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ABSTRACT

BACKGROUND AND PURPOSE: Standard assessment criteria for brain tumors that only include anatomic imaging continue to be insufficient.
While numerous studies have demonstrated the value of DSC-MR imaging perfusion metrics for this purpose, they have not been incorporated
due to a lack of confidence in the consistency of DSC-MR imaging metrics across sites and platforms. This study addresses this limitation with a
comparison of multisite/multiplatform analyses of shared DSC-MR imaging datasets of patients with brain tumors.

MATERIALS AND METHODS: DSC-MR imaging data were collected after a preload and during a bolus injection of gadolinium contrast
agent using a gradient recalled-echo–EPI sequence (TE/TR � 30/1200 ms; flip angle � 72°). Forty-nine low-grade (n � 13) and high-grade
(n � 36) glioma datasets were uploaded to The Cancer Imaging Archive. Datasets included a predetermined arterial input function,
enhancing tumor ROIs, and ROIs necessary to create normalized relative CBV and CBF maps. Seven sites computed 20 different perfusion
metrics. Pair-wise agreement among sites was assessed with the Lin concordance correlation coefficient. Distinction of low- from
high-grade tumors was evaluated with the Wilcoxon rank sum test followed by receiver operating characteristic analysis to identify the
optimal thresholds based on sensitivity and specificity.

RESULTS: For normalized relative CBV and normalized CBF, 93% and 94% of entries showed good or excellent cross-site agreement (0.8 �

Lin concordance correlation coefficient � 1.0). All metrics could distinguish low- from high-grade tumors. Optimum thresholds were
determined for pooled data (normalized relative CBV � 1.4, sensitivity/specificity � 90%:77%; normalized CBF � 1.58, sensitivity/speci-
ficity � 86%:77%).

CONCLUSIONS: By means of DSC-MR imaging data obtained after a preload of contrast agent, substantial consistency resulted across
sites for brain tumor perfusion metrics with a common threshold discoverable for distinguishing low- from high-grade tumors.

ABBREVIATIONS: AIF � arterial input function; HGG � high-grade glioma; LCCC � Lin concordance correlation coefficient; LGG � low-grade glioma;
NAWM � normal-appearing white matter; nCBF � normalized cerebral blood flow; nRCBV � normalized relative cerebral blood volume; rCBV � relative
cerebral blood volume; SN � sensitivity (in the context of receiver operating characteristic analysis); SP � specificity (in the context of receiver operating
characteristic analysis); T1�C � postcontrast T1WI

Current Response Assessment in Neuro-Oncology criteria,1

which include anatomic imaging only, are often insufficient

for determining tumor response and progression after therapy.

Frequently, imaging changes on postcontrast MR imaging or

FLAIR are not the result of increased tumor activity but rather a

consequence of the treatment itself. These changes, which can

include edema, inflammation, or increased vascular or blood-

brain barrier permeability, make it difficult to distinguish true
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tumor progression from treatment response.2-6 Because of these

difficulties, patients are often precluded from switching to poten-

tially more effective therapies within treatment windows of 3–5

months.1 Clearly, better indications of tumor response that are

not confounded by these treatment adverse effects are needed.

Perfusion MR imaging methods, which have repeatedly dem-

onstrated the ability to provide biologically relevant information

for treatment management, have the potential to overcome these

limitations. For brain perfusion, the DSC-MR imaging methods

have been most commonly used. With DSC-MR imaging, T2- or

T2*-weighted images are acquired with high temporal resolution

during a bolus administration of a gadolinium contrast agent.7 The

derived relative CBV (rCBV) maps have demonstrated the ability to

predict tumor grade8,9 and survival,10 distinguish treatment effects

from recurrent tumor,11,12 and predict response to antiangiogenic

therapy more reliably than standard MR imaging.13-15

Despite this promise, the translation of DSC-MR imaging for

routine clinical use has been hindered by a lack of consistency in

the methods used and the rCBV values reported to make the

noted distinctions. However, often a threshold determined for

one purpose, such as distinguishing low- from high-grade tu-

mor,16 is used for another purpose such as predicting outcomes.17

Consequently, the present confusion may be due to the lack of

well-defined studies performed under carefully controlled condi-

tions that test a specific outcome. This study addresses these lim-

itations by providing carefully curated DSC-MR imaging datasets

of low-grade glioma (LGG) and high-grade glioma (HGG) to

multiple sites that participate in the National Cancer Institute

Quantitative Imaging Network. With this approach, variations in

image acquisition and preprocessing are eliminated and postpro-

cessing methods can be directly compared in their ability to dis-

tinguish LGGs from HGGs. In addition, the threshold for this

distinction can be identified both for each individual site and as a

consensus recommendation.

MATERIALS AND METHODS
Patients
All subjects recruited from a single site provided informed written

consent according to institutional review board policy. Subjects

with histologically confirmed, newly diagnosed, and treatment-

naïve glial tumors who had preoperative DSC-MR imaging were

included in this study. Subjects with purely oligodendroglial le-

sions were not included due to demonstrated differences in rCBV

compared with astrocytic tumors.18 Due to the disparity in the

number of subjects histologically diagnosed with low- and high-

grade tumors, consecutive subjects with low-grade tumors be-

tween 2008 and 2014 and high-grade tumors from 2010 to 2014

were identified. Subjects were excluded if anatomic images were

not available for lesion delineation or when DSC-MR imaging

data were of poor quality.

Imaging
Studies were performed on 1.5T or 3T MR imaging systems. Stan-

dard precontrast MRIs were acquired including FLAIR (TE/TR/

NEX/matrix � 126/9000 ms/2200 –2500 ms/2/252 � 215) and

T1WI spin-echo (TE/TR/NEX/matrix � 11 ms/650 ms/2/256),

after which gadolinium contrast agent was administered. Either

0.05 mmol/kg of gadobenate dimeglumine (MultiHance; Bracco

Diagnostics, Princeton, New Jersey) (n � 48) or 0.1 mmol/kg of

gadodiamide (Omniscan; GE Healthcare, Piscataway, New Jer-

sey) (n � 1) was administered before obtaining the postcontrast

T1-weighted images. This initial gadolinium administration

serves as a preload for the subsequent DSC-MR imaging acquisi-

tion. A preload results in more accurate rCBV because it reduces

the T1 leakage effects that can confound the DSC-MR imaging

data analysis.9,19-21 After collecting the postcontrast T1WI

(T1�C), using parameters equivalent to the precontrast settings,

we acquired DSC-MR imaging data (gradient recalled-echo–EPI:

TR � 1100 –1250 ms, TE � 30 ms, flip angle � 70°– 80°, 12–17

slices, slice thickness � 4 –5 mm, interslice gap � 0 –1.5 mm,

matrix � 96 � 96/128 � 128, FOV � 165–240 � 165–240 mm2).

The gradient recalled-echo–EPI data were collected for 120 sec-

onds with 0.1 mmol/kg of gadolinium injected at 60 seconds. For

ease of coregistration of the DSC-MR images to anatomic images,

a spin-echo “reference” scan (TE/TR/NEX/matrix � 14 ms/500

ms/1/256 � 192) was obtained using a slice prescription matching

the more limited slice prescription of the DSC-MR imaging

examination.

Central Preprocessing
The preprocessing workflow is schematized in Fig 1. All prepro-

cessing was performed in OsiriX Imaging Software (http://www.

osirix-viewer.com) using the IB Delta Suite (Imaging Biometrics,

Elm Grove, Wisconsin). Six datasets provided for each case

included the following: 1) T1�C images; 2) DSC-MR imaging

time-series co-registered to the T1�C images; 3) an arterial input

function (AIF), which included 3 AIF locations in each file; 4) a

whole-brain mask and ROIs of 5) normal-appearing white matter

(NAWM) and 6) tumor. The NAWM was used to compute nor-

malized rCBV (nRCBV) and normalized CBF (nCBF) maps.

The DSC-MR imaging volume was co-registered to the T1�C

images via the reference scan obtained with the same slice pre-

scription as the DSC-MR imaging. The AIF locations were deter-

mined semiautomatically using IB Neuro (Imaging Biometrics)

with manual adjustments when necessary. An average signal gen-

erated from 3 pixels constituted the AIF. The whole-brain mask

was made available to prevent disparity in values that could result

from threshold variations that each software platform might use.

Using the IB Delta Suite, we determined tumor ROIs from

deltaT1 maps, which are standardized difference maps22 that en-

able clear visualization of enhancing lesions free of bright signal

from blood products or proteinaceous material. Nonenhancing

lesions, apparent as areas of dark signal on T1WIs, were delin-

eated by a neuroradiologist with �20 years of experience. Each

ROI was created as a 16-bit binary DICOM file that included only

whole voxels rather than contoured points. This approach pre-

vents differences in the applied ROIs because each software

platform applies different rules regarding whether a voxel is

considered inside or outside an ROI. Anonymized datasets

were uploaded to The Cancer Imaging Archive,23,24 where they

were further vetted to ensure the compatibility of complete

datasets for the analysis platform of each site. All sites were

blinded to tumor grade.
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Image and Statistical Analyses
Seven sites (1–7) using 7 different software platforms provided 20

different rCBV measurements (Table 1) and 12 different CBF mea-

surements (Table 2). Details for each software platform are listed in

the tables. Several sites used �1 platform or analysis method. When

applicable, the analysis for measurements of standardized rCBV was

grouped separately from nRCBV due to image-scale differences.

Agreement between each pair of values was assessed by computing

the Lin concordance correlation coefficient (LCCC). An LCCC �0.8

indicates good agreement, and LCCC � 0.9 indicates excellent

agreement.

The ability of each metric to distinguish LGG from HGG was

determined using the Wilcoxon rank sum test, with P � .05 indicat-

ing significance. A receiver operating characteristic analysis was per-

formed to identify the threshold that provides the optimal sensitivity

(SN) and specificity (SP) to distinguish LGG from HGG. The De-

Long test for comparing �2 receiver operating characteristic curves

was used to determine whether there were differences in the ability of

each measurement to classify tumors.

To determine “consensus” cutoff points, we created boxplots of

the sum of SN and SP. Optimal thresholds were identified as those

with maximum SN � SP mean, according to the Youden selection

criteria with small variance. The random effects model was used to

assess the reliability of measurements across sites and platforms. The

reliability is quantified by the following:

FIG 1. Preprocessing workflow. Forty-nine subjects were identified, 13 of whom had a diagnosis of low-grade glioma and 36 with a diagnosis of
high-grade glioma. The DSC-MR image volume was co-registered to the T1�C images via the reference scan obtained with the same slice
prescription as the DSC-MR imaging. Six datasets were provided for each case including the following: 1) T1�C images; 2) DSC-MR imaging
time-series registered to the T1�C images; 3) an AIF, which included 3 AIF locations in each file; 4) a whole brain (WB) mask and ROIs of 5)
normal-appearing white matter (NAWM), and 6) tumor. Each ROI was created as a 16-bit binary DICOM file that included only whole voxels
rather than contoured points. Anonymized datasets were uploaded to The Cancer Imaging Archive. QIN indicates Quantitative Imaging
Network.

Table 1: Teams and rCBV analysis methods
Team/Entry

No. Software Scaling
Leakage

Correction Description
A1 IB Neuro NAWM Yes Modified BSW21

B1 IB Neuro NAWM Yes Modified BSW21

C1 IB Neuro NAWM Yes Modified BSW21

B2 Matlaba NAWM Yes 120-point TI (BSW21)
B3 Matlab AIF Yes 120-point TI (BSW21)
D1 nordicICE NAWM Yes 120-point TI (BSW21)
D2 nordicICE Population AIF Yes 120-point TI (BSW21)
E1 PGUI (LC)b NAWM Yes 120-point TI (BSW21)
E2 PGUI (C) NAWM Yes AUC of C(t) ratio for ROI/AIF
E3 PGUI (PM LC) NAWM Yes Bayesian parametric FT44

D3 Slicerc NAWM Yes 120-point TI (BSW21)
F1 FIATd NAWM Yes Modified Weisskoff45,46

G1 MCcbve NA Yes Modified Weisskoff45,46

A2 IB Neuro NA (standardized)47 Yes Modified BSW21 2006
A3 IB Neuro NAWM No Leakage correction not used
B4 IB Neuro NAWM No Leakage correction not used
E4 PGUI NAWM No Leakage correction not used
E5 PGUI NAWM No Deconvolution of residue function (sSVD)
E6 PGUI NAWM No Deconvolution of residue function (oSVD)
A4 IB Neuro N/A (standardized)47 No Leakage correction not used

Note:—TI indicates trapezoidal integration; BSW, Boxerman-Schmainda-Weisskoff; NA, not applicable; FT, Fourier Transform; sSVD, standard singular value decomposition;
oSVD, block circulant singular value decomposition; C(t) ratio, concentration time course.
a MathWorks, Natick, Massachusetts.
b Perfusion Graphical User Interface; MINDlab, Center of Functionally Integrative Neuroscience, Aarhus University Hospital Norrebrogade, Denmark.44

c http://www.slicer.org.
d Functional Image Analysis Tool (University of Michigan).
e Mayo Clinic cerebral blood volume (Mayo Clinic, Rochester, Minnesota).37
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Reliability �
�within

2

�within
2 � �between

2 ,

where � is the SD within or between software platforms.

Finally, to assess the clinical relevance of the study observa-

tions, we determined the false-positive rate from T1�C images in

comparison with each of the perfusion parameters (nRCBV, stan-

dardized rCBV, nCBF). The false-positive rate is defined as the

proportion of low-grade tumors thought to be aggressive and/or

high-grade, as indicated by the decision for tumor resection, rel-

ative to all tumors resected. The false-negative rate was not deter-

mined because data from all patients, including those who did not

undergo an operation, were not available. By means of the T1�C

images, the false-positive rate was defined as the proportion of

tumors that are low-grade and had contrast agent– enhancing le-

sions. For the perfusion parameters, a false-positive rate is defined

as a low-grade tumor with a value above

the threshold determined for distin-

guishing low- from high-grade tumors.

RESULTS
Sixty-three subjects met inclusion crite-

ria for this study, with 14 excluded for

the following reasons: The contrast

agent bolus was delayed during DSC ac-

quisition, preventing capture of the

postbolus steady-state signal (n � 4); the

contrast agent bolus was injected too

slowly and in an irregular pattern (n �

4); the contrast agent bolus was not pres-

ent during acquisition of images (n � 2);

there were severe ghosting and motion

artifacts of DSC images (n � 2); or ana-

tomic images were not available for le-

sion delineation (n � 2). Forty-nine co-

registered LGG (n � 13) and HGG (n �

36) DSC-MR imaging datasets were pre-

processed, anonymized, and uploaded

to The Cancer Imaging Archive (Fig 1).

Tumor grade was confirmed with histo-

pathology a median of 3 days (range,

0 – 4 days) following MR imaging. Ex-

amples of postprocessed datasets are

shown in Fig 2. LCCC results are dis-

played in a matrix listing each nRCBV

(Fig 3) or nCBF (Fig 4) entry on both the

x- and y-axes. For tumor nRCBV, 75%

of the entries showed excellent agree-

ment with LCCC � 0.9 and 19% with

good agreement (0.80 � LCCC � 0.90),

leaving only 6% with poor concordance

(LCCC � 0.80). The concordance was

best for nRCBV values determined with

leakage correction. For nCBF, only 59%

had 0.90 � LCCC � 1.0 and 34% had

0.80 � LCCC � 0.89.

For all software platforms, both

nRCBV and nCBF showed statistically

significant differences between LGG and HGG (Tables 3 and 4),

with a mean nRCBV � 1.4 � 0.13 and mean nCBF � 1.57 � 0.24.

The SN/SP for nRCBV ranged from 81%–97%/77%– 85% and

was slightly worse for nCBF with SN/SP � 64%–97%/69%– 85%.

By means of the DeLong test, no significant differences were

found among the 18 nRCBV (P � .72) metrics to distinguish LGG

from HGG. While differences among the nCBF metrics were bor-

derline significant (P � .05), if the entry with the lowest area

under the curve (0.658) was excluded, there was no significant

difference between the remaining measures (P � .49). The De-

Long test for the standardized rCBV showed no significant dis-

tinction between the 2 submissions for this measure (P � .23).

Alternatively, the data can be pooled, as shown by the boxplots

of SN � SP (Fig 5), for which median and quartile values are

indicated. The maximum sums were the following: nRCBV � 1.4

FIG 2. Sample parameter maps. Shown are postcontrast T1-weighted images (A and D) and cor-
responding rCBV (B and E) and CBF (C and F) maps for one patient with a low-grade glioma (A–C)
and another patient with a high-grade glioma (D–F).

Table 2: Teams and nCBF analysis methods
Team/Entry

No. Software Scaling Description
A5 IB Neuro NAWM SVD: deconvolution of �R2* with AIF
B5 IB Neuro NAWM SVD: deconvolution of �R2* with AIF
C2 IB Neuro NAWM SVD: circular deconvolution of �R2* with AIF
B6 Matlab NAWM SVD applied to leakage-corrected tissue

�R2* and AIF �R2* curves
D4 nordicICE NAWM No AIF
D5 nordicICE Population AIF Population AIF
E7 PGUI NAWM nCBF
E8 PGUI NAWM sSVD
E9 PGUI NAWM oSVD
E10 PGUI NAWM Bayesian FT deconvolution44

D6 Slicer NAWM No AIF
F2 FIAT NAWM nCBF

Note:—SVD indicates singular value decomposition; sSVD, standard singular value decomposition; oSVD, block circu-
lant singular value decomposition; FT, Fourier Transform..
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(SN/SP � 90%/77%) and nCBF � 1.58 (SN/SP � 86%/77%). For

these consensus thresholds, the minimum individual SN/SP was

83%/77% for nRCBV and 80%/70% for nCBF.

For the 18 nRCBV measurements, the reliability was deter-

mined to be 0.93, indicating that 93% of the variation can be

attributed to differences in tumors, and 7%, to differences in anal-

ysis methods. The reliability was 95% for nRCBV determined

with leakage correction and 93% for the group without leakage

correction. For the nRCBV computed with one of the most com-

mon leakage-correction algorithms (Boxerman-Schmainda-

Weisskoff21), the reliability improved to 98%. The reliability of

standardized rCBV was 96%. For the 12 nCBF measurements, the

reliability was 61%.

Finally, the false-positive rate using T1�C was found to be

31%. In comparison, the false-positive rate across all software

platforms was 15%–23% for nRCBV, 15%–31% for nCBF, and

8%–15% for standardized rCBV.

DISCUSSION
By means of carefully curated DSC-MR imaging datasets, ob-

tained with a single acquisition approach, all nRCBV and nCBF

metrics, processed by 7 different sites,

could distinguish LGG from HGG. The

optimal nRCBV and nCBF thresholds

varied by only 9% and 15%, respectively.

Unique to this study, consensus thresh-

olds of nRCBV � 1.4 and nCBF � 1.58

were determined, indicating good accu-

racy overall and for each individual site.

These results should bolster confidence
in the ability of DSC-MR imaging to

provide reliable and consistent cross-
platform perfusion metrics for the eval-
uation of brain tumors and, specifically,

for distinguishing low- from high-grade

gliomas.

The range of nRCBV threshold

values determined in this study is much

tighter than the 0.7–3.0 range previously

reported for distinguishing tumor

grade,25,26 predicting differences in sur-

vival,10,17,27-29 and distinguishing true

progression from pseudoprogression30

and tumor from treatment effect.11,12,31

While this large range of threshold val-
ues has been attributed to different ac-
quisition and postprocessing schemes,20

differences in patient populations and

the clinical questions addressed also

contribute to the variabilities. While it is

unlikely that a single threshold can be

universally applied for all clinical

questions, these studies suggest that

with well-defined studies to address a

specific outcome under carefully con-

trolled conditions, it is possible to

reach consensus.

The present study also demonstrates

a greater cross-platform concordance than that previously re-

ported. For example, in one study,32 2 commercial software pack-

ages (nordicICE; NordicNeuroLab, Bergen, Norway and Brain-

STAT; GE Healthcare) were compared. Like the present study, 1

dataset of 24 patients with de novo glioblastoma was used and

ROIs of tumor and reference brain were predetermined. How-

ever, unlike the present study, vastly different mathematic algo-

rithms were applied, resulting in very disparate definitions for

nRCBV and CBF; thus, a wide range of values was reported. In the

present study, most algorithms involved the integration of the

concentration-time course and the application of Boxerman-Sch-

mainda-Weisskoff leakage correction,21 which, in a subanalysis,

also showed better reliability. In the previous study, 5 of 10 algo-

rithms relied on the determination of the AIF.32 Using AIF to

compute nRCBV resulted in coefficients of variation of 15%, but

only 2% when AIF was not used. The challenges of reliably deter-

mining the AIF are well-known and may largely explain the poor

repeatability.33,34 Most software platforms in this study did not

incorporate AIF for nRCBV calculation and may therefore also

explain the excellent concordance across sites. Yet, the computa-

FIG 3. Lin concordance results for nRCBV. Listed are the Lin concordance correlation coefficients
for the nRCBV values for each pair of sites. Whether leakage correction was applied is indicated
by green labels, with red labels indicating no leakage correction. Pairs with excellent concordance
(LCCC � 0.90) are highlighted with blue-filled squares; very good concordance (0.80 � LCCC �
0.90), with green squares; and weaker concordance (LCCC � 0.80), with white squares.

FIG 4. Lin concordance results for nCBF. Listed are the Lin concordance correlation coefficients
for the normalized CBF values for each pair of sites. Pairs with excellent concordance (LCCC �
0.90) are highlighted with blue-filled squares; very good concordance (0.80 � LCCC �0.90), with
green squares; and weaker concordance (LCCC � 0.80), with white squares.
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tion of CBF requires the determination of AIF and is likely a pri-

mary reason for the greater variance in comparison with nRCBV

(Figs 3 and 4). Also, the individual nCBF thresholds calculated

using IB Neuro varied across sites because some sites chose to use

circular deconvolution of the AIF for processing while others did

not.

Five of 10 analysis methods in the previous software compar-

ison study often used �-variate fitting.32 Several studies reported a

lower SNR35 as well as greater inaccuracy when �-variate fitting

was used for brain tumor DSC-MR imaging data, especially in the

presence of contrast agent leakage.19,20 Although �-variate fitting

suppresses the postbolus baseline, making it appear that leakage

has been corrected, there is no physiologic basis for this correction

and it does not appropriately consider leakage that can occur dur-

ing the bolus.36 Gamma-variate fitting was not used by any of the

software platforms evaluated in the present study.

In another study,37 nRCBV values were generated from 3

FDA-approved software packages including IB Neuro 1.1,

FuncTool software 4.5.3 (GE Healthcare) and nordicICE 2.3.13

and 1 in-house software platform. While effort was made to use

the tools in a similar way, more user interaction was required of

some (FuncTool, nordicICE), and FuncTool did not have the op-

tion for leakage correction. The largest

differences between the in-house and

commercial software occurred with the

tool that required the most user interac-

tion (nordicICE), further motivating

the development of more automated

workflows with less need for user inter-

action. Yet another study comparing

these same 3 packages also found signif-

icant differences, with the outlying

package depending heavily on the type

of rCBV metric used.38 This finding

again suggests that it is imperative that

the same output metric be used when

making such comparisons.

Of relevance to the current study,

rCBV maps generated with IB Neuro

showed superior leakage correction and

stronger correlation with image-guided

microvessel quantification as well as

higher accuracy in distinguishing tumor

recurrence from pseudoprogression/

radiation necrosis compared with other

software platforms.39 These results are

relevant, given the number of sites in the

present study that chose to use IB Neuro

for their processing.

A limitation of the current study is

the use of a DSC-MR imaging dataset

that was obtained at a single center using

a single approach. Use of a range of ac-

quisition methods would likely result in

greater variation in the DSC-MR imag-

ing perfusion results. A previous study

confirmed this by comparing a range of

acquisition and analysis methods, which also influenced the abil-

ity to distinguish high-grade tumor from reference brain.20 How-

ever, a consensus regarding best practices for DSC-MR imaging

data acquisition is being reached, as described in a recent review,40

and includes the approach used for this study. Specifically, use of

a preload of contrast agent and a flip angle �90° is proving to be

one of the most accurate approaches, further confirmed by 2

recent studies,19,41 both incorporating sophisticated simula-

tions of DSC-MR imaging data representative of brain tumor.

Use of a preload might also be an important reason for greater

consistency across postprocessing methods in this study com-

pared with previous studies (eg, Orsingher et al32). Collecting

DSC-MR imaging data after preload was shown to decrease

the dependence of tumor rCBV on the chosen method of

analysis.20

An additional limitation of this study is the use of laboratory

or proprietary commercial packages for which many of the

details of the algorithmic implementation are not available and

thus cannot be further evaluated as potential sources of differ-

ences. Also, the software platforms used for this study were

dictated entirely by platforms being used at each participating

site. Consequently, this is not a comprehensive comparison of

Table 3: nRCBV low- vs high-grade thresholds and ROC analysis results

Team/
Entry No.

Software
Platform

Leakage
Correction

Used
LG vs HG
(P Value) Threshold SN SP AUC

A1 IB Neuro Yes 5.34E-06 1.605 0.861 0.846 0.889
B1 IB Neuro Yes 5.36E-06 1.605 0.861 0.846 0.889
C1 IB Neuro Yes 5.39E-06 1.605 0.861 0.846 0.889
B2 Matlab Yes 2.02E-06 1.315 0.972 0.769 0.892
B3 Matlab Yes 1.75E-06 1.330 0.972 0.769 0.896
D1 nordicICE Yes 3.30E-06 1.305 0.972 0.769 0.895
D2 nordicICE Yes 3.30E-06 1.305 0.972 0.769 0.895
E1 PGUI (LC) Yes 7.32E-06 1.615 0.861 0.846 0.892
E2 PGUI (C) Yes 1.14E-05 1.400 0.861 0.769 0.871
E3 PGUI (PM LC) Yes 1.18E-05 1.400 0.889 0.769 0.856
D3 Slicer Yes 1.08E-06 1.415 0.944 0.769 0.891
F1 FIAT Yes 2.50E-05 1.235 0.944 0.769 0.853
G1 McCBV Yes 1.26E-06 1.425 0.944 0.769 0.891
A3 IB Neuro No 1.55E-06 1.330 0.917 0.769 0.895
B4 IB Neuro No 1.56E-06 1.330 0.917 0.769 0.895
E4 PGUI No 6.94E-06 1.450 0.861 0.769 0.887
E5 PGUI No 5.67E-05 1.585 0.806 0.846 0.872
E6 PGUI No 1.19E-05 1.395 0.861 0.769 0.873

Note:—AUC indicates area under the curve; LG, low-grade; HG, high-grade.

Table 4: nCBF low- vs high-grade thresholds and ROC analysis results
Team/Entry

No. Software
LG vs HG
(P Value) Threshold SN SP AUC

A5 IB Neuro 2.90E-05 1.815 0.806 0.846 0.861
B5 IB Neuro 2.38E-05 1.555 0.917 0.769 0.864
C2 IB Neuro 3.82E-06 1.415 0.944 0.769 0.880
B6 Matlab 2.61E-04 2.045 0.722 0.846 0.814
D4 nordicICE 9.81E-06 1.255 0.972 0.769 0.868
D5 nordicICE 3.03E-05 1.580 0.861 0.846 0.866
E7 PGUI 1.30E-04 1.575 0.806 0.846 0.846
E8 PGUI 3.85E-05 1.375 0.917 0.692 0.845
E9 PGUI 1.67E-04 1.460 0.833 0.769 0.812
E10 PGUI 7.86E-03 1.920 0.639 0.692 0.658
D6 Slicer 1.04E-06 1.405 0.944 0.769 0.887
F2 FIAT 2.65E-04 1.460 0.861 0.769 0.816

Note:—AUC indicates area under the curve; LG, low-grade; HG, high-grade.
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all available software platforms with DSC-MR imaging post-

processing capabilities.

The general application of the results of this study is somewhat

limited because the preprocessing steps were carefully controlled so

that consistent input data were provided to all sites and software

platforms. In practice, subjective manipulation of the preprocessing

steps is common; therefore, consistency is less likely, as the discussion

of the previous studies reveals. Yet the identification of preprocessing

as a key confound should not inhibit use of DSC-MR imaging but

rather motivate improving automation of the preprocessing steps. In

fact, several efforts to automate tumor segmentation are well under-

way,42,43 which remove this source of discrepancy entirely.

CONCLUSIONS
This study demonstrates that nRCBV and nCBF can be used to

distinguish LGG from HGG in a consistent fashion and using a

single consensus threshold. This result should increase confi-

dence in using nRCBV primarily, but also nCBF, on a routine

basis, potentially motivating its incorporation into the updated

Response Assessment in Neuro-Oncology criteria. Finally, these

results provide strong motivation for the development of more

automated preprocessing workflows that are less dependent on

subjective user interaction.
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