowledge, combining a score-based testing strategy with a mixed effects modeling
framework for repeated measures data to characterize single-SNP and class-level association
has not been described. Incorporation of orthogonal polynomials in the design matrix further
allows for modeling nonlinear trends and meaningful SNP by time interactions. As
described in [17], while conservative, the score test only requires fitting a reduced model and
is thus computationally efficient for single-SNP analysis, as we demonstrate in our
simulation study.

To begin, we describe a simple modeling framework for modeling nonlinear repeated
measures data, emphasizing that the proposed approach is flexible with respect to the
specific choice of components for this model (Section 2.1). We then describe a score test
approach for evaluating single-SNP associations (Section 2.2), define a class-based test
statistic, and approximate its distribution analytically, taking into account the within-class
correlation of statistics due to LD (Section 2.3). Simulation studies are presented to
characterize type-1 error rates, computational efficiencies, and power (Section 3). The
approach is then applied to the GENE study data in order to identify PCGs and IncRNAs
that associate with inflammatory biomarker trajectories (Section 4). Finally, we offer a
discussion of this testing strategy and potential further extensions (Section 5).

2. Approach

2.1. Model

Consider a general form of the linear mixed effects model [19] given by

Y=XB+Xy,+Zb+e (1)

where Y'is of length nand represents a quantitative trait, X is the fixed effects design
matrix for intercept, time and potentially additional covariates, X is the fixed effects design
matrix involving the SNP data, Z is the random effects design matrix, b ~ M0O,D),

D = 670, e~N(0, 521 ), and Z C Xo. Using the notation of [28], we further let 1 = o7/52 and

define V4 = /,+ AZQZ . The mixed effects model is a well-established and fully described
modeling framework that accounts for within-individual correlations while offering
flexibility for unbalanced data in the context of longitudinal data [19,29,30]. In subsequent
sections, we refer to the model of Equation (1) as the fu/l model.

We use the general framework of Equation (1) in the single-SNP score test (Section 2.2) and
in the derivation of the distribution of the class-level statistic (Section 2.3) such that the
specifications of Xg, Xg, and Z are generic. As an example, in Section 4, we define Xg =[1,,
t@),..., K] and X, =[x, txg,..., tKx ], where 1,,is an 7x 1 vector of 1’s, t(4) is the kth
order orthogonal polynomial of time for k= 1,...,K; and X, is a vector of the number of
variant alleles at SNP s (assuming a standard additive genetic model) for the individuals in
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the study. In this case, X = AgXg where A= diag(x,). The precise form of the design
matrices, including inclusion of relevant covariates and additional polynomials, can be
determined for each specific outcome under study using standard modeling fitting
procedures [19, 31]. A broad range of alternative model formulations within this framework
are also tenable, including a piecewise linear mixed effects model [19, 32].

2.2. Score test for single-SNP association

In the model of Equation (1), the parameter y represents the SNP association with the
outcome, Y; and generally, interest is in testing Hp : ¥s= 0 against Hy : ys# 0 without
specifying B. For example, in the setting described in Section 4, in which X =[x, txg...,
t(Kx], a test of Hp : ¥s= 0 is an overall test of no main effect of SNP snor any SNP shy
time interactions on the response Y. This null hypothesis corresponds to the reduced model
given by

Y=X+Zb+e (2)

Letting the log likelihood of the parameters 6 = (8, ys,/l,ag) be denoted /= log{L(6)}, we

have

1

l= —5

1 -
log (6}) = 5 log |V, | = (¥ =XoB =Xy )"V (¥ =X~ X7)/(20))  (3)

The score function and information matrix are respectively given by

UB.1) = UyB.1) U, By)I" =[01/0p 0l oy )" (4)

_ _ _ _ T
= [0, XV =X - Xy ) o, XV Y =X - Xyl (5)
and

s Ygy | [-E1*00p0p) —EL0*110pay )
IB.7) = .1 1= 5 5 (6)
v by | |-ELPUay, 081 —EL0%1 9y,07,]
—2xTy,—1 —2vTy,—1
o, XoV; X 0. XV, X

o X[V X, o X VX
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. - _1 - - -
Defining (8.7, = Iysys - IVsﬁIﬁﬁIﬁVS’ it follows from [33] (Section 9.3) that Z(B, ¥ is the

asymptotic covariance matrix of U, (B, ys). The score test statistic for / : y5= 0 against
Hy @ ys# 0 without specifying Bis thus given by

s=v, .0'ZF.0"'v, G0 @)

where f§ = (XgVZIXO)_lgiZIY is the estimate of gunder the null hypothesis. As £g ..

[UB, ¥9] =0 forall B, y, under the null hypothesis, the score test statistic, S, has a central
/1/2 distribution with g degrees of freedom, where g s the length of the parameter vector .

2.3. Class-level test of association

Within a genomic class with /77 SNPs, we have S = (S, S,,..., Sy, a vector of m
potentially correlated central ;(Z-statistics, each corresponding to a single-SNP score test
statistic with g degrees of freedom. We define a class-level test statistic as

where wjare pre-specified weights such that Z;”z jo;=1. In our data example of Section 4,

equal weights (w;= 1/m, for all j=1,...,/m) are applied in the absence of prior biological
information regarding single SNPs and because the analysis is focused on common variants.
In the simulation study of Section 3, alternative weights allowing for a greater influence of
less common variants as described by Wu et al. [17] are also considered. Notably, # can be
expressed as a quadratic form, given by

m
_ T _vT
€ = lejy Ay=vY
j:

Y =Y'AY (9)

Ty, % ! 2Ty ,—1 Ty =1y "l Ty ,—1 P
where Aj = BJ. >(p,0) Bj,BJ. =0, XV, [ln =X, XV, X9 XV forj=1,...,m and
A= Z’j?’: @A Moreover, Y~ MVMuy, Zy), where under the null, ¢y = X8 and
2
Zy =0V,
Under the null hypothesis, % is a weighted sum of correlated chi-square statistics, whose
distribution is difficult to track analytically. Given that % can be expressed as a quadratic

form (as given in Equation (9)), we adopt the method in [34] to closely approximate the
distribution of ¢ with a chi-square distribution. This computationally efficient approximation
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method, which searches for the distribution matching the first four moments of the quadratic
form, turns out to work well in our setting in which accurate control of type-1 error rates at
the 5 x 1075 level is required. Specifically, using the result of [34] we have

Pr(E& > 1) » Pr(x(8) > o+ p,)  (10)
where p, = 1+ 6,6, = a2, = (t= )l ow, i = &1, 0 = x5 = 313 sy = cylc3, and

c =t [(sz)k] + kb AY ) T Apy, k=1,234 (A1)

where A= A(A)¥ for k=1, A° = /and tr[ ] is the trace of a matrix. FinaIIy, if
> sya= (sy - (57— 5, 6= 58 = &, and /= & - 26 Otherwise, ifs7 <5y a=1s, 6=
0,and = cg/c3. An estimate of ¢y is given by replacing iy and Xy in Equation (11) by their

estimates under the reduced model of Equation (2).

2.4. A note on approximating the distribution of ¥

As an alternative strategy, we could instead apply the results of [35, 36] and [37] and
approximate by %~a ;(5 where we set £(%) = E(R.) and Var(%) = Var(®.). In our setting,
E(%) = g= E®R) = avand therefore a= ¢g/vand %~q;(f/u. Moreover, Var(®) = &(2v) and
thus Var(%) = (¢?/+2)(2+) = 2¢%/ v. Finally, this yields

-1

m
Var(%) *12g 2 ; + 2}21 ) _;Jr @ oy Cov(S ;. 5)) (12)

In order to derive the covariance, Cov(S;, Sy of Equation (12), we again note that we can
write Sj= Y7A;Yand Sg= Y7A.Y, where Ajand Ay are as defined earlier. Under Hy, £(Y)
=Xp ,5 and Cov(Y) = 03\//1, and therefore, using the established result for quadratic forms,

we have
Cov(S.S,) = 26 (A VA V) + 468 XTAV.A X8 (13
OV(Sj ) = 20, 1AV, AV ) + 40 B XgAV,AXeB (13)

where again tr(-) is the trace of a matrix. An estimate of Cov(S;, Sx) is given by replacing the
variance components with their estimates under the reduced model of Equation (2). Finally,
we estimate vwith v, which is calculated by replacing Cov(S;, Sy of Equation (12) with its
estimate.
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While this approximation approach ensures the correct mean and variance of the test statistic
distribution, the precision at the tail of the distribution in not well established.We evaluated
this precision in our setting using a simulation study with 1 x 108 replications. Estimated
type-1 error rates are 1.17 x 1072, 1.55 x 1073, 2.42 x 1074, 3.4 x 1075, and 8.0 x 10 8 at a
=1x1072,1x1073,1x 1074, 1 x 1075, and 1 x 1075, respectively. These results suggest
that the type-1 error rate is relatively accurate when the a-level is large (e.g., 1 x 1072), but
the precision declines as a decreases. Importantly, this implies that this alternative
approximation may be appropriate for a single candidate class analysis but is not optimal in
the context of multiple testing in which precision at smaller p-values is required. The
approach we describe in Section 2.3, on the other hand, offers reasonable precision up to a =
1076 as reported in Table I. Interestingly, the approach of Section 2.3 is also computationally
more efficient than this alternative strategy, as the approach of Section 2.3 does not require
the extensive matrix multiplication needed to calculate the within-class pairwise covariances
of the SNP-level score statistics (Equation (13)).

3. Simulation studies

We perform simulation studies to characterize type-1 error, computational efficiency, and
power. For the SNP-level test, repeated measures data at =0, 1, 2, 4, 6, 12 h for sample
sizes of n= 150 (close to our example data sample size of 7=174) and 7= 500 individuals
are generated independent of genotype, using the reduced model estimates for IL-6 reported
in Section 4 and Table I11. Type-1 error rates for the SNP-level score test are estimated using
randomly generated SNPs with minor allele frequencies ranging from 0.10 to 0.40. P-value
thresholds of a = 1.0 x 10 to 5.0 x 1078 are considered, and estimated error rates based on
1 x 109 simulations are provided in Table I. For the class-level analysis, we generate
correlated SNPs on seven SNPs that map to the inhibitor of kappa light polypeptide gene
enhancer in B-cells, kinase epsilon (IKBKE) gene identified as associated with the CRP
trajectory (see Section 4 and Table V). SNPs are generated by sampling with replacement
from the 7= 174 individuals in our study, preserving the within-individual link to maintain
the observed LD structure within IKBKE. Repeated measures data at #= 0, 6, 12, 24 h for
sample sizes of 7= 150 and n =500 individuals are generated independent of genotype,
using the reduced model estimates for CRP reported in Section 4 and Table I11. A class-level
test statistic is calculated according to Equation (8) using equal weights (e, = 1/m, for all j=
1,...,m), and a corresponding p-value is calculated using the approximation of Equation
(10). P-value thresholds of a =1 x 1072 to 1 x 107° are considered, and estimated error rates
based on an additional 1 x 108 simulations are provided in Table I. These results suggest
reasonable precision for our observed sample size of 7= 174 individuals at the Bonferroni-
corrected thresholds for both the SNP-level (o< 5.0 x 1078) and class-level (p< 5 x 1076)
analyses.

The computational performances of the single-SNP score-based test and the likelihood ratio
test (LRT) are also compared through a simulation study. Complete repeated measures data
on 1= 150 individuals at six time points for IL-6 and three time points for CRP are
simulated using the model estimates of Section 4 and Table 111, and SNPs are generated with
minor allele frequencies ranging from 0.10 to 0.40. The LRT is performed by fitting the full
and reduced models described in Section 2.1 with the | mer () function, and models are
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compared with the anova() function in R. For the score test, the reduced model is fitted for
the first SNP iteration, and subsequently, the score statistic is calculated in R using the
formula of Equation (7). The per SNP computation is estimated on the basis of the average
of 100 simulations on a MacBook pro using a single 2.5 GHz Intel Core i7 processor and
then extrapolated to give the expected computation time for up to 108 SNPs. The results are
illustrated in Figure 1 and suggest that the score test is approximately 2.8 times more
efficient than the LRT for both the IL-6 and CRP analyses.

Power analysis is performed to evaluate performance under example conditions that are
consistent with the observed data. We select four genes as the basis for analysis, two of
which are reported as significant findings in Tables IV and V based on both the single-SNP
and class-level analyses (EBF3 for IL-6 and TPRG1 for CRP) and two with more moderate
class-level associations, one of which has a significant single-SNP association (SLC6A7 for
IL-6 with a class-level score test p-value = 6.72E-06 and minimum single-SNP score test p-
value = 8.84E-06 and MREG for CRP with a class-level score test p-value 1.44E-05 and
minimum single-SNP score test p-value= 4.890E-08). In addition to having a range of
associations with the repeatedly measured biomarkers, these genes were chosen to
demonstrate power for a variety of LD structures and numbers of SNPs per class. The
observed numbers of SNPs within the class, the proportion of these SNPs with LD >0.3 with
at least one other SNP within the same class, and the proportion with LD >0.6 with at least
one other SNP within the same class are respectively 26, 0.46, 0.38 for EBF3; 11, 0.64, 0.36
for SLC6A7; 37, 0.68, 0.51 for TPRG1,; and 22, 0.41, 0.18 for MREG. For the simulation
study, complete genotype data for each of these four genes are sampled with replacement
from the GENE study data, preserving the within-individual links and LD structure.

Next, we simulate repeatedly measured biomarker responses under a collection of
alternatives. Because of the high degree of collinearity among SNPs within a gene, we first
apply an LD pruning strategy [38] to fit full models and obtain data-driven parameter
estimates. We note that our proposed strategy as described in Section 2.3 only requires
fitting the null model thus overcoming the challenges inherent with the presence of high
within-class LD; however, for the purpose of simulating realistic biomarker trajectories, we
need to fit a full model involving multiple SNP signals within a class. The LD pruning
approach involves iteratively retaining the strongest signal SNP (smallest p-value based on a
score test of SNP and SNP by time interactions) and eliminating all remaining SNPs within
the class that have a pairwise LD of > 0.3with this strongest signal SNP. The process is
repeated until all SNPs have a pairwise LD < 0.3. After LD pruning, we have a subset of
quasi-independent SNPs for each gene, totaling 15 out of the original 26 for EBF3; 5 of 11
for SLC6AT7; 14 of 37 for TPRG; and 1 and 14 of 22 for MREG.

Models of association, under which biomarker response data are simulated, are listed in
Table 11, and include (a) a model with main effects of SNPs and linear time; (b) a model with
main effects of SNPs and orthogonal polynomials for time. Here, five polynomials for IL-6
and three for CRP are used to be consistent with the example of Section 4. (c) a model with
interactions between SNPs and linear time. The natural logarithm of IL-6 and CRP are both
simulated according to these models. In each case, a mixed effects model with random
individual-level intercepts are fitted to the GENE study data to arrive a parameter estimates.
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As one example, model (a) for IL-6 based on the SLC6A7 gene includes main effects for
five SNPs and a linear time component. The fitted model based on the GENE study data is y
=2.379 - 0.020 * time + 0.010x; + 0.148x, + 0.024x3 + 0.050x, + 0.027 x5, where X, ..., X5
correspond to the five SNPs in SLC6AT7 after LD pruning. Simulated response trajectories
based on this model include random person-specific effects and random measurement errors,
which are assumed to arise from independent normal distributions.

Under each condition, 1000 simulations are conducted and power is defined as the
proportion of these that correctly results in detecting a class-level association. In each
scenario, we report power assuming the same model of association (e.g., linear versus
nonlinear time trend) used to generate the data. While this can result in higher power
estimates than if an incorrect model were specified, we assume that appropriate model fitting
techniques are applied a priori as we do in the example of Section 4. For comparison, power
is also reported for the minP SNP-level score test approach and the minP univariate
approach based on the change from baseline to peak, corresponding to 2 h for IL-6 and 24 h
for CRP. Details of these alternative approaches are given in Section 4. Bonferroni
adjustments are applied for the minP approaches according to the number of SNPs within
the class. Finally, three sets of weights are considered for the class-level test of association:

(1) @;= Umforall j=1,...,im; (2) = Beta(MAF, 0.5,0.5%/ ¥ _ | Beta(MAF,,0.5,0.5)% and
(3) ;= Beta(MAF, 1, 25)%/ 3 _ | Beta(MAF,, 1,25)%, where /m s the number of SNPs in the

class. In case (1), we apply equal weights, as carried out in the example of Section 4. The
two alternatives are suggested by Wu et a/. [17], where we additionally scale the weights to
sum to 1 within a class. In case (2), we are weighting by the inverse of the variance of the
SNP, given by 1/MAF (1-MAF ). This results in slightly higher weights for the less common
variants. Finally, case (3) up weights rare variants and down weights more common variants.
Because we do not have rare variants (MAF ;> 0.01 for all /), scheme (2) does not result in
the extreme weighting described in [17], and we expect scheme (3) to result in lower power.

The power results are provided in Table 11 and, as expected, suggest that the class-level score
test yields a range of powers depending on the underlying model of association, the within-
class LD structure, the number of SNPs, and the sample size (7). Assuming equal weights
and a sample size of 7= 150, the power for the class-level test ranged from 30.0% for
MREG with CRP as the outcome assuming model (a) to a maximum of 95.8% also for
MREG with CRP as the outcome, assuming model (c). In all cases, the minP score had
lower power, ranging from 18.3% to 87.2% for a sample size of 7= 150, and power for the
change analysis is substantially smaller. The choice of weights also dramatically impacts
power with drastically lower power observed for the extreme choice of weights of scheme
(3). This result is expected as these data do not include rare variants, and the lower
frequency variants, which obtain a relatively large proportion of the weight, are not
necessarily the drivers of association. For example, under weighting scheme (3) and model
(a), rs451139 in EBF3 (MAF; = 0.12) has a corresponding «;= 0.82 and a model coefficient
Bj=—0.060, while rs451138 (MAF ;= 0.36) has a corresponding «;= 1.8 x 107 and a
model coefficient g;= 0.231 (the largest effect of all SNPs within this gene). Thus, while the
influence of rs451138 is substantial in the true model, the contribution of this SNP to the
overall score test is practically 0. On the other hand, under weighting scheme (2), the
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corresponding weights are ;= 0.071 and w; = 0.033 for rs451139 and rs451138,
respectively, which is consistent with the relatively high power for weighting scheme (2)
compared with (3) =79.2% vs. 29.2% power for a sample size of 7= 150. The difference in
power between weighting schemes (1) and (2) is relatively small, and without prior
information to suggest that less frequent variants are more influential, we elect to use equal
weights in the example of Section 4. Finally, we note that the estimated type-1 error rate of
the class-level score test for the four genes and two outcomes (eight combinations),
assuming a model with polynomials for time and no SNP-level effect, averaged 0.050,
0.048, and 0.047 for weighting schemes (1), (2), and (3), respectively.

4. Example: genetics of inflammatory response to stimulus

As mentioned in Section 1, the data motivating our research arise from the GENE study, a
National Institutes of Health-sponsored investigation of the genomics of inflammatory and
metabolic responses during low-grade endotoxemia [1-3]. Eligible participants (n = 294)
participated in five separate visits, including three outpatient visits and two inpatient visits
that addressed separate hypotheses: (i) an endotoxin challenge visit (1 ng/kg Escherichia
coli-derived LPS) (GENE-LPS) and (ii) a niacin challenge visit (GENE-niacin). Findings
from the GENE-LPS component are the focus of our present investigation. The GENE
inpatient LPS visit lasted approximately 40 h, with a 10-h overnight acclimatization phase
and a 30-h post-LPS phase, as described [1-3]. Multiple clinical variables were assessed
regularly during the visit, including temperature and serial blood draws (=15 and -5 min and
1,2,4,6,12,18, and 24 h post LPS) and subsequent measurement of levels of tumor
necrosis factor alpha, IL-6, interleukin-1 receptor agonist, serum amyloid A, and high-
sensitivity CRP. Herein, we are interested in testing the single-SNP and genomic class
modulation of the response trajectories for each of the two inflammatory biomarkers, 1L-6
and CRP. We focus our interrogation on the large subgroup of Caucasians (7= 174) as
genotypes, and response patterns are expected to differ across race and ethnicity [3].

After acute stimulation with LPS, we generally see two nonlinear trends over time, as
illustrated in Figure 2 for two exemplar biomarkers, IL-6 [Figure 2(a) and (b)] and CRP
[Figure 2(c) and (d)]. Tumor necrosis factor alpha and interleukin-1 receptor agonist (not
shown) behave similar to IL-6, while serum amyloid A (not shown) follows a trend similar
to CRP. Standard model fitting procedures were applied, resulting in a model for IL-6 with
five polynomials for time and a model for CRP with three polynomials for time. Both

models include a random person-specific intercept term (D = 0127). The resulting parameter

estimates, standard errors, and #values are provided in Table I11.

The SNP-level score-based test is applied to 353,561 filtered SNPs mapping to 28,496
classes (16,416 PCGs and 12,080 IncRNAS) to test for association with 1L-6 and CRP. For
this analysis, we extended the upstream and downstream boundaries of the classes by 5Kb in
order to capture any potentially associated strong promoter and 3" untranslated region
(UTR) regulatory regions and considered SNPs with complete data. A Bonferroni-corrected
threshold of 5 x 1078 based on one million independent signals on the genome is used to
determine statistical significance. ~-value precision at this small threshold value is evaluated
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through simulation studies in Section 3. For each SNP, a single overall test for the SNP main
effect and interactions of the SNP with orthogonal polynomials for time is calculated and
reported. Fifth-order polynomials for time are considered for IL-6 analysis (six observed
time points), and third-order polynomials for time are considered in the CRP analysis (four
observed time points). A total of 15 SNPs across three IncRNAs and six PCGs were
identified as associated with IL-6 and 21 SNPs across four IncRNAs, and nine PCGs were
identified as associated with CRP, as listed in Table IV. Sample estimated IL-6 and CRP
response trajectories by genotype based on the corresponding full models are provided in
Figure 2.

Interestingly, the majority of SNPs identified as associated with IL-6 and CRP trajectories
are not statistically associated with resting state (p-values indicated in the second to last
columns of Table IV). Indeed, among all detected SNPs for the biomarker trajectories (p <
5x1078), only three SNPs within the collagen, type V, alpha 2 (COL5A2) gene (rs10931393,
p=18.86x1077; rs10181597, p=3.11 x 1078; and rs1356165, p= 2.79 x 1075) and one SNP
in the protein disulfide isomerase family A, member 5 (PDIA5) gene (rs938392, p= 4.83 x
1076) appear potentially associated with CRP at baseline with a liberal threshold of < 5 x
1076, and no SNPs appear to be statistically associated with baseline IL-6 values. The
COL5A2 SNP rs10931393 is also the strongest resting state signal for CRP. On the other
hand, the strongest resting state signal for IL-6 is rs7331544 mapping to PCG microtubule
associated tumor suppressor candidate 2 (MTUS2) (p= 1.29 x 107), which is not
statistically associated with the IL-6 trajectory (SNP-level score = 15.499, df=6, p=
1.67x1072). In addition to a striking complement to the knowledge extracted from baseline
analysis, applying a score test with polynomial regression modeling of the biomarker
trajectories also identified genetic loci for the response to inflammatory stress not found by
simply analyzing change in biomarker from baseline to peak (p-values indicated in the last
column of Table IV). Thus, the application of appropriate modeling strategies appears to be
critical to derive the optimal clinical and biological inference.

For the IL-6 response, in addition to several novel IncRNAs, the findings include loci with
promising protein coding candidates involved in cytoskeletal and cell adhesion functions
(leucine-rich repeat-containing 16A — LRRC16A, parvin beta — PARVB, eukaryotic
translation initiation factor 3 subunit A — EIF3A), tumor suppression (early B-cell factor 3 —
EBF3), and solute exchange (solute carrier family 9 member A8 — SLC9AS8). For example,
LRRC16A at chromosome 6 regulates capping protein, a critical determinant of actin
assembly and actin-based cell motility and has been implicated recently in platelet formation
and the platelet-dependent inflammatory pathophysiology of adult respiratory distress
syndrome [39]. For CRP, several IncRNA loci were identified in addition to signals that
overlap novel protein coding candidates for inflammatory response. For example, COL5A2,
which encodes an alpha chain for one of the low abundance fibrillar collagens that is causal
in Ehlers—Danlos syndrome, was recently implicated through whole-exome sequencing in
the autoimmune disorder systemic sclerosis [40].

The results of our class-level interrogation of PCGs and IncRNA associations with IL-6 and
CRP are highlighted in Table V. This analysis is based on the 22,949 classes (13,664 PCGs
and 9285 IncRNAs) with at least two SNPs and assumes equal weights (w;= 1, V) across
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SNPs. Al classes with p< 5x107% are included in Table V. We apply a threshold that is
larger than the Bonferroni-corrected threshold of p < 0.05/22949 = 2.18 x 1076 in order to
additionally report suggestive results in this relatively small sample size setting. In total, the
class-level approach identified 7 suggestive classes (six PCGs and one IncRNA) for IL-6 and
20 classes (11 PCGs and 9 IncRNASs) for CRP. Several identified loci are common to the
individual SNP analysis, for example, EBF3 and SLC9AS for IL-6 trajectories, yet the class-
level analysis appears to uncover many additional associations for IL-6 and CRP responses
not identified through single-SNP interrogation.

For IL-6 responses, for example, polycomb group gene transcription repression (polycomb
group RING finger 2 — PCGF2) [41] and novel innate immune scavenger receptors
(scavenger receptor cysteine-rich family, 5 domains — SSC5D) [42] both have evidence to
support candidacy in modulating proteomic responses in response to LPS-induced
inflammatory stress and in inflammatory disorders. Similarly, for CRP trajectories, multiple
lincRNA and PCG loci have been uniquely identified via class-level testing, including, for
example, I-kappa-B signaling (IKBKE) [43] and glycotransferases (beta-1, 3-
glucuronyltransferase 1 — B3GAT1) [44], which have evidence for actions in immune and
inflammatory response. In addition to classes with prior and consistent evidence of
association, both the single-SNP and class-level testing revealed multiple novel loci and
pathways, previously not prioritized for mechanistic and translational study in acute and
chronic inflammatory disease, yet warranting further interrogation.

Finally, we additionally applied a class-level analysis to the baseline level of each biomarker
using Genetic Class Association Testing [45], which, similar to the class-level test described
herein, combines SNP-level tests of association in a manner that accounts for within-class
LD structure but is limited to cross-sectional analysis. Considering the same 22,949 PCGs
and IncRNAs, this analysis yielded no findings for baseline IL-6 and one finding for CRP
(COL5A2, Cs=30.0, p=1.36x1075) based on a p< 5 x 107° threshold. Consistent with
single-SNP analyses, we identify many more significant class-level associations for the LPS-
induced biomarker trajectories than for the baseline level of the same biomarker. Finally, we
note that there is no overlap of our findings for LPS-evoked inflammatory trajectories in
plasma IL-6 and CRP with findings for published large-scale population-based genetic
association studies of resting levels of plasma IL-6 and CRP with the one exception that
EBF3 is potentially in the same locus as Janus kinase and microtubule interacting protein 3
(JAKMP3), which has been reported previously as associated with IL-6 [46].

5. Discussion

In this paper, we describe an SNP and class-level score-based test for evaluating genetic
association with nonlinear time-varying biomarker responses. One attractive feature of our
proposed class-level test is that it allows efficient computation of p-values (without the need
for permutation, etc.). The simulation study showed that the p-values for class-level tests are
accurate when the sample size is moderate or large. Biologically, the findings from this
analysis are significant as they reveal distinct and substantially more genomic loci associated
with change in IL-6 and CRP response to LPS relative to resting state levels of the same
biomarker at baseline. Indeed, in this sample, which is small for genetic studies of resting
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biomarkers, there are multiple significant findings for biomarker responses but no genome-
wide statistically significant SNP-level associations and only one class-level association with
baseline level of either biomarker. These findings may be relevant to acute and chronic
inflammatory disease driven by genetic regulation of dynamic rather than static
inflammatory programs. Although our class-based findings for biomarker trajectories require
additional genomic and functional validations as candidates for inflammatory diseases,
many promising new IncRNA and PCG loci have been identified for further interrogation.

We also demonstrate the computational advantages of the SNP-level score test relative to the
LRT at the genome-wide level. The class-level analysis maintains the same advantage over
the LRT of not requiring fitting models under the alternative. Moreover, estimating the
distribution of the class-level statistic as described in Section 2.3 is computationally efficient
as direct estimation of pairwise correlations of within-class test statistics is not required. The
class-level analysis was performed on the Massachusetts Green High Performance
Computing Cluster and took approximately 5 h to run across 2000 cores for CRP with
22,949 classes of size 2 to a maximum of 1036 SNPs (median = 6, IQR = 3-12). As the
number of SNPs in a class contributes considerably to the computation time, through
increasing the dimensions of X, A; and Bj, one alternative strategy is to apply a first stage
LD pruning strategy [18, 38]. For example, pruning could be applied genome-wide using a
moving window or within-individual classes so that the class-level analysis is limited to
SNPs with LD < 0.30. The class-level test as described would then still account for residual
correlations that could exist between SNP-level score statistics while reducing the
computational burden. The disadvantage of LD pruning is the potentially substantial loss of
information resulting from eliminating SNPs with moderate LD, and thus, a careful balance
must be achieved in the trade-off between computational efficiency and maintaining
meaningful data.

Finally, we emphasize the overall versatility of the CLASS-LD approach described herein.
Another of the important features of this approach is that the class-level score test does not
depend on whether the pattern of association is the same for all SNPs within a class. For
example, the major allele of one SNP and the minor allele of another SNP within the same
class may both contribute to the response over time, and/or one SNP may influence the
overall shift in the biomarker response, while another SNP influences the early or late stage
change over time in the response. In all of these scenarios, the class-level statistic is
capturing the degree of statistical significance, and differences in the precise pattern of
association do not negatively impact the ability to detect overall associations. Additionally,
while this paper is not focused on rare variant analysis, the advantage of a score test
approach for rare variant analysis has been described previously for regional association in
the cross-sectional setting [17], and further investigation of the versatility of CLASS-LD for
rare variant analysis is warranted. The moderate number of findings that are statistically
significant after conservative correction for multiple testing, with a relatively small sample
size of n= 174 individuals, suggest reasonable power for identifying associations. This is
further supported by our power analysis results. Finally, we emphasize that this approach is
relatively simple to implement using existing R tools, and the linear mixed modeling
framework is a natural and established setting for analysis of longitudinal data. Thus,
implementation of alternative model formulations, for example, a piecewise linear change
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point model or inclusion of additional polynomials for time, is relatively straightforward. All
coding scripts for the examples and simulation study are available upon request.
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Figure 1.
Expected computation times for single-SNP analysis using LRT and score-based test.

Estimated computation times are based on a MacBook Pro using a single 2.5 GHz Intel Core
i7 processor assuming complete data on n7 = 150 individuals. Full and reduced models are
fitted using the | mer () function of the | me4 package, and the LRT is performed using the
anova() functionin R version 3.3.0. The score test statistic is calculated on the basis of the
formula of Equation (7). SNP, single nucleotide polymorphism; LRT, likelihood ratio test;
IL-6, interleukin-6; CRP, C-reactive protein. [Colour figure can be viewed at
wileyonlinelibrary.com]
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Figure 2.

Sample time-varying interleukin-6 (IL-6) and C-reactive protein (CRP) trajectories by
genotype. Non-linear trends in IL-6 and CRP over time are modified by single nucleotide
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(c) rs10211101 2¢35 maps to PCG Melanoregulin (MREG). Single
SNP score statistic = 39.739 (df = 4, p = 4.90 x 10~8); rs10211101
association with baseline CRP and change from ¢ =0 to 24 weeks
is not statistically significant (p = 1.99 x 10~3 and p = 4.98 x 10~3,
respectively)

(d) rs10914330 1p35.2 maps to PCG Na+/K+ Transporting ATPase
Interacting 1 (NKAINI). Single SNP score statistic = 41.417 (df =
4, p=2.20 x 1078); rs10914330 association with baseline CRP and
change from ¢ = 0 to 24 weeks is not statistically significant (p = 5.90 x
10~ and p = 5.75 x 1073, respectively)
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polymorphisms (SNPs); these modifications vary across SNPs, and SNPs influencing the

trajectories differ from those impacting resting state. [Colour figure can be viewed at
wileyonlinelibrary.com]
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