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Abstract

Emerging data suggest that the genetic regulation of the biological response to inflammatory stress 

may be fundamentally different to the genetic underpinning of the homeostatic control (resting 

state) of the same biological measures. In this paper, we interrogate this hypothesis using a single-

SNP score test and a novel class-level testing strategy to characterize protein-coding gene and 

regulatory element-level associations with longitudinal biomarker trajectories in response to 

stimulus. Using the proposed class-level association score statistic for longitudinal data, which 

accounts for correlations induced by linkage disequilibrium, the genetic underpinnings of evoked 

dynamic changes in repeatedly measured biomarkers are investigated. The proposed method is 

applied to data on two biomarkers arising from the Genetics of Evoked Responses to Niacin and 

Endotoxemia study, a National Institutes of Health-sponsored investigation of the genomics of 

inflammatory and metabolic responses during low-grade endotoxemia. Our results suggest that the 

genetic basis of evoked inflammatory response is different than the genetic contributors to resting 

state, and several potentially novel loci are identified. A simulation study demonstrates appropriate 

control of type-1 error rates, relative computational efficiency, and power.
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1. Introduction

Advancing our knowledge of the molecular and physiological underpinnings of complex 

diseases will deepen insight into disease etiology while providing opportunity to develop 

targeted interventions and lessen disease morbidity and mortality. In this paper, we develop 

and evaluate a method, termed classlevel association score statistic for longitudinal data 

(CLASS-LD), to reveal and characterize novel regulatory and protein-coding gene (PCG)-
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based determinants of inflammatory biomarkers that change over time in response to 

stimulus. The data motivating our research arise from the Genetics of Evoked Responses to 

Niacin and Endotoxemia (GENE) study, a National Institutes of Health-sponsored 

investigation of the genomics of inflammatory and metabolic responses during low-grade 

endotoxemia [1–3]. The aim of this investigation is to identify PCGs and regulatory 

elements that impact the time-varying trajectory of inflammatory biomarkers interleukin-6 

(IL-6) and C-reactive protein (CRP) in direct response to stimulus. Because activation of 

innate immunity is a fundamental pathophysiological process in complex cardiometabolic 

disease, for example, atherosclerosis and type 2 diabetes, as well as complex inflammatory 

disorders, for example, response to sepsis and trauma, our understanding of the genetic basis 

of these evoked inflammatory biomarkers in the GENE study provides clinically relevant 

impact toward development of novel prognostic markers and therapeutic targets in complex 

diseases [1, 3–7]. In the GENE study, we recently identified and replicated a genome-locus 

significant on chromosome 7 for the febrile response to lipopolysaccharides (LPS) and 

found that this chromosome 7 locus had no association with body temperature at rest in the 

same individuals [3]. In this paper, we further investigate, using more sophisticated analytic 

tools, the concept and emerging data [3, 8] that the genetic regulation of the biological and 

biomarker response to inflammatory stress may be fundamentally different to the genetic 

underpinning of the homeostatic control of the same biomarkers.

We focus our interrogation on known canonical PCGs [9–11] and well-annotated human 

long noncoding RNAs (lncRNAs) [12–14]; however, the methodological framework allows 

for interrogation of alternative taxonomies, or what we refer to generally as ‘classes’, such 

as gene sets annotated in the Molecular Signatures Database (MSigDB), larger emerging 

sets of multi-exon human lncRNAs [12–14], super-enhancer elements [15], and splicing 

codes. We note that the term class is similar to a single nucleotide polymorphism (SNP) set 

as described, for example, in [16, 17]. The aim of our proposed method is to characterize 

SNP-level and genomic class associations with longitudinal biomarker trajectories in 

response to stimulus for the setting in which classes can potentially influence an overall shift 

in the biomarker level as well as the rate of change in the biomarker over time. In order to 

accommodate the large number of highly correlated SNPs within a class, we fit separate 

models for each SNP, a strategy most commonly applied for cross-sectional investigations 

[18], and then derive the covariance structure analytically for corresponding score tests to 

account for the within-class linkage disequilibrium (LD) structure.

The application of mixed effects models to repeated measures data is well described [19, 

20]. Moreover, methods for testing genetic association in longitudinal studies, including 

applications of a mixed modeling framework, are presented in a few notable publications 

(e.g., [21–27]). These include a twostage approximation method to address the 

computational burden of fitting a linear mixed effects model for analysis of single-SNP 

associations [24, 25]; a set-based test for genetic association with longitudinal data based on 

a genetic random field model [23]; linear mixed effects penalized-spline models for single 

and multi-allelic markers [21]; application of a linear mixed effects model to differentiate 

genetic and environmental contributions to the variability in longitudinal data [22]; flexible 

semiparametric models to account for repeated measurements nested within individuals and 

subjects nested within families [27]; generalized estimating equations for rare variant and 
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gene–environment interactions using longitudinal data [26]. Finally, the sequence kernel 

association test uses a mixed effects model (with random SNP level effects) and a score-

based statistic to analyze regional association in the cross-sectional data setting [17]. To our 

knowledge, combining a score-based testing strategy with a mixed effects modeling 

framework for repeated measures data to characterize single-SNP and class-level association 

has not been described. Incorporation of orthogonal polynomials in the design matrix further 

allows for modeling nonlinear trends and meaningful SNP by time interactions. As 

described in [17], while conservative, the score test only requires fitting a reduced model and 

is thus computationally efficient for single-SNP analysis, as we demonstrate in our 

simulation study.

To begin, we describe a simple modeling framework for modeling nonlinear repeated 

measures data, emphasizing that the proposed approach is flexible with respect to the 

specific choice of components for this model (Section 2.1). We then describe a score test 

approach for evaluating single-SNP associations (Section 2.2), define a class-based test 

statistic, and approximate its distribution analytically, taking into account the within-class 

correlation of statistics due to LD (Section 2.3). Simulation studies are presented to 

characterize type-1 error rates, computational efficiencies, and power (Section 3). The 

approach is then applied to the GENE study data in order to identify PCGs and lncRNAs 

that associate with inflammatory biomarker trajectories (Section 4). Finally, we offer a 

discussion of this testing strategy and potential further extensions (Section 5).

2. Approach

2.1. Model

Consider a general form of the linear mixed effects model [19] given by

Y = X0β + Xsγs + Zb + ε (1)

where Y is of length n and represents a quantitative trait, X0 is the fixed effects design 

matrix for intercept, time and potentially additional covariates, Xs is the fixed effects design 

matrix involving the SNP data, Z is the random effects design matrix, b ~ N(0,D), 

D = σb
2Ω, ε N(0, σε

2In), and Z ⊂ X0. Using the notation of [28], we further let λ = σb
2/σε

2 and 

define Vλ = In + λZΩZT. The mixed effects model is a well-established and fully described 

modeling framework that accounts for within-individual correlations while offering 

flexibility for unbalanced data in the context of longitudinal data [19,29,30]. In subsequent 

sections, we refer to the model of Equation (1) as the full model.

We use the general framework of Equation (1) in the single-SNP score test (Section 2.2) and 

in the derivation of the distribution of the class-level statistic (Section 2.3) such that the 

specifications of X0, Xs, and Z are generic. As an example, in Section 4, we define X0 = [1n, 
t(1),…, t(K)] and Xs = [xs, t(1)xs,…, t(K)xs], where 1n is an n × 1 vector of 1’s, t(k) is the kth 
order orthogonal polynomial of time for k = 1,…,K, and xs is a vector of the number of 

variant alleles at SNP s (assuming a standard additive genetic model) for the individuals in 
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the study. In this case, Xs = ΔsX0 where Δs = diag(xs). The precise form of the design 

matrices, including inclusion of relevant covariates and additional polynomials, can be 

determined for each specific outcome under study using standard modeling fitting 

procedures [19, 31]. A broad range of alternative model formulations within this framework 

are also tenable, including a piecewise linear mixed effects model [19, 32].

2.2. Score test for single-SNP association

In the model of Equation (1), the parameter γ represents the SNP association with the 

outcome, Y, and generally, interest is in testing H0 : γs = 0 against H1 : γs ≠ 0 without 

specifying β. For example, in the setting described in Section 4, in which Xs = [xs, t(1)xs,…, 
t(K)xs], a test of H0 : γs = 0 is an overall test of no main effect of SNP s nor any SNP s by 

time interactions on the response Y. This null hypothesis corresponds to the reduced model 
given by

Y = X0β + Zb + ε (2)

Letting the log likelihood of the parameters θ = (β, γs, λ, σε
2) be denoted l = log{L(θ)}, we 

have

l = − 1
2 log (σε

2) − 1
2 log ∣ Vλ ∣ − (Y − X0β − Xsγs)

TVλ
−1(Y − X0β − Xsγs)/(2σε

2) (3)

The score function and information matrix are respectively given by

U(β, γs) = [Uβ(β, γs) Uγs
(β, γs)]

T = [∂l/ ∂ β ∂l/ ∂γs]
T (4)

= [σε
−2X0

TVλ
−1(Y − X0β − Xsγs) σε

−2Xs
TVλ

−1(Y − X0β − Xsγs)]
T

(5)

and

I(β, γs) =
Iββ Iβγs

Iγsβ Iγsγs

=
−E[∂2l/ ∂ β∂ β] −E[∂2l/ ∂ β∂γs]

−E[∂2l/ ∂γs∂ β] −E[∂2l/ ∂γs∂γs]

=
σε

−2X0
TVλ

−1X0 σε
−2X0

TVλ
−1Xs

σε
−2Xs

TVλ
−1X0 σε

−2Xs
TVλ

−1Xs

(6)
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Defining ∑(β, γs) = Iγsγs
− IγsβIββ

−1Iβγs
, it follows from [33] (Section 9.3) that Σ(β, γs) is the 

asymptotic covariance matrix of Uγs(β, γs). The score test statistic for H0 : γs = 0 against 

H1 : γs ≠ 0 without specifying β is thus given by

S = Uγs
(β
∼, 0)T∑(β

∼, 0)−1
Uγs

(β
∼, 0) (7)

where β
∼ = (X0

TVλ
−1X0)−1X0

TVλ
−1Y is the estimate of β under the null hypothesis. As Eβ,γs 

[U(β, γs)] = 0 for all β, γs, under the null hypothesis, the score test statistic, S, has a central 

χ2 distribution with q degrees of freedom, where q is the length of the parameter vector γs.

2.3. Class-level test of association

Within a genomic class with m SNPs, we have S = (S1, S2,…, Sm)T, a vector of m 
potentially correlated central χ2-statistics, each corresponding to a single-SNP score test 

statistic with q degrees of freedom. We define a class-level test statistic as

𝒞 = ∑
j = 1

m
ω jS j (8)

where ωj are pre-specified weights such that ∑ j = 1
m ω j = 1. In our data example of Section 4, 

equal weights (ωj = 1/m, for all j = 1,…,m) are applied in the absence of prior biological 

information regarding single SNPs and because the analysis is focused on common variants. 

In the simulation study of Section 3, alternative weights allowing for a greater influence of 

less common variants as described by Wu et al. [17] are also considered. Notably,  can be 

expressed as a quadratic form, given by

𝒞 = ∑
j = 1

m
ω jY

TA jY = YT ∑
j = 1

m
ω jA j Y = YTA∼Y (9)

where A j = B j
T∑(β

∼, 0)−1B j, B j = σε
−2Xs

TVλ
−1 In − X0(X0

TVλ
−1X0)−1X0

TVλ
−1 , for j = 1,…,m, and 

A∼ = ∑ j = 1
m ω jA j. Moreover, Y ~ MVN(μY, ΣY), where under the null, μY = X0β and 

∑Y = σε
2Vλ.

Under the null hypothesis,  is a weighted sum of correlated chi-square statistics, whose 

distribution is difficult to track analytically. Given that  can be expressed as a quadratic 

form (as given in Equation (9)), we adopt the method in [34] to closely approximate the 

distribution of  with a chi-square distribution. This computationally efficient approximation 

Qian et al. Page 5

Stat Med. Author manuscript; available in PMC 2018 August 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



method, which searches for the distribution matching the first four moments of the quadratic 

form, turns out to work well in our setting in which accurate control of type-1 error rates at 

the 5 × 10−6 level is required. Specifically, using the result of [34] we have

Pr(𝒞 > t) ≈ Pr(χl
2(δ) > t∗σ χ + μχ) (10)

where μχ = l + δ, σ χ = a 2, t* = (t − μ )/σ , μ  = c1, σ𝒞 = 2c2, s1 = c3/c2
3/2, s2 = c4/c2

2, and

ck = tr (A∼∑Y)k + k ∗ μY
T(A∼∑Y)k − 1A

∼
μY, (k = 1, 2, 3, 4) (11)

where Ak = A(A)k−1 for k ≥ 1, A0 = I and tr[·] is the trace of a matrix. Finally, if 

s1
2 > s2, a = 1/ s1 − s1

2 − s2 , δ = s1a3 − a2, and l = a2 − 2δ. Otherwise, if s1
2 ≤ s2, a = 1/s1, δ = 

0, and l = c2
3/c3

2. An estimate of ck is given by replacing μY and ΣY in Equation (11) by their 

estimates under the reduced model of Equation (2).

2.4. A note on approximating the distribution of 

As an alternative strategy, we could instead apply the results of [35, 36] and [37] and 

approximate  by ℛ aχν
2 where we set E( ) = E(ℛ) and Var( ) = Var(ℛ). In our setting, 

E( ) = q = E(ℛ) = aν and therefore a = q/ν and 𝒞 qχν
2/ν. Moreover, Var(ℛ) = a2(2ν) and 

thus Var( ) = (q2/ν2)(2ν) = 2q2/ν. Finally, this yields

ν = 2q2

Var(𝒞) = 2q2 2q ∑
j = 1

m
ωi

2 + 2 ∑
j = 1

m − 1
∑

k = j + 1

m
ω jωk ∗ Cov(S j, Sk)

−1
(12)

In order to derive the covariance, Cov(Sj, Sk) of Equation (12), we again note that we can 

write Sj = YTAjY and Sk = YTAkY, where Aj and Ak are as defined earlier. Under H0, E(Y) 

= X0 β̃, and Cov(Y) = σε
2Vλ, and therefore, using the established result for quadratic forms, 

we have

Cov(S j, Sk) = 2σε
4tr(A jVλAkVλ) + 4σε

2β
∼TX0

TA jVλAkX0β
∼

(13)

where again tr(·) is the trace of a matrix. An estimate of Cov(Sj, Sk) is given by replacing the 

variance components with their estimates under the reduced model of Equation (2). Finally, 

we estimate ν with ν̂, which is calculated by replacing Cov(Sj, Sk) of Equation (12) with its 

estimate.
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While this approximation approach ensures the correct mean and variance of the test statistic 

distribution, the precision at the tail of the distribution in not well established.We evaluated 

this precision in our setting using a simulation study with 1 × 108 replications. Estimated 

type-1 error rates are 1.17 × 10−2, 1.55 × 10−3, 2.42 × 10−4, 3.4 × 10−5, and 8.0 × 10−6 at α 
= 1 × 10−2, 1 × 10−3, 1 × 10−4, 1 × 10−5, and 1 × 10−6, respectively. These results suggest 

that the type-1 error rate is relatively accurate when the α-level is large (e.g., 1 × 10−2), but 

the precision declines as α decreases. Importantly, this implies that this alternative 

approximation may be appropriate for a single candidate class analysis but is not optimal in 

the context of multiple testing in which precision at smaller p-values is required. The 

approach we describe in Section 2.3, on the other hand, offers reasonable precision up to α = 

10−6 as reported in Table I. Interestingly, the approach of Section 2.3 is also computationally 

more efficient than this alternative strategy, as the approach of Section 2.3 does not require 

the extensive matrix multiplication needed to calculate the within-class pairwise covariances 

of the SNP-level score statistics (Equation (13)).

3. Simulation studies

We perform simulation studies to characterize type-1 error, computational efficiency, and 

power. For the SNP-level test, repeated measures data at t = 0, 1, 2, 4, 6, 12 h for sample 

sizes of n = 150 (close to our example data sample size of n = 174) and n = 500 individuals 

are generated independent of genotype, using the reduced model estimates for IL-6 reported 

in Section 4 and Table III. Type-1 error rates for the SNP-level score test are estimated using 

randomly generated SNPs with minor allele frequencies ranging from 0.10 to 0.40. P-value 

thresholds of α = 1.0 × 10−4 to 5.0 × 10−8 are considered, and estimated error rates based on 

1 × 109 simulations are provided in Table I. For the class-level analysis, we generate 

correlated SNPs on seven SNPs that map to the inhibitor of kappa light polypeptide gene 

enhancer in B-cells, kinase epsilon (IKBKE) gene identified as associated with the CRP 

trajectory (see Section 4 and Table V). SNPs are generated by sampling with replacement 

from the n = 174 individuals in our study, preserving the within-individual link to maintain 

the observed LD structure within IKBKE. Repeated measures data at t = 0, 6, 12, 24 h for 

sample sizes of n = 150 and n = 500 individuals are generated independent of genotype, 

using the reduced model estimates for CRP reported in Section 4 and Table III. A class-level 

test statistic is calculated according to Equation (8) using equal weights (ωj = 1/m, for all j = 

1,…,m), and a corresponding p-value is calculated using the approximation of Equation 

(10). P-value thresholds of α = 1 × 10−2 to 1 × 10−6 are considered, and estimated error rates 

based on an additional 1 × 108 simulations are provided in Table I. These results suggest 

reasonable precision for our observed sample size of n = 174 individuals at the Bonferroni-

corrected thresholds for both the SNP-level (p ≤ 5.0 × 10−8) and class-level (p ≤ 5 × 10−6) 

analyses.

The computational performances of the single-SNP score-based test and the likelihood ratio 

test (LRT) are also compared through a simulation study. Complete repeated measures data 

on n = 150 individuals at six time points for IL-6 and three time points for CRP are 

simulated using the model estimates of Section 4 and Table III, and SNPs are generated with 

minor allele frequencies ranging from 0.10 to 0.40. The LRT is performed by fitting the full 

and reduced models described in Section 2.1 with the lmer() function, and models are 
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compared with the anova() function in R. For the score test, the reduced model is fitted for 

the first SNP iteration, and subsequently, the score statistic is calculated in R using the 

formula of Equation (7). The per SNP computation is estimated on the basis of the average 

of 100 simulations on a MacBook pro using a single 2.5 GHz Intel Core i7 processor and 

then extrapolated to give the expected computation time for up to 106 SNPs. The results are 

illustrated in Figure 1 and suggest that the score test is approximately 2.8 times more 

efficient than the LRT for both the IL-6 and CRP analyses.

Power analysis is performed to evaluate performance under example conditions that are 

consistent with the observed data. We select four genes as the basis for analysis, two of 

which are reported as significant findings in Tables IV and V based on both the single-SNP 

and class-level analyses (EBF3 for IL-6 and TPRG1 for CRP) and two with more moderate 

class-level associations, one of which has a significant single-SNP association (SLC6A7 for 

IL-6 with a class-level score test p-value = 6.72E-06 and minimum single-SNP score test p-

value = 8.84E-06 and MREG for CRP with a class-level score test p-value 1.44E-05 and 

minimum single-SNP score test p-value= 4.890E-08). In addition to having a range of 

associations with the repeatedly measured biomarkers, these genes were chosen to 

demonstrate power for a variety of LD structures and numbers of SNPs per class. The 

observed numbers of SNPs within the class, the proportion of these SNPs with LD >0.3 with 

at least one other SNP within the same class, and the proportion with LD >0.6 with at least 

one other SNP within the same class are respectively 26, 0.46, 0.38 for EBF3; 11, 0.64, 0.36 

for SLC6A7; 37, 0.68, 0.51 for TPRG1; and 22, 0.41, 0.18 for MREG. For the simulation 

study, complete genotype data for each of these four genes are sampled with replacement 

from the GENE study data, preserving the within-individual links and LD structure.

Next, we simulate repeatedly measured biomarker responses under a collection of 

alternatives. Because of the high degree of collinearity among SNPs within a gene, we first 

apply an LD pruning strategy [38] to fit full models and obtain data-driven parameter 

estimates. We note that our proposed strategy as described in Section 2.3 only requires 

fitting the null model thus overcoming the challenges inherent with the presence of high 

within-class LD; however, for the purpose of simulating realistic biomarker trajectories, we 

need to fit a full model involving multiple SNP signals within a class. The LD pruning 

approach involves iteratively retaining the strongest signal SNP (smallest p-value based on a 

score test of SNP and SNP by time interactions) and eliminating all remaining SNPs within 

the class that have a pairwise LD of ≥ 0.3with this strongest signal SNP. The process is 

repeated until all SNPs have a pairwise LD < 0.3. After LD pruning, we have a subset of 

quasi-independent SNPs for each gene, totaling 15 out of the original 26 for EBF3; 5 of 11 

for SLC6A7; 14 of 37 for TPRG; and 1 and 14 of 22 for MREG.

Models of association, under which biomarker response data are simulated, are listed in 

Table II, and include (a) a model with main effects of SNPs and linear time; (b) a model with 

main effects of SNPs and orthogonal polynomials for time. Here, five polynomials for IL-6 

and three for CRP are used to be consistent with the example of Section 4. (c) a model with 

interactions between SNPs and linear time. The natural logarithm of IL-6 and CRP are both 

simulated according to these models. In each case, a mixed effects model with random 

individual-level intercepts are fitted to the GENE study data to arrive a parameter estimates. 
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As one example, model (a) for IL-6 based on the SLC6A7 gene includes main effects for 

five SNPs and a linear time component. The fitted model based on the GENE study data is ŷ 
= 2.379 − 0.020 * time + 0.010x1 + 0.148x2 + 0.024x3 + 0.050x4 + 0.027x5, where x1,…, x5 

correspond to the five SNPs in SLC6A7 after LD pruning. Simulated response trajectories 

based on this model include random person-specific effects and random measurement errors, 

which are assumed to arise from independent normal distributions.

Under each condition, 1000 simulations are conducted and power is defined as the 

proportion of these that correctly results in detecting a class-level association. In each 

scenario, we report power assuming the same model of association (e.g., linear versus 

nonlinear time trend) used to generate the data. While this can result in higher power 

estimates than if an incorrect model were specified, we assume that appropriate model fitting 

techniques are applied a priori as we do in the example of Section 4. For comparison, power 

is also reported for the minP SNP-level score test approach and the minP univariate 

approach based on the change from baseline to peak, corresponding to 2 h for IL-6 and 24 h 

for CRP. Details of these alternative approaches are given in Section 4. Bonferroni 

adjustments are applied for the minP approaches according to the number of SNPs within 

the class. Finally, three sets of weights are considered for the class-level test of association: 

(1) ωj = 1/m for all j = 1,…,m; (2) ω j = Beta(MAF j, 0.5, 0.5)2/∑k = 1
m Beta(MAFk, 0.5, 0.5)2; and 

(3) ω j = Beta(MAF j, 1, 25)2/∑k = 1
m Beta(MAFk, 1, 25)2, where m is the number of SNPs in the 

class. In case (1), we apply equal weights, as carried out in the example of Section 4. The 

two alternatives are suggested by Wu et al. [17], where we additionally scale the weights to 

sum to 1 within a class. In case (2), we are weighting by the inverse of the variance of the 

SNP, given by 1/MAFj(1−MAFj). This results in slightly higher weights for the less common 

variants. Finally, case (3) up weights rare variants and down weights more common variants. 

Because we do not have rare variants (MAFj ≥ 0.01 for all j), scheme (2) does not result in 

the extreme weighting described in [17], and we expect scheme (3) to result in lower power.

The power results are provided in Table II and, as expected, suggest that the class-level score 

test yields a range of powers depending on the underlying model of association, the within-

class LD structure, the number of SNPs, and the sample size (n). Assuming equal weights 

and a sample size of n = 150, the power for the class-level test ranged from 30.0% for 

MREG with CRP as the outcome assuming model (a) to a maximum of 95.8% also for 

MREG with CRP as the outcome, assuming model (c). In all cases, the minP score had 

lower power, ranging from 18.3% to 87.2% for a sample size of n = 150, and power for the 

change analysis is substantially smaller. The choice of weights also dramatically impacts 

power with drastically lower power observed for the extreme choice of weights of scheme 

(3). This result is expected as these data do not include rare variants, and the lower 

frequency variants, which obtain a relatively large proportion of the weight, are not 

necessarily the drivers of association. For example, under weighting scheme (3) and model 

(a), rs451139 in EBF3 (MAFj = 0.12) has a corresponding ωj = 0.82 and a model coefficient 

βj = −0.060, while rs451138 (MAFj = 0.36) has a corresponding ωj = 1.8 × 10−7 and a 

model coefficient βj = 0.231 (the largest effect of all SNPs within this gene). Thus, while the 

influence of rs451138 is substantial in the true model, the contribution of this SNP to the 

overall score test is practically 0. On the other hand, under weighting scheme (2), the 
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corresponding weights are ωj = 0.071 and ωj = 0.033 for rs451139 and rs451138, 

respectively, which is consistent with the relatively high power for weighting scheme (2) 

compared with (3) −79.2% vs. 29.2% power for a sample size of n = 150. The difference in 

power between weighting schemes (1) and (2) is relatively small, and without prior 

information to suggest that less frequent variants are more influential, we elect to use equal 

weights in the example of Section 4. Finally, we note that the estimated type-1 error rate of 

the class-level score test for the four genes and two outcomes (eight combinations), 

assuming a model with polynomials for time and no SNP-level effect, averaged 0.050, 

0.048, and 0.047 for weighting schemes (1), (2), and (3), respectively.

4. Example: genetics of inflammatory response to stimulus

As mentioned in Section 1, the data motivating our research arise from the GENE study, a 

National Institutes of Health-sponsored investigation of the genomics of inflammatory and 

metabolic responses during low-grade endotoxemia [1–3]. Eligible participants (n = 294) 

participated in five separate visits, including three outpatient visits and two inpatient visits 

that addressed separate hypotheses: (i) an endotoxin challenge visit (1 ng/kg Escherichia 
coli-derived LPS) (GENE-LPS) and (ii) a niacin challenge visit (GENE-niacin). Findings 

from the GENE-LPS component are the focus of our present investigation. The GENE 

inpatient LPS visit lasted approximately 40 h, with a 10-h overnight acclimatization phase 

and a 30-h post-LPS phase, as described [1–3]. Multiple clinical variables were assessed 

regularly during the visit, including temperature and serial blood draws (−15 and −5 min and 

1, 2, 4, 6, 12, 18, and 24 h post LPS) and subsequent measurement of levels of tumor 

necrosis factor alpha, IL-6, interleukin-1 receptor agonist, serum amyloid A, and high-

sensitivity CRP. Herein, we are interested in testing the single-SNP and genomic class 

modulation of the response trajectories for each of the two inflammatory biomarkers, IL-6 

and CRP. We focus our interrogation on the large subgroup of Caucasians (n = 174) as 

genotypes, and response patterns are expected to differ across race and ethnicity [3].

After acute stimulation with LPS, we generally see two nonlinear trends over time, as 

illustrated in Figure 2 for two exemplar biomarkers, IL-6 [Figure 2(a) and (b)] and CRP 

[Figure 2(c) and (d)]. Tumor necrosis factor alpha and interleukin-1 receptor agonist (not 

shown) behave similar to IL-6, while serum amyloid A (not shown) follows a trend similar 

to CRP. Standard model fitting procedures were applied, resulting in a model for IL-6 with 

five polynomials for time and a model for CRP with three polynomials for time. Both 

models include a random person-specific intercept term ( D = σb
2). The resulting parameter 

estimates, standard errors, and t-values are provided in Table III.

The SNP-level score-based test is applied to 353,561 filtered SNPs mapping to 28,496 

classes (16,416 PCGs and 12,080 lncRNAs) to test for association with IL-6 and CRP. For 

this analysis, we extended the upstream and downstream boundaries of the classes by 5Kb in 

order to capture any potentially associated strong promoter and 3′ untranslated region 

(UTR) regulatory regions and considered SNPs with complete data. A Bonferroni-corrected 

threshold of 5 × 10−8 based on one million independent signals on the genome is used to 

determine statistical significance. P-value precision at this small threshold value is evaluated 
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through simulation studies in Section 3. For each SNP, a single overall test for the SNP main 

effect and interactions of the SNP with orthogonal polynomials for time is calculated and 

reported. Fifth-order polynomials for time are considered for IL-6 analysis (six observed 

time points), and third-order polynomials for time are considered in the CRP analysis (four 

observed time points). A total of 15 SNPs across three lncRNAs and six PCGs were 

identified as associated with IL-6 and 21 SNPs across four lncRNAs, and nine PCGs were 

identified as associated with CRP, as listed in Table IV. Sample estimated IL-6 and CRP 

response trajectories by genotype based on the corresponding full models are provided in 

Figure 2.

Interestingly, the majority of SNPs identified as associated with IL-6 and CRP trajectories 

are not statistically associated with resting state (p-values indicated in the second to last 

columns of Table IV). Indeed, among all detected SNPs for the biomarker trajectories (p < 

5×10−8), only three SNPs within the collagen, type V, alpha 2 (COL5A2) gene (rs10931393, 

p = 8.86 × 10−7; rs10181597, p = 3.11 × 10−6; and rs1356165, p = 2.79 × 10−6) and one SNP 

in the protein disulfide isomerase family A, member 5 (PDIA5) gene (rs938392, p = 4.83 × 

10−6) appear potentially associated with CRP at baseline with a liberal threshold of < 5 × 

10−6, and no SNPs appear to be statistically associated with baseline IL-6 values. The 

COL5A2 SNP rs10931393 is also the strongest resting state signal for CRP. On the other 

hand, the strongest resting state signal for IL-6 is rs7331544 mapping to PCG microtubule 

associated tumor suppressor candidate 2 (MTUS2) (p = 1.29 × 10−6), which is not 

statistically associated with the IL-6 trajectory (SNP-level score = 15.499, df = 6, p = 

1.67×10−2). In addition to a striking complement to the knowledge extracted from baseline 

analysis, applying a score test with polynomial regression modeling of the biomarker 

trajectories also identified genetic loci for the response to inflammatory stress not found by 

simply analyzing change in biomarker from baseline to peak (p-values indicated in the last 

column of Table IV). Thus, the application of appropriate modeling strategies appears to be 

critical to derive the optimal clinical and biological inference.

For the IL-6 response, in addition to several novel lncRNAs, the findings include loci with 

promising protein coding candidates involved in cytoskeletal and cell adhesion functions 

(leucine-rich repeat-containing 16A – LRRC16A, parvin beta – PARVB, eukaryotic 

translation initiation factor 3 subunit A – EIF3A), tumor suppression (early B-cell factor 3 – 

EBF3), and solute exchange (solute carrier family 9 member A8 – SLC9A8). For example, 

LRRC16A at chromosome 6 regulates capping protein, a critical determinant of actin 

assembly and actin-based cell motility and has been implicated recently in platelet formation 

and the platelet-dependent inflammatory pathophysiology of adult respiratory distress 

syndrome [39]. For CRP, several lncRNA loci were identified in addition to signals that 

overlap novel protein coding candidates for inflammatory response. For example, COL5A2, 

which encodes an alpha chain for one of the low abundance fibrillar collagens that is causal 

in Ehlers–Danlos syndrome, was recently implicated through whole-exome sequencing in 

the autoimmune disorder systemic sclerosis [40].

The results of our class-level interrogation of PCGs and lncRNA associations with IL-6 and 

CRP are highlighted in Table V. This analysis is based on the 22,949 classes (13,664 PCGs 

and 9285 lncRNAs) with at least two SNPs and assumes equal weights (ωj = 1, ∀j) across 
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SNPs. All classes with p ≤ 5×10−6 are included in Table V. We apply a threshold that is 

larger than the Bonferroni-corrected threshold of p ≤ 0.05/22949 = 2.18 × 10−6 in order to 

additionally report suggestive results in this relatively small sample size setting. In total, the 

class-level approach identified 7 suggestive classes (six PCGs and one lncRNA) for IL-6 and 

20 classes (11 PCGs and 9 lncRNAs) for CRP. Several identified loci are common to the 

individual SNP analysis, for example, EBF3 and SLC9A8 for IL-6 trajectories, yet the class-

level analysis appears to uncover many additional associations for IL-6 and CRP responses 

not identified through single-SNP interrogation.

For IL-6 responses, for example, polycomb group gene transcription repression (polycomb 

group RING finger 2 – PCGF2) [41] and novel innate immune scavenger receptors 

(scavenger receptor cysteine-rich family, 5 domains – SSC5D) [42] both have evidence to 

support candidacy in modulating proteomic responses in response to LPS-induced 

inflammatory stress and in inflammatory disorders. Similarly, for CRP trajectories, multiple 

lincRNA and PCG loci have been uniquely identified via class-level testing, including, for 

example, I-kappa-B signaling (IKBKE) [43] and glycotransferases (beta-1, 3-

glucuronyltransferase 1 – B3GAT1) [44], which have evidence for actions in immune and 

inflammatory response. In addition to classes with prior and consistent evidence of 

association, both the single-SNP and class-level testing revealed multiple novel loci and 

pathways, previously not prioritized for mechanistic and translational study in acute and 

chronic inflammatory disease, yet warranting further interrogation.

Finally, we additionally applied a class-level analysis to the baseline level of each biomarker 

using Genetic Class Association Testing [45], which, similar to the class-level test described 

herein, combines SNP-level tests of association in a manner that accounts for within-class 

LD structure but is limited to cross-sectional analysis. Considering the same 22,949 PCGs 

and lncRNAs, this analysis yielded no findings for baseline IL-6 and one finding for CRP 

(COL5A2, Cs = 30.0, p = 1.36×10−6) based on a p ≤ 5 × 10−6 threshold. Consistent with 

single-SNP analyses, we identify many more significant class-level associations for the LPS-

induced biomarker trajectories than for the baseline level of the same biomarker. Finally, we 

note that there is no overlap of our findings for LPS-evoked inflammatory trajectories in 

plasma IL-6 and CRP with findings for published large-scale population-based genetic 

association studies of resting levels of plasma IL-6 and CRP with the one exception that 

EBF3 is potentially in the same locus as Janus kinase and microtubule interacting protein 3 

(JAKMP3), which has been reported previously as associated with IL-6 [46].

5. Discussion

In this paper, we describe an SNP and class-level score-based test for evaluating genetic 

association with nonlinear time-varying biomarker responses. One attractive feature of our 

proposed class-level test is that it allows efficient computation of p-values (without the need 

for permutation, etc.). The simulation study showed that the p-values for class-level tests are 

accurate when the sample size is moderate or large. Biologically, the findings from this 

analysis are significant as they reveal distinct and substantially more genomic loci associated 

with change in IL-6 and CRP response to LPS relative to resting state levels of the same 

biomarker at baseline. Indeed, in this sample, which is small for genetic studies of resting 
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biomarkers, there are multiple significant findings for biomarker responses but no genome-

wide statistically significant SNP-level associations and only one class-level association with 

baseline level of either biomarker. These findings may be relevant to acute and chronic 

inflammatory disease driven by genetic regulation of dynamic rather than static 

inflammatory programs. Although our class-based findings for biomarker trajectories require 

additional genomic and functional validations as candidates for inflammatory diseases, 

many promising new lncRNA and PCG loci have been identified for further interrogation.

We also demonstrate the computational advantages of the SNP-level score test relative to the 

LRT at the genome-wide level. The class-level analysis maintains the same advantage over 

the LRT of not requiring fitting models under the alternative. Moreover, estimating the 

distribution of the class-level statistic as described in Section 2.3 is computationally efficient 

as direct estimation of pairwise correlations of within-class test statistics is not required. The 

class-level analysis was performed on the Massachusetts Green High Performance 

Computing Cluster and took approximately 5 h to run across 2000 cores for CRP with 

22,949 classes of size 2 to a maximum of 1036 SNPs (median = 6, IQR = 3–12). As the 

number of SNPs in a class contributes considerably to the computation time, through 

increasing the dimensions of Xs, Aj, and Bj, one alternative strategy is to apply a first stage 

LD pruning strategy [18, 38]. For example, pruning could be applied genome-wide using a 

moving window or within-individual classes so that the class-level analysis is limited to 

SNPs with LD ≤ 0.30. The class-level test as described would then still account for residual 

correlations that could exist between SNP-level score statistics while reducing the 

computational burden. The disadvantage of LD pruning is the potentially substantial loss of 

information resulting from eliminating SNPs with moderate LD, and thus, a careful balance 

must be achieved in the trade-off between computational efficiency and maintaining 

meaningful data.

Finally, we emphasize the overall versatility of the CLASS-LD approach described herein. 

Another of the important features of this approach is that the class-level score test does not 

depend on whether the pattern of association is the same for all SNPs within a class. For 

example, the major allele of one SNP and the minor allele of another SNP within the same 

class may both contribute to the response over time, and/or one SNP may influence the 

overall shift in the biomarker response, while another SNP influences the early or late stage 

change over time in the response. In all of these scenarios, the class-level statistic is 

capturing the degree of statistical significance, and differences in the precise pattern of 

association do not negatively impact the ability to detect overall associations. Additionally, 

while this paper is not focused on rare variant analysis, the advantage of a score test 

approach for rare variant analysis has been described previously for regional association in 

the cross-sectional setting [17], and further investigation of the versatility of CLASS-LD for 

rare variant analysis is warranted. The moderate number of findings that are statistically 

significant after conservative correction for multiple testing, with a relatively small sample 

size of n = 174 individuals, suggest reasonable power for identifying associations. This is 

further supported by our power analysis results. Finally, we emphasize that this approach is 

relatively simple to implement using existing R tools, and the linear mixed modeling 

framework is a natural and established setting for analysis of longitudinal data. Thus, 

implementation of alternative model formulations, for example, a piecewise linear change 
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point model or inclusion of additional polynomials for time, is relatively straightforward. All 

coding scripts for the examples and simulation study are available upon request.
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Figure 1. 
Expected computation times for single-SNP analysis using LRT and score-based test. 

Estimated computation times are based on a MacBook Pro using a single 2.5 GHz Intel Core 

i7 processor assuming complete data on n = 150 individuals. Full and reduced models are 

fitted using the lmer() function of the lme4 package, and the LRT is performed using the 

anova() function in R version 3.3.0. The score test statistic is calculated on the basis of the 

formula of Equation (7). SNP, single nucleotide polymorphism; LRT, likelihood ratio test; 

IL-6, interleukin-6; CRP, C-reactive protein. [Colour figure can be viewed at 

wileyonlinelibrary.com]
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Figure 2. 
Sample time-varying interleukin-6 (IL-6) and C-reactive protein (CRP) trajectories by 

genotype. Non-linear trends in IL-6 and CRP over time are modified by single nucleotide 

polymorphisms (SNPs); these modifications vary across SNPs, and SNPs influencing the 

trajectories differ from those impacting resting state. [Colour figure can be viewed at 

wileyonlinelibrary.com]
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