Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 May 25;74(Pt 6):853–856. doi: 10.1107/S2056989018007284

Crystal structure of racemic 2-[(β-arabino­pyran­osyl)­sulfanyl]-4,6-diphenylpyridine-3-carbo­nitrile

Sherif F Hammad a, Doaa M Masoud b, Galal H Elgemeie b, Peter G Jones c,*
PMCID: PMC6002821  PMID: 29951244

In the racemic title compound, the sulfur atom is attached equatorially to the sugar ring with unequal S—C bonds. The dihedral angles between the pyridine ring and its attached phenyl groups are 42.24 (8) and 6.37 (14)°. In the crystal, a system of classical O—H⋯O and O—H⋯(O,O) hydrogen bonds links the mol­ecules to form tube-like assemblies propagating parallel to the c-axis direction.

Keywords: crystal structure, arabinose, pyridine, hydrogen bond

Abstract

In the racemic title compound, C23H20N2O4S, the sulfur atom is attached equatorially to the sugar ring with unequal S—C bonds, viz.: S—Cs = 1.808 (2) and S—Cp = 1.770 (2) Å (s = sugar, p = pyrid­yl). The dihedral angles between the pyridine ring and its attached phenyl groups are 42.24 (8) and 6.37 (14)°. In the crystal, a system of classical O—H⋯O and O—H⋯(O,O) hydrogen bonds links the mol­ecules to form tube-like assemblies propagating parallel to the c-axis direction. Weak C—H⋯N inter­actions are also observed.

Chemical context  

In recent years, nucleoside analogues of pyrimidines and purines have been shown to be effective as chemical therapeutic agents against cancer cells (Yoshimura et al., 2000; Elgemeie et al., 2016, 2017a ,b ). Recently, heterocyclic thio­glycosides have been used as anti­metabolic agents in medicinal chemistry (Dinkelaar et al., 2006; Kananovich et al., 2014; Elgemeie & Abu-Zaied, 2017). We and others have designed new syntheses for pyridine thio­glycosides, which have shown strong cytotoxicity against various human cancer cell lines and block proliferation of various cancer cell lines (Komor et al., 2012; Elgemeie et al., 2015). It has also been shown that thio­glycosides involving pyridine and di­hydro­pyridine groups exert inhibitory effects on both DNA-containing viruses and inhibitors of protein glycosyl­ation (Agrawal et al., 2017; Elgemeie et al., 2010; Masoud et al., 2017). Based on these significant biological findings and with the aim of identifying new potent chemotherapeutics as new anti­cancer agents with improved pharmacological and safety profiles, we have prepared several new non-classical thio­glycosides containing the pyridine ring.

Here we report a one-step synthesis of the pyridine-2-thio­arabinoside (4) by the reaction of the pyridine-2 (1H)-thione derivative (1) with 2,3,4-tri-O-acetyl-α-d-arabino­pyranosyl bromide (2). Thus, (1) reacted with (2) in KOH in acetone to give a product for which two isomeric N- or S-arabinoside structures were conceivable, corresponding to two possible modes of glycosyl­ation. The final deprotected product (see Scheme) would then be either the pyridine-2-thio­arabinoside (4) or its regioisomer pyridine-2-thione-N-arab­inoside (5). Spectroscopic data cannot differentiate between these two structures.graphic file with name e-74-00853-scheme1.jpg

Structural commentary  

The crystal structure determination indicated unambiguously the formation of the pyridine-2-thio­arabinoside (4) as the only product in the solid state. We suggest that the 2,3,4-tri-O-acetyl-α-d-arabinopranosyl bromide (2) inter­acts via a simple SN2 reaction to give the β-glycoside product (3), which after deprotection leads to the free 2-(β-d/l-arabino­pyran­osyl­thio)-pyridine-3-carbo­nitrile (4). This separates as a racemic mixture, presumably because of thermodynamic racemization during synthesis or crystallization (Brands & Davies, 2006).

The mol­ecular structure of (4) is shown in Fig. 1. The sulfur atom is attached equatorially to the sugar ring. Similarly to the structure of a related glucose derivative (Masoud et al., 2017), the C—S bond lengths are unequal, with S—Cs 1.808 (2) and S—Cp 1.770 (2) Å (s = sugar, p = pyrid­yl). The phenyl ring at C31 is approximately coplanar with the pyridyl ring, but the ring at C21 is significantly rotated (inter­planar angles = 6.4 (2) and 42.24 (8)°, respectively). The relative orientation of the pyridyl ring and the sugar moiety is defined by the torsion angles N1—C2—S1—C11 9.7 (2) and C2—S1—C11—C12 162.73 (12)°. The intra­molecular contact O1—H01⋯S1, with H⋯S 2.79 (4) Å and an angle of 109 (3)°, is probably too long and has too narrow an angle to be considered a hydrogen bond.

Figure 1.

Figure 1

Structure of the title compound (4) in the crystal. Ellipsoids represent 50% probability levels.

Supra­molecular features  

In the crystal, the mol­ecules are connected by two-centre O2—H02⋯O3ii and O3—H03⋯O3ii hydrogen bonds and a three-centre O1—H01⋯O1i,O2i hydrogen bond (Table 1), via the Inline graphic operator, thus forming tube-like assemblies parallel to the c axis (Figs. 2 and 3). The short S1⋯O1 (1 − y, x, 1 − z) contact of 3.2374 (16) Å (van der Waals’ contact distance = 3.32 Å) may play a supporting role, but is not shown explicitly.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H01⋯O2i 0.85 (4) 2.12 (4) 2.831 (2) 140 (3)
O1—H01⋯O1i 0.85 (4) 2.42 (3) 3.133 (2) 141 (3)
O2—H02⋯O3ii 0.81 (3) 2.07 (4) 2.883 (2) 175 (3)
O3—H03⋯O3ii 0.82 (4) 1.94 (4) 2.729 (2) 159 (4)
C13—H13⋯N2iii 1.00 2.57 3.547 (3) 165
C34—H34⋯N2iv 0.95 2.51 3.404 (3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

Packing diagram of (4) projected parallel to the c axis. Dashed lines indicate classical hydrogen bonds.

Figure 3.

Figure 3

Packing diagram of (4) viewed parallel to the a axis. Dashed lines indicate classical hydrogen bonds. Phenyl rings are represented by the ipso carbon atoms only.

Database survey  

There is one other structure involving arabinose with a sulfur substituent at the C2 position; the arabinose is tri­acetyl­ated and the sulfur atom, which is axially bonded to the sugar ring, acts as a bridge to a pyran­opyrimidine ring system (Tomas et al., 1993; refcode WACJAL).

Synthesis and crystallization  

To a solution of the pyridine-2-(1H)-thione (1) (2.88 g, 0.01 mol) in aqueous potassium hydroxide (6 ml, 0.56 g, 0.01 mol) was added a solution of 2,3,4-tri-O-acetyl-α-d-arabino­pyranosyl bromide (2) (3.73 g, 0.011 mol) in acetone (30 ml). The reaction mixture was stirred at room temperature until the reaction was judged complete by TLC (30 min to 2 h). The mixture was evaporated under reduced pressure at 313 K and the residue was washed with distilled water to remove the potassium bromide. The solid was collected by filtration and crystallized from ethanol to give compound (3) in 70% yield (m. p. 440–442 K). Dry gaseous ammonia was then passed through a solution of the protected thio­glycoside (3) (0.5 g) in dry methanol (20 ml) at 273 K for 15 min, and the mixture was stirred at 273 K until the reaction was complete (TLC, 1–2 h). The mixture was evaporated at 313 K to give a solid residue, which was recrystallized from methanol solution to give compound (4) in 60% yield (m.p. 479–480 K), IR (KBr): 3370–3480 (OH); 2222 (CN) cm−1. 1H NMR (400 MHz, DMSO-d 6): δ 3.10–3.70 (m, 5H, 2H-5′, H-4′, H-3′, H-2′); 4.81–5.20 (m, 3H, 3OH); 5.52 (d, 1H, H-1′), 7.05–7.78 (m, 10H, 2C6H5), 7.99 (s, 1H, pyridine H-5). Analysis calculated for C23H20N2O4S (420.47): C, 65.60%; H, 4.76%; N, 6.66%. Found: C, 65.48%; H, 4.84%; N, 6.41%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. OH hydrogen atoms were refined freely. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Haromatic = 0.95, C—Hmethyl­ene = 0.99, C—Hmethine = 1.00 Å) with U iso(H) = 1.2–1.5U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C23H20N2O4S
M r 420.47
Crystal system, space group Tetragonal, P Inline graphic21 c
Temperature (K) 100
a, c (Å) 21.8333 (2), 8.67551 (17)
V3) 4135.54 (11)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.67
Crystal size (mm) 0.2 × 0.2 × 0.1
 
Data collection
Diffractometer Oxford Diffraction Xcalibur, Atlas, Nova
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015)
T min, T max 0.631, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 22380, 4067, 3766
R int 0.050
(sin θ/λ)max−1) 0.629
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.029, 0.072, 1.04
No. of reflections 4067
No. of parameters 283
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.14, −0.21
Absolute structure Flack x determined using 1455 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.001 (9)

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2017/1 (Sheldrick, 2015) and XP (Siemens, 1994).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018007284/hb7743sup1.cif

e-74-00853-sup1.cif (678.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018007284/hb7743Isup2.hkl

e-74-00853-Isup2.hkl (324.6KB, hkl)

CCDC reference: 1843269

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C23H20N2O4S Dx = 1.351 Mg m3
Mr = 420.47 Cu Kα radiation, λ = 1.54184 Å
Tetragonal, P421c Cell parameters from 11865 reflections
a = 21.8333 (2) Å θ = 4.0–75.7°
c = 8.67551 (17) Å µ = 1.67 mm1
V = 4135.54 (11) Å3 T = 100 K
Z = 8 Irregular tablet, colourless
F(000) = 1760 0.2 × 0.2 × 0.1 mm

Data collection

Oxford Diffraction Xcalibur, Atlas, Nova diffractometer 4067 independent reflections
Radiation source: micro-focus sealed X-ray tube 3766 reflections with I > 2σ(I)
Detector resolution: 10.3543 pixels mm-1 Rint = 0.050
ω–scan θmax = 76.0°, θmin = 4.1°
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) h = −27→19
Tmin = 0.631, Tmax = 1.000 k = −23→26
22380 measured reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.206P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.001
4067 reflections Δρmax = 0.14 e Å3
283 parameters Δρmin = −0.21 e Å3
0 restraints Absolute structure: Flack x determined using 1455 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.001 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) 9.6921 (0.0225) x - 5.4261 (0.0258) y - 7.4689 (0.0051) z = 2.9936 (0.0259) * -0.0092 (0.0019) C21 * 0.0029 (0.0022) C22 * 0.0049 (0.0023) C23 * -0.0063 (0.0021) C24 * -0.0001 (0.0019) C25 * 0.0078 (0.0018) C26 Rms deviation of fitted atoms = 0.0060 7.1279 (0.0186) x + 10.0786 (0.0190) y - 7.1557 (0.0046) z = 5.9951 (0.0155) Angle to previous plane (with approximate esd) = 42.243 ( 0.080 ) * 0.0110 (0.0015) N1 * 0.0192 (0.0017) C2 * -0.0324 (0.0017) C3 * 0.0172 (0.0016) C4 * 0.0119 (0.0016) C5 * -0.0269 (0.0016) C6 Rms deviation of fitted atoms = 0.0212 9.0031 (0.0245) x + 8.5392 (0.0229) y - 7.1382 (0.0057) z = 7.0241 (0.0183) Angle to previous plane (with approximate esd) = 6.371 ( 0.143 ) * -0.0055 (0.0018) C31 * 0.0027 (0.0023) C32 * 0.0001 (0.0024) C33 * -0.0001 (0.0021) C34 * -0.0028 (0.0019) C35 * 0.0056 (0.0018) C36 Rms deviation of fitted atoms = 0.0036

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.66558 (2) 0.40955 (2) 0.37773 (7) 0.01892 (12)
N1 0.71332 (8) 0.30150 (8) 0.2959 (2) 0.0193 (4)
C2 0.72285 (9) 0.35219 (9) 0.3756 (3) 0.0188 (4)
C3 0.77798 (10) 0.36462 (10) 0.4552 (3) 0.0196 (4)
C4 0.82688 (10) 0.32328 (10) 0.4388 (3) 0.0213 (5)
C5 0.81609 (10) 0.27034 (10) 0.3542 (3) 0.0228 (5)
H5 0.847932 0.241118 0.341532 0.027*
C6 0.75894 (10) 0.25972 (10) 0.2878 (3) 0.0206 (5)
C7 0.78113 (10) 0.41680 (10) 0.5556 (3) 0.0216 (5)
N2 0.78087 (9) 0.45778 (9) 0.6383 (3) 0.0282 (5)
C11 0.60285 (9) 0.36958 (10) 0.2861 (3) 0.0180 (4)
H11 0.600243 0.326953 0.327770 0.022*
C12 0.54261 (10) 0.40390 (10) 0.3205 (3) 0.0175 (4)
H12 0.545412 0.447100 0.282823 0.021*
C13 0.49053 (9) 0.37047 (9) 0.2379 (3) 0.0174 (4)
H13 0.485720 0.329883 0.289917 0.021*
C14 0.50479 (10) 0.35742 (10) 0.0692 (3) 0.0205 (5)
H14 0.472970 0.329428 0.025478 0.025*
C15 0.56731 (10) 0.32792 (11) 0.0554 (3) 0.0228 (5)
H15A 0.567252 0.287793 0.108559 0.027*
H15B 0.577236 0.320966 −0.054522 0.027*
O1 0.52797 (7) 0.40316 (7) 0.4791 (2) 0.0205 (3)
H01 0.5536 (17) 0.4259 (16) 0.526 (5) 0.046 (10)*
O2 0.43389 (7) 0.40239 (8) 0.2568 (2) 0.0210 (3)
H02 0.4290 (15) 0.4296 (16) 0.194 (4) 0.035 (9)*
O3 0.50739 (7) 0.41263 (8) −0.0200 (2) 0.0237 (4)
H03 0.4738 (18) 0.4298 (17) −0.019 (5) 0.047 (10)*
O4 0.61261 (7) 0.36736 (7) 0.1238 (2) 0.0211 (3)
C21 0.88763 (10) 0.33451 (11) 0.5093 (3) 0.0235 (5)
C22 0.91531 (11) 0.39202 (12) 0.5018 (4) 0.0333 (6)
H22 0.895156 0.424849 0.450852 0.040*
C23 0.97250 (12) 0.40132 (13) 0.5690 (4) 0.0399 (7)
H23 0.991202 0.440544 0.563513 0.048*
C24 1.00232 (11) 0.35385 (13) 0.6436 (4) 0.0348 (6)
H24 1.041042 0.360614 0.690570 0.042*
C25 0.97528 (11) 0.29625 (12) 0.6496 (3) 0.0288 (5)
H25 0.995712 0.263483 0.700037 0.035*
C26 0.91861 (10) 0.28654 (11) 0.5820 (3) 0.0235 (5)
H26 0.900651 0.246932 0.585205 0.028*
C31 0.74451 (11) 0.20354 (10) 0.1993 (3) 0.0222 (5)
C32 0.68866 (11) 0.19904 (11) 0.1223 (4) 0.0328 (6)
H32 0.660698 0.232346 0.125814 0.039*
C33 0.67336 (13) 0.14672 (13) 0.0408 (4) 0.0388 (7)
H33 0.634972 0.144225 −0.010425 0.047*
C34 0.71408 (13) 0.09782 (11) 0.0337 (3) 0.0332 (6)
H34 0.703694 0.061962 −0.022583 0.040*
C35 0.76943 (12) 0.10168 (10) 0.1085 (3) 0.0285 (5)
H35 0.797126 0.068164 0.104383 0.034*
C36 0.78530 (11) 0.15421 (10) 0.1901 (3) 0.0244 (5)
H36 0.823987 0.156588 0.239892 0.029*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0153 (2) 0.0177 (2) 0.0237 (3) 0.00191 (17) −0.0005 (2) −0.0018 (2)
N1 0.0185 (8) 0.0196 (8) 0.0198 (10) 0.0026 (7) 0.0021 (7) 0.0003 (8)
C2 0.0165 (9) 0.0198 (9) 0.0199 (11) 0.0019 (7) 0.0029 (9) 0.0025 (9)
C3 0.0193 (10) 0.0185 (10) 0.0210 (11) 0.0010 (8) 0.0007 (9) 0.0029 (9)
C4 0.0185 (10) 0.0235 (10) 0.0220 (12) 0.0010 (8) 0.0029 (9) 0.0066 (9)
C5 0.0212 (10) 0.0231 (10) 0.0243 (13) 0.0058 (8) 0.0044 (9) 0.0041 (9)
C6 0.0208 (10) 0.0208 (10) 0.0201 (13) 0.0037 (8) 0.0043 (9) 0.0035 (9)
C7 0.0167 (9) 0.0221 (11) 0.0260 (12) 0.0004 (8) −0.0020 (9) 0.0068 (10)
N2 0.0277 (10) 0.0226 (9) 0.0343 (13) 0.0010 (7) −0.0043 (9) −0.0011 (10)
C11 0.0168 (9) 0.0196 (9) 0.0174 (11) −0.0003 (8) 0.0016 (8) −0.0019 (9)
C12 0.0182 (9) 0.0173 (9) 0.0169 (11) −0.0005 (8) 0.0015 (8) −0.0001 (8)
C13 0.0153 (9) 0.0173 (9) 0.0195 (11) 0.0004 (7) 0.0007 (8) 0.0002 (8)
C14 0.0206 (10) 0.0211 (10) 0.0200 (12) −0.0030 (8) 0.0000 (9) −0.0012 (9)
C15 0.0235 (10) 0.0235 (10) 0.0215 (12) −0.0014 (9) −0.0003 (9) −0.0057 (9)
O1 0.0189 (7) 0.0255 (8) 0.0170 (8) −0.0009 (6) 0.0013 (6) −0.0033 (7)
O2 0.0159 (7) 0.0249 (8) 0.0221 (9) 0.0016 (6) 0.0008 (6) 0.0020 (7)
O3 0.0187 (7) 0.0305 (8) 0.0219 (9) 0.0003 (7) 0.0006 (7) 0.0056 (7)
O4 0.0189 (7) 0.0248 (7) 0.0196 (9) 0.0001 (6) 0.0017 (6) −0.0023 (7)
C21 0.0191 (10) 0.0277 (11) 0.0237 (12) 0.0026 (9) 0.0010 (9) 0.0031 (10)
C22 0.0237 (11) 0.0298 (12) 0.0464 (17) 0.0009 (9) −0.0023 (12) 0.0098 (12)
C23 0.0256 (12) 0.0336 (13) 0.061 (2) −0.0070 (10) −0.0021 (13) 0.0034 (14)
C24 0.0189 (10) 0.0448 (14) 0.0407 (17) 0.0004 (10) −0.0018 (11) 0.0000 (13)
C25 0.0235 (11) 0.0362 (13) 0.0265 (14) 0.0071 (10) −0.0009 (10) 0.0032 (11)
C26 0.0203 (10) 0.0275 (11) 0.0228 (13) 0.0045 (8) 0.0033 (9) 0.0010 (9)
C31 0.0249 (11) 0.0217 (10) 0.0201 (12) 0.0044 (9) 0.0045 (9) 0.0032 (9)
C32 0.0304 (12) 0.0273 (11) 0.0406 (16) 0.0092 (9) −0.0058 (13) −0.0102 (13)
C33 0.0375 (14) 0.0317 (13) 0.0473 (18) 0.0044 (11) −0.0101 (13) −0.0118 (13)
C34 0.0448 (14) 0.0214 (11) 0.0333 (15) 0.0011 (10) 0.0064 (12) −0.0060 (11)
C35 0.0382 (13) 0.0172 (10) 0.0301 (14) 0.0058 (9) 0.0135 (12) 0.0045 (10)
C36 0.0262 (11) 0.0214 (11) 0.0256 (13) 0.0048 (9) 0.0059 (10) 0.0061 (10)

Geometric parameters (Å, º)

S1—C2 1.770 (2) C15—H15B 0.9900
S1—C11 1.808 (2) O1—H01 0.85 (4)
N1—C2 1.322 (3) O2—H02 0.81 (3)
N1—C6 1.352 (3) O3—H03 0.82 (4)
C2—C3 1.414 (3) C21—C22 1.395 (3)
C3—C4 1.405 (3) C21—C26 1.397 (3)
C3—C7 1.435 (3) C22—C23 1.393 (4)
C4—C5 1.389 (3) C22—H22 0.9500
C4—C21 1.481 (3) C23—C24 1.385 (4)
C5—C6 1.394 (3) C23—H23 0.9500
C5—H5 0.9500 C24—C25 1.390 (4)
C6—C31 1.481 (3) C24—H24 0.9500
C7—N2 1.147 (3) C25—C26 1.385 (3)
C11—O4 1.425 (3) C25—H25 0.9500
C11—C12 1.543 (3) C26—H26 0.9500
C11—H11 1.0000 C31—C32 1.394 (4)
C12—O1 1.413 (3) C31—C36 1.400 (3)
C12—C13 1.529 (3) C32—C33 1.384 (4)
C12—H12 1.0000 C32—H32 0.9500
C13—O2 1.429 (2) C33—C34 1.391 (4)
C13—C14 1.523 (3) C33—H33 0.9500
C13—H13 1.0000 C34—C35 1.374 (4)
C14—O3 1.434 (3) C34—H34 0.9500
C14—C15 1.514 (3) C35—C36 1.392 (4)
C14—H14 1.0000 C35—H35 0.9500
C15—O4 1.439 (3) C36—H36 0.9500
C15—H15A 0.9900
C2—S1—C11 100.90 (10) C14—C15—H15A 109.8
C2—N1—C6 118.42 (19) O4—C15—H15B 109.8
N1—C2—C3 123.40 (19) C14—C15—H15B 109.8
N1—C2—S1 119.13 (17) H15A—C15—H15B 108.2
C3—C2—S1 117.41 (17) C12—O1—H01 108 (3)
C4—C3—C2 118.3 (2) C13—O2—H02 113 (2)
C4—C3—C7 122.3 (2) C14—O3—H03 110 (3)
C2—C3—C7 119.30 (19) C11—O4—C15 108.96 (17)
C5—C4—C3 117.3 (2) C22—C21—C26 119.1 (2)
C5—C4—C21 120.5 (2) C22—C21—C4 121.2 (2)
C3—C4—C21 122.1 (2) C26—C21—C4 119.7 (2)
C4—C5—C6 120.6 (2) C23—C22—C21 120.0 (2)
C4—C5—H5 119.7 C23—C22—H22 120.0
C6—C5—H5 119.7 C21—C22—H22 120.0
N1—C6—C5 121.7 (2) C24—C23—C22 120.5 (3)
N1—C6—C31 115.4 (2) C24—C23—H23 119.7
C5—C6—C31 122.9 (2) C22—C23—H23 119.7
N2—C7—C3 176.7 (2) C23—C24—C25 119.7 (2)
O4—C11—C12 109.55 (18) C23—C24—H24 120.2
O4—C11—S1 109.72 (14) C25—C24—H24 120.2
C12—C11—S1 109.07 (14) C26—C25—C24 120.1 (2)
O4—C11—H11 109.5 C26—C25—H25 119.9
C12—C11—H11 109.5 C24—C25—H25 119.9
S1—C11—H11 109.5 C25—C26—C21 120.6 (2)
O1—C12—C13 106.43 (17) C25—C26—H26 119.7
O1—C12—C11 112.04 (18) C21—C26—H26 119.7
C13—C12—C11 108.15 (17) C32—C31—C36 118.4 (2)
O1—C12—H12 110.0 C32—C31—C6 119.5 (2)
C13—C12—H12 110.0 C36—C31—C6 122.1 (2)
C11—C12—H12 110.0 C33—C32—C31 120.9 (2)
O2—C13—C14 112.23 (18) C33—C32—H32 119.5
O2—C13—C12 110.90 (17) C31—C32—H32 119.5
C14—C13—C12 112.80 (18) C32—C33—C34 120.1 (3)
O2—C13—H13 106.8 C32—C33—H33 119.9
C14—C13—H13 106.8 C34—C33—H33 119.9
C12—C13—H13 106.8 C35—C34—C33 119.6 (2)
O3—C14—C15 106.23 (19) C35—C34—H34 120.2
O3—C14—C13 111.67 (18) C33—C34—H34 120.2
C15—C14—C13 109.85 (19) C34—C35—C36 120.7 (2)
O3—C14—H14 109.7 C34—C35—H35 119.7
C15—C14—H14 109.7 C36—C35—H35 119.7
C13—C14—H14 109.7 C35—C36—C31 120.3 (2)
O4—C15—C14 109.43 (18) C35—C36—H36 119.9
O4—C15—H15A 109.8 C31—C36—H36 119.9
C6—N1—C2—C3 −1.1 (4) C12—C13—C14—C15 49.6 (2)
C6—N1—C2—S1 176.09 (17) O3—C14—C15—O4 63.7 (2)
C11—S1—C2—N1 9.7 (2) C13—C14—C15—O4 −57.2 (2)
C11—S1—C2—C3 −172.95 (19) C12—C11—O4—C15 −68.6 (2)
N1—C2—C3—C4 5.2 (4) S1—C11—O4—C15 171.64 (14)
S1—C2—C3—C4 −172.01 (18) C14—C15—O4—C11 67.9 (2)
N1—C2—C3—C7 −171.6 (2) C5—C4—C21—C22 136.5 (3)
S1—C2—C3—C7 11.2 (3) C3—C4—C21—C22 −44.1 (4)
C2—C3—C4—C5 −4.8 (3) C5—C4—C21—C26 −42.2 (3)
C7—C3—C4—C5 171.9 (2) C3—C4—C21—C26 137.2 (3)
C2—C3—C4—C21 175.9 (2) C26—C21—C22—C23 −1.3 (4)
C7—C3—C4—C21 −7.4 (4) C4—C21—C22—C23 −180.0 (3)
C3—C4—C5—C6 0.7 (3) C21—C22—C23—C24 −0.1 (5)
C21—C4—C5—C6 −180.0 (2) C22—C23—C24—C25 0.9 (5)
C2—N1—C6—C5 −3.3 (3) C23—C24—C25—C26 −0.5 (4)
C2—N1—C6—C31 178.8 (2) C24—C25—C26—C21 −0.9 (4)
C4—C5—C6—N1 3.6 (4) C22—C21—C26—C25 1.7 (4)
C4—C5—C6—C31 −178.7 (2) C4—C21—C26—C25 −179.5 (2)
C2—S1—C11—O4 −77.26 (16) N1—C6—C31—C32 4.8 (3)
C2—S1—C11—C12 162.73 (16) C5—C6—C31—C32 −173.1 (3)
O4—C11—C12—O1 175.15 (17) N1—C6—C31—C36 −175.2 (2)
S1—C11—C12—O1 −64.7 (2) C5—C6—C31—C36 7.0 (4)
O4—C11—C12—C13 58.2 (2) C36—C31—C32—C33 1.0 (4)
S1—C11—C12—C13 178.27 (14) C6—C31—C32—C33 −178.9 (3)
O1—C12—C13—O2 63.3 (2) C31—C32—C33—C34 −0.5 (5)
C11—C12—C13—O2 −176.15 (17) C32—C33—C34—C35 0.2 (5)
O1—C12—C13—C14 −169.85 (17) C33—C34—C35—C36 −0.5 (4)
C11—C12—C13—C14 −49.3 (2) C34—C35—C36—C31 1.1 (4)
O2—C13—C14—O3 58.2 (2) C32—C31—C36—C35 −1.3 (4)
C12—C13—C14—O3 −68.0 (2) C6—C31—C36—C35 178.6 (2)
O2—C13—C14—C15 175.75 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H01···O2i 0.85 (4) 2.12 (4) 2.831 (2) 140 (3)
O1—H01···O1i 0.85 (4) 2.42 (3) 3.133 (2) 141 (3)
O2—H02···O3ii 0.81 (3) 2.07 (4) 2.883 (2) 175 (3)
O3—H03···O3ii 0.82 (4) 1.94 (4) 2.729 (2) 159 (4)
C13—H13···N2iii 1.00 2.57 3.547 (3) 165
C34—H34···N2iv 0.95 2.51 3.404 (3) 157

Symmetry codes: (i) −y+1, x, −z+1; (ii) y, −x+1, −z; (iii) y, −x+1, −z+1; (iv) −x+3/2, y−1/2, −z+1/2.

References

  1. Agrawal, S., Wozniak, M., Luc, M., Walaszek, K., Pielka, E., Szeja, W., Pastuch-Gawolek, G., Gamian, A. & Ziolkowski, P. (2017). Oncotarget, 8, 114173–114182. [DOI] [PMC free article] [PubMed]
  2. Brands, K. M. J. & Davies, A. J. (2006). Chem. Rev. 106, 2711–2733. [DOI] [PubMed]
  3. Dinkelaar, J., Witte, M. D., van den Bos, L. J., Overkleeft, H. S. & van der Marel, G. A. (2006). Carbohydr. Res. 341, 1723–1729. [DOI] [PubMed]
  4. Elgemeie, G. H., Abou-Zeid, M., Alsaid, S., Hebishy, A. & Essa, H. (2015). Nucleosides, Nucleotides, Nucleic Acids, 34, 659–673. [DOI] [PubMed]
  5. Elgemeie, G. H., Abou-Zeid, M. & Azzam, R. (2016). Nucleosides, Nucleotides, Nucleic Acids, 35, 211–222. [DOI] [PubMed]
  6. Elgemeie, G. H. & Abu-Zaied, M. A. (2017). Nucleosides, Nucleotides, Nucleic Acids, 36, 511–519. [DOI] [PubMed]
  7. Elgemeie, G. H., Abu-Zaied, M. A. & Loutfy, S. A. (2017a). Tetrahedron, 73, 5853–5861.
  8. Elgemeie, G. H., Mahdy, E. M., Elgawish, M. A., Ahmed, M. M., Shousha, W. G. & Eldin, M. E. (2010). Z. Naturforsch. Teil C, 65, 577–587. [DOI] [PubMed]
  9. Elgemeie, G. H., Salah, A. M., Abbas, N. S., Hussein, H. A. & Mohamed, R. A. (2017b). Nucleosides, Nucleotides & Nucleic Acids, 36, 139–150. [DOI] [PubMed]
  10. Kananovich, D. G., Reino, A., Ilmarinen, K., Rõõmusoks, M., Karelson, M. & Lopp, M. A. (2014). Org. Biomol. Chem. 12, 5634–5644. [DOI] [PubMed]
  11. Komor, R., Pastuch-Gawołek, G., Sobania, A., Jadwiński, M. & Szeja, W. (2012). Acta Pol. Pharm. 69, 1259–1269. [PubMed]
  12. Masoud, D. M., Hammad, S. F., Elgemeie, G. H. & Jones, P. G. (2017). Acta Cryst. E73, 1751–1754. [DOI] [PMC free article] [PubMed]
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  17. Siemens (1994). XP. Siemens Analytical X–Ray Instruments, Madison, Wisconsin, USA.
  18. Tomas, A., Dung, N.-H., Viossat, B., Esanu, A. & Rolland, A. (1993). Acta Cryst. C49, 626–628.
  19. Yoshimura, Y., Kitano, K., Yamada, K., Sakata, S., Miura, S., Ashida, N. & Machida, H. (2000). Bioorg. Med. Chem. 8, 1545–1558. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018007284/hb7743sup1.cif

e-74-00853-sup1.cif (678.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018007284/hb7743Isup2.hkl

e-74-00853-Isup2.hkl (324.6KB, hkl)

CCDC reference: 1843269

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES