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Abstract

Defects in alternative splicing are frequently found in human tumors and result either from 

mutations in splicing-regulatory elements of specific cancer genes or from changes in the 

regulatory splicing machinery. RNA splicing regulators have emerged as a new class of 

oncoproteins and tumor suppressors, and contribute to disease progression by modulating RNA 

isoforms involved in the hallmark cancer pathways. Thus dysregulation of alternative RNA 

splicing is fundamental to cancer and provides a potentially rich source of novel therapeutic 

targets. Here we review the alterations in splicing regulatory factors detected in human tumors, as 

well as the resulting alternatively spliced isoforms that impact cancer hallmarks, and discuss how 

they contribute to disease pathogenesis. RNA splicing is a highly regulated process and, as such, 

the regulators are themselves tightly regulated. Differential transcriptional and post-transcriptional 

regulation of splicing factors modulates their levels and activities in tumor cells. Furthermore, the 

composition of the tumor microenvironment can also influence which isoforms are expressed in a 

given cell type and impact drug responses. Finally, we summarize current efforts in targeting 

alternative splicing, including global splicing inhibition using small molecules blocking the 

spliceosome or splicing-factor-modifying enzymes, as well as splice-switching RNA-based 

therapeutics to modulate cancer-specific splicing isoforms.
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INTRODUCTION

Cancers arise as a consequence of the dysregulation of cellular homeostasis and of its 

multiple control mechanisms. Alternative RNA splicing is a key step of post-transcriptional 

gene expression regulation. It contributes to proteomic and functional diversity by enabling 

the production of distinct RNA isoforms from a single gene. Alternative splicing provides 

transcriptional plasticity by controlling which RNA isoforms are expressed at a given time 

point in a given cell type. Cancer cells subvert this process to produce isoforms that benefit 

cell proliferation or migration, or unable escape from cell death (Figure 1)1.

RNA splicing is a highly controlled process that relies on cis-regulatory elements and trans-

regulatory factors. The core splicing machinery, the spliceosome, removes introns and joins 

exons together to generate a mature mRNA molecule. This machinery assembles on the pre-

mRNA molecule on specific sequences located at the exon-intron boundaries and that define 

the 3′ and 5′ splice sites (SSs) and the branch point site (BPS). The core human 

spliceosome, together with associated regulatory factors, comprise more than 300 proteins 

and five small nuclear RNAs (snRNAs), and catalyze both constitutive and regulated 

alternative splicing2–5. The architecture of the spliceosome undergoes dynamic remodeling 

in preparation for, during, and after the splicing reaction (Figure 2). In addition to the core 

spliceosome, regulatory proteins are involved in modulating the splicing reaction, and act as 

splicing activators or repressors by binding to exonic or intronic enhancer or silencer 

elements.

Defects in alternative splicing are frequently found in human tumors and result either from 

mutations in splicing-regulatory elements of specific cancer genes or from changes in the 

regulatory splicing machinery6. Alterations of the splicing machinery are particularly 

important in cancer because they affect a network of downstream splicing targets, whereas a 

mutation affecting splicing of a single gene often affects only one isoform. RNA splicing 

regulators have recently emerged as a new class of oncoproteins or tumor suppressors, and 
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contribute to disease progression by modulating RNA isoforms involved in the hallmarks 

cancer pathways. Dysregulation of alternative splicing is a fundamental process in cancer 

and provides a potentially rich source of novel therapeutic targets and biomarkers for disease 

progression. A better understanding of the regulators of the splicing machinery is a crucial 

step in understanding the role of RNA splicing in cancer. Here we review the alterations in 

splicing regulatory factors detected in human tumors, as well as the alternatively spliced 

isoforms that impact cancer hallmarks, and discuss how they contribute to disease 

pathogenesis. Finally, we summarize current efforts in targeting alternative splicing as 

cancer therapeutics.

ALTERATIONS IN SPLICING REGULATORY COMPONENTS

Splicing-factor mutations associated with malignancies

Recurrent somatic mutations in components of the human splicing machinery occur in 

human tumors, most frequently in hematological malignancies7, suggesting that splicing-

factor alterations are a hallmark of cancer. Interestingly, the two most frequently mutated 

splicing factors are SF3B1, a core component of U2 snRNP involved in BPS selection, and 

SRSF2, a serine/arginine-rich (SR) protein that acts both in alternative and constitutive 

splicing and interacts with U1 snRNP (Figure 2). Mutations in other splicing factors have 

been also been identified, and the list is growing every day as more human tumors are 

sequenced. However, the functional consequences of most of these mutations and their roles 

in tumor progression remain to be characterized.

SF3B1 (alias SF3B155)—SF3B1, the key protein component of U2 snRNP, is crucial for 

formation of the spliceosomal A complex. SF3B1 interacts directly with the RNA-

recognition motif (RRM) of U2AF2 as well as with SF3B14a, thus creating a stable complex 

that directs the recognition of the BPS by U2 snRNA5. SF3B1 also interacts with 

nucleosomes suggesting that chromatin structure can modulate its splicing functions8. 

Recurrent somatic SF3B1 mutations occur in myelodysplastic syndromes (MDS), including 

83% of refractory anemia with ringed sideroblasts (RARS), an MDS variant with erythroid 

dysplasia and favorable outcomes, and 76% of refractory cytopenia with multilineage 

dysplasia and ringed sideroblasts (RCMD-RS) which carries a less favorable survival 

rate9–12. SF3B1 mutations cluster in exons 12–15, which encode HEAT repeats, a region 

important for the association of SF3B1 with SF3B14a13. SF3B1 missense mutations alter 

the recognition of alternative or cryptic 3′SS leading to differential splicing of transcripts, 

70% of which are novel isoforms and 50% undergo nonsense-mediated decay (NMD)14,15. 

In mouse models, this differential exon usage disrupts key pathways in hematopoiesis and 

iron metabolism and blocks erythroid differentiation, thus providing a basis for the 

pathogenesis of RARS and RCMD-RS16,17. The K700E missense mutation, which accounts 

for more than half of SF3B1 mutations in MDS patients and is associated with a better 

prognosis, promotes splicing of an isoform of the erythroid lineage transcription factor 

TAL1 that reduces erythroid differentiation in vitro10,13,18. SF3B1 mutations are also 

detected in other cancers including 15% of chronic lymphocytic leukemia (CLL), in which 

SF3B1 mutations are associated with an anti-apoptotic role and correlate with poor overall 

prognosis12,19,20. Additionally, the K700E mutation is detected in 3% of pancreatic and 
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1.8% of breast cancers, both of which exhibit alterations in RNA splicing patterns21,22. 

SF3B1 mutations also occur in 1% of cutaneous melanomas and 20% of uveal melanomas in 

which they are associated with aberrant splicing, chromosome 3 disomy, and intermediate 

prognosis23–26.

SRSF2 (alias SC35)—The splicing factor SRSF2 belongs to the SR protein family and is 

involved in regulation of both alternative and constitutive splicing. SRSF2 coordinates 

recognition of the 5′ and 3′ SS by the U1 and U2 snRNPs, respectively. SR proteins 

recognize enhancer and silencer sequences in pre-mRNA exons and introns and thereby 

favor exon inclusion or skipping by recruiting or inhibiting spliceosome assembly5. 

Mutations in SRSF2 are frequently observed in hematologic malignancies including 10% of 

MDS, 31–47% of chronic myelomonocytic leukemia (CMML), and 2% of acute myeloid 

leukemia (AML)13. SRSF2 mutations in MDS are associated with decreased overall survival 

and increased progression rate from MDS to AML27. Interestingly, SRSF2 missense 

mutations cluster at proline 95, in a region proximal to the RRM domain, which confers the 

RNA binding specificity13,28. In mouse models, blood lineage-specific SRSF2 knockout 

(KO) or heterozygous expression of Srsf2P95H causes defective hematopoiesis29. The 

SRSF2P95H mutation induces splicing changes in mouse and human myeloid cell models, 

which likely result from alterations in pre-mRNA sequences recognized by the RRM of 

SRSF229–32. Indeed, mutant SRSF2 exhibits increased binding specificity for the CCNG 

consensus sequence, whereas wild-type SRSF2 recognize both CCNG and GGNG 

sequences29. This alteration in sequence specificity leads to the inclusion of a premature 

termination codon (PTC)-containing exon in EZH2, a histone methyltransferase implicated 

in the pathogenesis of MDS29. Finally, deletion of Ezh2 in mouse hematopoietic stem cells 

causes MDS, providing a causal link between the SRSF2 mutation, EZH2 loss of function, 

and MDS33.

U2AF1, ZRSR2, RBM10 and other splicing-factor mutations—While SF3B1 and 

SRSF2 are the most frequently mutated splicing factors in hematologic malignancies, other 

factors also exhibit recurrent mutations in MDS.

U2AF1 (alias U2AF35) is involved in the formation of the spliceosomal E complex. As a 

heterodimer with U2AF2 (U2AF65), it is responsible for the recognition of the 3′SS and 

BPS as well as for stabilizing U2 snRNA binding to the BPS5. In addition to MDS, U2AF1 
is also mutated in 3% of lung adenocarcinomas34. Missense mutations in U2AF1 occur 

almost exclusively at S34 and Q157, thus affecting the C-terminal zinc finger domain. 

Expression of U2AF1S34F in HeLa cells leads to an increase in PTC-containing transcripts, 

suggesting global splicing defects13. U2AF1 mutants disrupt proliferation in HeLa cells and 

exhibit a decreased ability to reconstitute the hematopoietic system when introduced into 

mouse hematopoietic stem cells, thereby convoluting the link between these mutations and 

MDS13. However, a recent study described a gain-of-function role for mutant U2AF135. 

When overexpressed in human hematopoietic progenitor cells, U2AF1S34F promotes 

lineage-specific splicing changes, most notably in H2AFY and STRAP isoforms, which are 

not rescued by co-expression of wild-type U2AF1. These splicing isoforms disrupt normal 

erythroid and granulomyelocytic differentiation in hematopoietic progenitors35. 
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Interestingly, expression of the canonical isoforms is capable of rescuing the differentiation 

defect35. Taken together, these findings suggest that mutant U2AF1 blocks terminal 

differentiation of hematopoietic cells, but does not grant a growth or survival advantage, and 

may therefore require further mutational hits to lead to MDS.

ZRSR2 is involved in the recognition of 3′SS in both major and minor introns, a class of 

intronic sequences recognized by the minor U12-dependent spliceosome36. In addition, 

ZRSR2 also promotes the removal of the intron lariat and stitching of the adjacent exons37. 

ZRSR2 mutations in MDS lead to the retention of minor introns without affecting the major 

introns38. In contrast to the hotspot mutations in other factors, ZRSR2 mutations are widely 

distributed and create loss-of-function mutants, thus suggesting that ZRSR2 functions as a 

tumor suppressor13,38.

The RNA-binding protein RBM10 is a component of the pre-spliceosomal complex A. 

Mutations in RBM10 are associated with the TARP syndrome, an X-linked recessive 

disorder with congenital heart malformation and developmental abnormalities, often 

associated with neonatal lethality39. Somatic mutations in RBM10 are found in lung 

adenocarcinoma34,40, including 21% of invasive lung adenocarcinoma 41, as well as less 

frequently in non-anaplastic thyroid cancers42, colorectal carcinoma43, pancreatic 

adenocarcinoma44 and intraductal papillary mucinous neoplasm45. RBM10 mutations are 

widely distributed and create loss-of-function mutants, indicating that RBM10 functions as a 

tumor suppressor46. Furthermore, the presence of RBM10 mutations is associated with a 

significant reduction in RBM10 expression in lung tumors, and is accompanied by changes 

in proliferation rates and in alternative splicing of RBM10 target genes47. For example, 

missense or truncating RBM10 mutations found in lung cancer patients disrupts RBM10-

mediated regulation of NUMB splicing, inducing a pro-proliferative isoform46. Conversely, 

in pancreatic cancer, RBM10 mutations are associated with longer survival in spite of 

histological features of aggressive disease44.

Mutations in other components of the spliceosome, e.g., PRPF40B, U2AF2, SF3A1, or SF1, 
occur sporadically in MDS patients. PRPF40B interacts with SF1 and U2AF2 to enhance the 

inclusion of exons with weak SSs, and regulates splicing of apoptotic isoforms of FAS and 

BCL-x48. U2AF2 is involved in 3′SS recognition, and in some cases can promote exon 

skipping49,50. SF3A1 interacts with both the U1 snRNA and U2 snRNP complex to mediate 

communication between the 5′SS and 3′SS complexes51. Additionally, PRPF40B and 

U2AF2 are also upregulated or downregulated in several solid tumors52, including 

melanoma, where U2AF2 promotes metastasis by regulating splicing of CD4453.

Alterations in splicing-factor levels

In solid tumors, splicing factors exhibit frequent changes at the copy number or expression 

levels but are rarely mutated54. Splicing factors bind directly to pre-mRNA and regulate 

their downstream targets in a concentration-dependent manner55; thus, changes in splicing-

factor levels cause splicing deregulation in tumors even in the absence of mutations. Two 

major protein families play a critical role in the regulation of alternative splicing through 

recognition of intronic or exonic enhancer and silencer sequences. The serine/arginine-

rich(SR) protein family is composed of 12 members (SRSF1-12) containing SR domains 
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that contribute to protein-protein interactions, and one or two RRMs that allow sequence-

directed binding55. Heterogenous nuclear ribonucleoproteins (hnRNPs), which are a large 

and structurally diverse family of RNA-binding proteins with diverse roles in splicing, 

mRNA transport, and translation, often function as antagonists to SR-protein-regulated 

alternative splicing events56. Below, we discuss in more detail several RNA-binding proteins 

that exhibit expression changes in human tumors, and for which there is compelling in vitro 
or in vivo evidence that their alterations affect cellular processes involved in transformation 

(Figure 3).

SRSF1 (alias ASF/SF2)—SRSF1 is a proto-oncogene that controls alternative splicing 

but also regulates other steps of RNA metabolism57. SRSF1 is frequently upregulated in 

breast, lung, colon and bladder tumors, in part due to an amplification of Chr.17q2358–60. In 

breast cancer models, SRFS1 overexpression promotes transformation in vivo and in vitro 
by enhancing proliferation and decreasing apoptosis58. Additionally, SRSF1 acts 

synergistically with MYC, and their co-expression correlates with higher tumor grade and 

decreased survival in breast and lung cancer patients58,60–62. SRSF1 oncogenic activity 

relies on the regulation of splicing isoforms involved in apoptosis (e.g., BCL2L1, BCL2L11, 

BIN1), cell growth (e.g., RPS6KB1), cell survival (e.g., MKNK2), or motility (e.g., 

RON)58–60,63,64. In lung cancer, SRSF1 upregulation is associated cisplatin and topotecan 

resistance65.

SRSF3 (alias SRp20)—In addition to its role in splicing regulation, SRSF3 is also 

involved in transcription termination, IRES-dependent viral RNA translation, and 

homologous recombination-mediated DNA repair66–68. Additionally, SRSF3 together with 

SRSF1 associates with hypo-phosphorylated chromatin, and controls G0/G1 re-entry69. 

SRSF3 is overexpressed in lung, breast, ovarian, stomach, bladder, colon, liver, and oral 

tumors, in part due to copy number changes on Chr.6p2170–72, and shows variable 

expression in renal cancers52,70. SRSF3 acts as a proto-oncogene as its overexpression is 

capable of transforming human fibroblasts in vitro, while its depletion causes growth arrest 

of cancer cell lines70. SRSF3 regulates alternative splicing of genes involved in 

tumorigenesis, such as isoforms PKM2 that alters cell metabolism or TP53β that induces 

cellular senescence73,74.

SRSF6 (alias SRp55)—SRSF6 is frequently upregulated in breast, lung, pancreatic and 

colon cancers, in part due to an amplification of its locus60. SRSF6-overexpression 

synergizes with MYC to promote transformation of lung epithelial cell lines75, while, its 

knockdown in lung carcinoma cells decreases proliferation and prevents tumor formation in 

immunocompromised mice75. SRSF6 promotes pro-oncogenic splice variants of the insulin 

receptor INSR, the tumor suppressor DLG1, and the downstream effector of the MAPK 

pathway MKNK275. SRSF6 is also upregulated in multiple subtypes of skin cancer, and its 

overexpression in murine skin promotes splicing of cassette exons, coordinates wound 

healing, and induces hyperplasia76. Conversely, PLX4720, a BRAF inhibitor, induces 

SRSF6 expression in BRAFV600E melanoma cell lines, which in turn promotes splicing of 

the pro-apoptotic isoform BIM-S leading to increased cell death77. While SRSF6 
upregulation also correlates with increased BIM-S expression post-treatment, continued 
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exposure to PLX4720 leads to drug resistance78. Finally, SRSF6 is downregulated in kidney 

tumors, which could indicate cell type-specific functions52.

Other SR proteins—Other SR proteins are also altered in human tumors but have less 

well-defined roles in transformation. SRSF5 is upregulated in breast tumors with lymph 

node metastasis79 and oral tumors80. SRSF5 or SRSF7 are upregulated in lung cancer, and 

their knockdown impacts cell proliferation81. Interestingly, SRSF5 shows broad 

downregulation in breast, lung, liver, and kidney tumors52. SRSF4 regulates alternative 

splicing events leading to cell death in cisplatin treated breast cancer cells82. Renal tumors 

show a broad differential expression of various SR proteins83. Co-expression of these 

splicing factors may indicate that the robust network of splicing changes in cancer cells is 

due to an imbalance among multiple splicing factors rather than differential splicing 

regulated by a single splicing factor.

TRA2β—TRA2β is an SR-like protein that regulates alternative splicing and is essential for 

embryonic development84. Overexpression of TRA2β occurs in lung, breast, ovarian, 

cervical, prostate, colon, and central nervous system tumors, where it correlates with an 

aggressive phenotype, whereas downregulation is detected in thyroid and renal 

cancers52,71,85–91. TRA2β-overexpression promotes proliferation in human lung carcinoma 

cells, while its knockdown induces apoptosis85. TRA2β overexpression in human glioma 

cells promotes proliferation and migration89, and TRA2β KO leads to defects in murine 

brain development, highlighting the importance of TRA2β homeostasis in neurogenesis92. 

TRA2β regulates the inclusion of CD44 exons v4 and v5 in breast tumors90, and inclusion 

of estrogen receptor alpha ERα exon 7, creating a dominant negative isoform in endometrial 

tumors93. Interestingly, lung tumors exhibit a rare fusion protein between TRA2β and 

DNAH5 that preferentially localizes to the cytoplasm, activates ERK1/2 through inhibition 

of SIRT6, and promotes lung cancer94.

hnRNPA1—hnRNPA1 regulates alternative splicing and translation, and is overexpressed 

in blood, lung, and colorectal malignancies52,95–98. hnRNPA1 upregulation in lung 

adenocarcinoma is associated with increased tumor staging; conversely, hnRNPA1 

knockdown decreases cell proliferation and induces cell cycle arrest in lung cancer cell 

lines97. In response to ultraviolet radiation, hnRNPA1 expression is increased in skin cells, 

consequently modulating splicing of HDM2 and promoting cell survival by activating the 

mTOR pathway99,100. Furthermore, hnRNPA1 is upregulated in AML, where it functions to 

prevent myeloid differentiation by binding to the 3′-UTR and thereby preventing translation 

of C/EBPα mRNA, a critical transcription factor for myelopoiesis98.

hnRNPA2/B1—hnRNPA2/B1, a splicing regulator closely related to hnRNPA1, is 

frequently overexpressed in lung, breast, colorectal, and brain tumors52,101–103. Up-

regulation of hnRNPA2/B1 in bronchial lavage specimens predicts the diagnosis of a lung 

neoplasm with high sensitivity and specificity101, and its degree of overexpression correlates 

with microsatellite instability104, increased tumor stage, and decreased overall survival105. 

hnRNPA2/B1 mediates its tumorigenic effect in glioblastoma through alternative splicing of 

key oncogenes and tumor suppressors. For example, hnRNPA2/B1 overexpression causes 
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skipping of RON exon 11, creating an oncogenic isoform involved in cell motility; skipping 

of exon 11 in the insulin receptor INSR leading to an isoform with altered substrate 

specificity that binds to broader range of mitogens; or inclusion of exon 12a in the tumor 

suppressor BIN1m creating an isoform that is unable to stimulate apoptosis102.

hnRNPK—hnRNPK is a splicing factor that can act as a tumor suppressor but also exhibits 

oncogenic functions. Heterozygous deletion of 9q, where hnRNPK is located, is a 

characteristic of AML and results in hnRNPK decreased expression and haplo-

insufficiency106,107. hnRNPK interacts directly with C/EBPα mRNA, and heterozygous 

hnRNPK KO mice express low levels of the C/EBPα p42 isoform and eventually develop 

abnormal myelopoiesis98,106. hnRNPK expression is also decreased in renal tumors52. 

Consistent with its role as a tumor suppressor, hnRNPK is an HDM2-regulated cofactor for 

p53, and its expression increases upon DNA damage108. Furthermore, hnRNPK knockdown 

leads to defects in DNA-repair and to increased DNA damage after gamma-

irradiation108,109. However, hnRNPK also exhibits oncogenic functions and is upregulated in 

breast, colorectal, and pancreatic cancer tissues and cell lines 110–113. For example, 

inhibition of hnRNPK in human cancer cells decreases cell motility, whereas its 

upregulation increases proliferation and migration110,114. In colorectal and pancreatic 

tumors and cell lines, oncogenic hnRNPK is translocated from the nucleus to the cytoplasm, 

thus suggesting a potential explanation for its ability to act as either an oncogene or a tumor 

suppressor112–114.

Other hnRNPs—Upregulation of hnRNPM is detected in metastatic breast tumor115. 

hnRNPM regulates epithelial-mesenchymal transition (EMT) in breast epithelial cells, in 

part by promoting splicing of the CD44s isoform, and by altering TGF-β signaling115. 

hnRNPM upregulation is also a poor prognostic factor for Ewing’s sarcoma, where 

inhibition of the PI3K/AKT/mTOR pathway causes broad transcriptome changes mediated 

by hnRNPM-regulated splicing events116. Additionally, hnRNPH1 contributes to the 

aggressiveness of glioblastoma via alternative splicing of IG20/MADD and RON, creating 

anti-apoptotic and pro-motility protein isoforms117. Moreover, hnRNPC is upregulated in 

lung and colorectal cancers, and downregulated in kidney cancers 52. hnRNPC acts as a 

tumor suppressor and alters DNA damage repair by binding to BRCA1, BRCA2, RAD51, 

and BRIP1 mRNA and modulating the inclusion of intronic Alu transposable elements118. 

hnRNPE1 upregulation in pancreatic cancer is associated with metastasis and promotes 

alternative splicing of integrin β1, a transmembrane protein involved in cell adhesion119. 

Finally, PTBP1, also known as hnRNPI is upregulated in breast, brain, colon, endometrial, 

and ovarian tumors and cell lines120–124. PTBP1-overexpression increases proliferation, 

anchorage-independent growth, and invasion in cancer cell lines, but does not transform 

murine fibroblasts124,125.

Other splicing factors—The epithelial-specific splicing factors ESRP1 and ESRP2 affect 

splicing of target genes involved in EMT, including CD44, ENAH, FGFR2, and 

RAC1126–131. They are often upregulated in normal epithelium but downregulated in 

invasive fronts132. Paradoxically, they have been assigned both a tumor suppressor and an 

oncogenic function133–135.
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Similarly, the splicing factor RBFOX2 has been linked with EMT, and regulates splicing 

targets in breast, pancreatic and colon tumors128,136–138.

Additionally, splicing factors RBM5 and 10 are found upregulated or downregulated in 

several solid tumors, and are implicated in the splicing of apoptotic proteins BAX and BCL-

x, and the notch pathway regulator NUMB34,139–143.

Finally, QKI downregulation is a common event in several solid tumors and is associated 

with poor prognosis144–146. Interestingly, MYB-QKI fusions have been identified as a driver 

event in glioma147.

Defects in pathways regulating splicing factors

Alterations in splicing-factor levels can be explained by gene amplifications or deletions 

only in a fraction of the tumors that exhibit splicing-factor defects52,54. RNA splicing is a 

highly regulated process and hence the splicing regulators are themselves tightly regulated. 

Differential regulation of splicing factors can thus affect their levels and activities in tumors 

even in the absence of copy-number changes or mutations. Here we discuss examples of 

transcriptional and post-transcriptional regulation that could explain the defects in splicing-

factor levels observed in tumors (Figure 4).

Transcriptional Regulation—The transcription factor MYC is a well-studied oncogene 

that is overactive in a variety of cancers. However, part of MYC’s oncogenic potential may 

result from its ability to regulate splicing factors at the transcriptional level. The oncogenic 

factor SRSF1 is a direct transcriptional target of MYC, and synergizes with MYC to 

promote tumorigenesis in breast and lung tumors58,62. In gliomas, c-MYC drives the 

expression of PTBP1, hnRNPA1, and hnRNPA2/B1, all of which favor splicing of the 

PKM2 isoform used in aerobic glycolysis148. PTBP1 or hnRNPA1 are directly regulated by 

n-MYC in neuroblastomas, where they controls cell survival and correlate with a worse 

prognosis149. Conversely, knockdown of hnRNPA1 or hnRNPA2 reduces splicing of PKM2 
and alters cell metabolism150. Moreover, MYC-driven tumors exhibit differential expression 

of spliceosomal components or their regulators, e.g., BUD31 and PRMT5, as well as of their 

downstream targets151,152. In addition to MYC, other pathways control splicing-factor 

transcriptional activation. In colorectal tumors, the Wnt signaling pathway, which is 

frequently dysregulated through APC mutation, directly controls SRSF3 level 153,154. The 

transcription factors Ets1 and HSF1 mediate basal and oxidant-stress responses by inducing 

TRA2β expression in colorectal cancer88. Together, these pathways represent key points for 

potential targeted therapies that could be used to disrupt splicing regulators in tumors.

Alternative splicing and nonsense-mediated mRNA decay—The expression of 

many RNA-binding proteins is regulated through the splicing of their own pre-mRNA. SR 

proteins auto-regulate their levels by enhancing the inclusion of PTC-containing cassette 

exons, termed “poison exons”, within their mRNA. These transcripts are degraded by NMD 

creating a negative feedback loop when SR-protein levels become elevated155–159. Although 

auto-regulation has not been experimentally demonstrated for all SR proteins, poison exons 

are highly conserved throughout evolution, and isoforms containing these ultraconserved 

regions are detected in human 160,161. While SR proteins auto-regulate through inclusion of 
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poison exons, auto-regulation of hnRNPs involves both inclusion and skipping of PTC-

containing regions161–164.

Splicing factors can also cross-regulate the expression of other RNA-binding proteins, 

through splicing of their respective ultraconserved regions155,162. In murine cells, exogenous 

SRSF3 enhances inclusion of its own poison exon, while SRSF1 overexpression inhibits 

SRSF3 exon inclusion155. Similarly, RBFOX2, which coordinates mesenchymal splicing 

networks in cancer tissues, regulates alternative splicing of a number of different RNA-

binding proteins137,165,166. Alternative splicing of murine Quaking, Qk, generates three 

isoforms Qk5, Qk6, and Qk7, that exhibit both auto- and cross-regulation. Specifically, Qk5 

enhances expression of total Qk mRNA while also binding to its own 3′-UTR and 

downregulates Qk5 protein expression. Qk6 negatively regulates protein expression of Qk5, 

while also stimulating translation of Qk6 mRNA167. Human lung tumors express high levels 

of QKI5 vs. QKI6168, suggesting that this extensive network of auto and cross-regulation 

could exist in humans and that a similar mode of regulation may exist across other splicing 

factors.

Regulation by lncRNAs—Long non-coding RNA (lncRNAs) are involved in the 

regulation of alternative splicing, for example by facilitating splicing-factor binding to 

exonic splicing silencer or intronic splicing silencer elements. lncRNAs PCGEM1 and 

BC200 regulate alternative splicing of AR and BCL-x, respectively, through interaction with 

hnRNPA1, hnRNPA2/B1, or U2AF65169,170. Moreover, MALAT1 modulates alternative 

splicing by influencing SR protein subnuclear localization171. Additionally, LINC01133 
sequesters SRSF6, and its knockdown allows SRSF6 to promote EMT and metastasis in 

colorectal cancer mouse models172.

Regulation by miRNAs—MicroRNAs (miRNA) can act as tumor suppressors or as 

oncogenes and can play a role in the regulation of splicing-factor expression. Expression of 

SRSF7 is regulated by miR-30a-5p and miR-181a-5p in renal tumors, and this miRNA-

mediated suppression of SRSF7 alters splicing patterns83,173. Conversely, SRSF7 regulates 

splicing and expression of these miRNAs, thus forming a negative feedback loop173. 

miR-30a-5p is upregulated in glioma cells by Wnt signaling and acts as an oncogene, 

perhaps superseding the pro-tumorigenic roles of either SRSF7 and miR-30a-5p in different 

cancers174. Additionally, SRSF1 is the target of miR-28, miR-505, miR-10a, and 

miR-10b175,176. The oncogenic lymphoma/leukemia-related factor LRF represses miR-28 

and miR-505 expression and potentially leads to increased SRSF1 expression in tumors175. 

Upregulation of miR-10a and miR-10b in response to retinoic acid causes terminal 

differentiation of neuroblastoma cells, possibly through repression of SRSF1 levels176. 

Additionally, miR-10a and miR-10b also target TRA2β, which promotes proliferation in 

glioblastoma cells89,176. Finally, miR-451 targets hnRNPA1 in human leukemia cells, 

potentially acting as a tumor suppressor by repressing hnRNPA1 expression98.

Post-translational regulation—SR proteins undergo extensive post-translational 

modifications which impacts their subcellular localization and thus activity. For example, 

phosphorylation of the C-terminal RS domain by SR-specific protein kinases (SRPKs) 

allows nuclear import via interactions with transportin-SR2177–179. Once in the nucleus, 
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Cdc-like kinases (CLK) control the nuclear distribution of SR proteins180–182. Additionally, 

SRPK and CLK kinases can alter the functionality of SR proteins independently of their 

effect on splicing-factor localization. For example, CLK2-mediated phosphorylation 

prevents the auto-regulation of TRA2β157. CLK2 acts as an oncogene in breast cancer where 

it alters splicing, possibly linking the regulation of splicing-factor phosphorylation and 

splicing dysregulation in cancer183. Moreover, the oncogenic kinase AKT directly 

phosphorylates SRSF1, SRSF7, and SRSF5184,185. AKT promotes phosphorylation and 

subsequent activation of SRPKs, thereby indirectly regulating SR proteins186. Finally, 

SRPK1 is overexpressed in various cancer types including breast, colon, pancreatic, prostate, 

and ovarian187–189.

TUMOR-ASSOCIATED ALTERNATIVELY SPLICED ISOFORMS

The hallmarks of cancer described by Hanahan and Weinberg can be used to understand the 

capabilities acquired by cells during tumor development and progression190. These ten 

hallmarks include a cancer cell’s ability to sustain proliferation, avoid cell death, invade and 

metastasize, and even deregulate cellular energetics. Alternative splicing leads to the 

production of tumor-associated isoforms that function within these hallmarks to promote 

tumorigenesis. Here we describe several alternative splicing events, providing compelling 

evidence for their role in tumorigenesis and discuss how these isoforms relate to the cancer 

hallmarks (Figure 5).

Isoforms sustaining proliferation

RPS6KB1—The gene RPS6KB1 encodes the protein S6K1, a substrate of mTOR, which 

controls translation and cell growth. The full-length protein is produced from the RPS6KB1-
isoform 1 (RPS6KB1-1), whereas inclusion of three cassette exons 6a, 6b, and 6c generates 

the shorter isoform 2 (RPS6KB1-2)60. A PTC in exon 6c causes the shorter isoform to lack a 

portion of the kinase domain60,191. Alternative splicing of RPS6KB1-2 is regulated by 

SRSF1, an oncogenic factor overexpressed in human breast tumors60. High levels of 

RPS6KB1-2 are detected in breast and lung cancer cell lines and primary tissues191,192. 

Expression of RPS6KB1-2 in non-transformed cell lines promotes transformation, whereas 

knockdown in breast, prostate, and lung cancer cells decreases proliferation and tumor 

growth. Conversely, knockdown of RPS6KB1-1 in cancer cell lines induced 

transformation191,192. These data suggest that RPS6KB1-1 plays a role as a tumor 

suppressor whereas RPS6KB1-2 contributes to cell proliferation and tumor growth via 

mTORC1 and 4E-BP1 phosphorylation.

FGFR—FGFR1, FGFR2 and FGFR3 belong to the fibroblast growth factor receptor 

(FGFR) family, members of which are involved in cell proliferation and migration during 

embryologic development, but also during tissue repair and wound healing of adult tissue. 

These receptors contain a cytoplasmic kinase domain, a transmembrane domain, and an 

extracellular ligand binding portion that consists of three immunoglobulin domains, Ig-I to 

III193. The second half of Ig-II is generated by alternative splicing of one of two mutually 

exclusive exons -exon 8 or 9- to generate isoform FGFR-IIIb or FGFR-IIIc respectively. This 

differential splicing, regulated by splicing factors hnRNPH1, hnRNPF, ESRP1, and ESRP2, 
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changes the binding specificity of the FGF ligand130,193,194. Increased levels of FGFR-IIIc 
isoforms are detected in a variety of tumors, and correlate with tumor progression, increased 

grading, and invasiveness195–197. For example, increased expression of FGFR2-IIIc is 

detected in renal, endometrial, pancreatic and colorectal carcinoma compared to normal 

tissues195,198–200. FGFR2-IIIb, but not FGFR2-IIIc, is expressed in non-transformed and 

non-invasive breast cancer cells, whereas FGFR2-IIIc is detected in invasive cell lines201. 

Most renal tumor samples have high levels of FGFR2-IIIc, but those tumors with high 

FGFR2-IIIb expression have a lower grade and stage, and are associated with longer 

survival198. Furthermore, expression of FGFR-IIIb isoforms is tumor-suppressive in vitro 
and in vivo in bladder cancer cells, whereas FGFR-IIIc isoforms promote tumor growth, 

invasion, and metastasis in colorectal, pancreatic, and cervical cancer cells196,197,200,202,203. 

However, a high FGFR-IIIc/IIIb ratio is not always correlated with poor prognosis199, 

suggesting that FGFR isoforms may exhibit different functions in specific tissues or tumors.

In addition to their role in cell proliferation, FGFR isoforms also impact EMT, a key step in 

tumor dissemination and metastasis. The expression of FGFR-IIIb isoforms correlates with 

epithelial markers and FGFR-IIIc with mesenchymal markers, in prostate, bladder, and renal 

carcinoma primary tumors and cell lines198,204–206. Finally, expression of FGFR2-IIIc 
induces human epithelial keratinocyte cells to acquire mesenchymal characteristics207.

MKNK2—Mnk2, a kinase in the MAPK pathway encoded by the MKNK2 gene, has two 

main spliced isoforms, Mnk2-a and Mnk2–b, which differ in their C terminal domain. 

Inclusion of exon 13a produces Mnk2-a, the full-length protein isoform, whereas skipping of 

exon 13a and inclusion of exon 13b encodes Mnk2-b, an isoform lacking the MAPK 

domain208. Both isoforms are capable of phosphorylating the translation initiation factor 

eIF4E, which promotes cell growth; however, Mnk2-a is also capable of phosphorylating 

p38 in response to stress leading to cell death209. SRSF1 regulates MNKN2 alternative 

splicing, promoting Mnk2-b and decreasing Mnk2-a expression60,62. Normal breast, lung, 

and colon tissues express higher levels of Mnk2-a than Mnk2-b, whereas the corresponding 

tumors exhibit a shift towards the Mnk2-b isoform208,209. Since Mnk2-b lacks the MAPK 

domain, it is unable to activate the p38 stress response, tipping the balance to promote cell 

growth208,209. Isoform-specific overexpression or knockdown experiments demonstrate that 

Mnk2-a overexpression inhibits soft-agar colony formation, whereas Mnk2-b expression or 

Mnk2-a knockdown increases transformation209.

HRAS—H-ras belongs to the Ras GTPase family, a class of proto-oncogenes regulating 

proliferation, survival, and differentiation. These proteins exert their stimulatory effects 

when bound to GTP but become inactive when GTP is hydrolyzed to GDP. Alternative 

splicing of HRAS produces two distinct proteins, p19 and p21. The full-length isoform, p21, 

contains exons 0 through 4B, whereas isoform p19 includes the alternative exon IDX 

between exons 3 and 4a. This exon contains a stop codon, and therefore IDX-containing 

transcripts produce a truncated protein210,211. p19 is unable to bind GTP and therefore 

cannot function like other Ras proteins; however, the unique C-terminus of p19 allows 

binding to the scaffolding protein RACK1212, There are limited data regarding the relative 
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expression of p19 and p21 in tumors; however, evidence suggests that p19 may serve as a 

tumor suppressor, and that its ectopic expression delays G1/S transition213.

CCND1—CCND1 undergoes alternative splicing to generate two isoforms: cyclin D1a, the 

conventional isoform, and cyclin D1b, which lacks the C-terminal protein domains. Usage of 

an alternative 5′SS in exon 4 introduces a PTC, and the resulting D1b isoform lacks the 

GSK-3β phosphorylation site encoded by exon 5. This causes the protein to remain in the 

nucleus214,215. Increased expression of CCND1b is observed in breast, lung and prostate 

tumors216–219. However, both CCND1a and CCND1b are expressed in lymphoma, bladder, 

cervical, esophageal and breast cancer215,220–223. CCND1b expression, but not CCND1a, 

correlates with tumor grade, metastasis, and patient survival in lung and breast 

cancer218,222,224. Interestingly, both isoforms enhance tumor formation, although through 

different mechanisms. Cyclin D1a promotes cell proliferation and G1/S transition, while 

cyclin D1b impacts invasion and metastasis215,217,220,222,225,226. Cyclin D1b is unable to 

phosphorylate RB, which is required for cell cycle progression, thus the D1b isoform lacks 

the proliferative effects of D1a214,216,220,221. However, the role of cyclin D1b in promoting 

tumor growth remains controversial with several studies claiming it activates 

proliferation222,224 while others stating it inhibits proliferation221. Therefore, tumors that 

express both cyclin isoforms may have advantages in proliferation as well as invasion, and 

the two isoforms are likely to play distinct roles in different cell types.

Isoforms preventing cell death

BCL2L1—BCL2L1, a member of the Bcl-2 family, generates two isoforms, BCL-xL and 

BCL-xS, which have opposing functions in apoptosis; the first prevents apoptosis while the 

latter promotes it 227. BCL-xS is generated via an alternative 5′SS in exon 2 (Figure 4), and 

lacks the exons encoding the Bcl-2 homology domains, BH1 and BH2, but still includes 

BH3 and BH4228. Sam68 modulated by FBI-1, RBM4, PTBP1, or RBM25 upregulates 

BCL-xS expression229–233, whereas SRSF1 promotes BCL-xL splicing 234. Increased 

expression of BCL-xL and decreased expression of BCL-xS are detected in lymphoma, 

glioma, myeloma, and neuroblastoma cell lines and primary tumors235–238. Expression of 

the pro-apoptotic BCL-xS isoform in cancer cell lines decreases cell viability and sensitizes 

cells to chemotherapy and radiation236,239,240. Conversely, expression of BCL-xL promotes 

cell survival and increases resistance to apoptosis following chemotherapy238,241–243. 

Therefore BCL-xS can antagonize the protective effects of BCL-xL.

FAS—FAS is a member of the TNF-receptor superfamily known for promoting the extrinsic 

pathway of apoptosis. An alternatively spliced isoform, soluble Fas (sFAS), is produced by 

the skipping of exon 6, which encodes the transmembrane domain, and therefore the protein 

cannot localize to the plasma membrane244. Alternative splicing of FAS is controlled by 

multiple regulators, including EWS, hnRNPA1, and TIA1, all of which promote exon 6 

inclusion245–247, whereas RBM5 and PTBP1 favor exon 6 skipping248. A genome-wide 

siRNA screen identified close to 200 additional genes that may be implicated in regulating 

FAS alternative splicing249. sFas is expressed in leukemias and lymphomas250–252, as well 

as in solid tumors including renal, cervical, endometrial, ovarian, and bladder cancer253–256. 
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Expression of sFas is inversely correlated with patient survival and tumor progression in 

leukemia, gynecological, and bladder tumors252,254–257.

BIN1—BIN1 is tumor suppressor that functions by interacting with and inhibiting c-MYC. 

Inclusion of exon 12A of BIN1 generates a protein isoform that no longer binds Myc and 

therefore eliminates BIN1 tumor-suppressive function258. SRSF1 overexpression promotes 

inclusion of exon 12A, and this isoform plays a role in escaping cell death in SRSF1-

dependent breast tumors58,60. Expression of the BIN1+12A isoform is detected in melanoma 

and breast cancer cell lines60,259.

CASP2—Caspase 2 is an initiator of apoptosis and functions as a tumor suppressor. 

Splicing of CASP-2 generates two main isoforms; skipping of exon 9 produces the pro-

apoptotic Casp-2L protein isoform, whereas exon 9 inclusion results in a PTC, leading to the 

anti-apoptotic Casp-2S isoform262,263. Splicing of CASP2 is regulated by RBM5, which 

promotes exon 9 inclusion260, and SRSF3, which promotes exon 9 skipping261. The major 

isoform in adult tissue is Casp-2L, whereas Casp-2S is found in brain and muscle 

tissues262,263. Expression of CASP2 isoforms is detected in various cancers and 

immortalized cell lines261,264,265.

MCL1—The BH3-containing member of the Bcl-2 family, MCL1, has three major isoforms 

which differ in their apoptotic potential266,267. Full length MCL1-L includes exons 1 to 3 

and displays anti-apoptotic activity. Skipping of exon 2 introduces a PTC, leading to the 

MCL1-S isoform, which contains the BH3 domain but lacks the BH1, BH2, and 

transmembrane domains. Finally, truncation of exon 1 produces the MCL1-ES isoform 

which maintains the BH1-BH3 and transmembrane domains but lacks the PEST domain, a 

site of cleavage and phosphorylation for caspases268. SRSF1 is one of the regulators of 

MCL1 splicing in cancer cell lines269. Increased expression of Mcl-1L is observed in oral 

cancers and basal cell carcinoma compared to normal tissues270,271. High MCL1-L 

expression correlates with increased tumor size and decreased survival in oral cancers272, as 

well as with resistance to treatment in oral squamous cell carcinoma273. Interestingly, 

melanocytes upregulate MCL-1L in response to UVB radiation, which protects them against 

apoptosis; whereas melanoma cell lines that have elevated MCL1-L expression without UV 

exposure are resistant to apoptosis274. Finally, MCL1-ES differs from other Bcl-2 family 

members in that it does not depend on BAX/BAK homodimerization for apoptotic activity. 

Interestingly, MCL1-ES neutralizes the effects of MCL1-L, and MCL-1ES apoptotic 

activation is enhanced by MCL1-L expression275. Conversely, MCL1-S apoptotic activity is 

inhibited by MCL1-L266, suggesting that the different isoforms promote apoptosis via 

distinct mechanisms.

Isoforms rewiring cell metabolism

PKM—The two isoforms of pyruvate kinase, a key glycolytic enzyme, are formed by the 

splicing of one of two mutually exclusive exons that share 56 amino acids but differ at 22 

residues276. Inclusion of PKM exon 9 produces the constitutively active PKM1, while 

inclusion of exon 10 encodes PKM2. Both PKM isoforms perform the same catalytic 

function, but PKM2 can switch between the active and inactive state276. PKM2 expression is 
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regulated either by repressing inclusion of exon 9 via binding of PTBP1, hnRNPA1, or 

hnRNPA2, or by promoting exon 10 inclusion via binding of SRSF3. Both splicing events 

increase expression of PKM2 relative to PKM173,148,150. PKM2 is detected in most 

embryonic as well as proliferating adult tissues, with the exception of muscle, brain and 

bladder, which express only PKM1276. Increased PKM2 levels are reported in many human 

solid tumors and correlate with decreased patient survival, advanced stage and poor 

prognosis285. PKM2 knockdown inhibits tumor progression and metastasis in vivo and in 
vitro in ovarian, gastric, colon, liver, and esophageal cancer models277,278,282,285. 

Conversely, cancer cells engineered to express PKM1 in place of PKM2 convert from 

aerobic glycolysis to mitochondrial respiration and are unable to form tumors after 

xenotransplantation286,287. However, other studies suggest that PKM2 is not necessary for 

tumor growth in colon cancer cell lines or in a breast cancer mouse model288–290. PKM2 

plays a role in cancer metabolism and activates the PI3K/Akt pathway291. The ability to 

inhibit PKM2 activity is important for cell proliferation in vivo and in vitro292, and allows 

cells to respond to signaling and environmental cues276.

Isoforms promoting angiogenesis

VEGFA—The growth factor VEGFA stimulates blood vessel formation by promoting 

proliferation and migration of endothelial cells. The VEGFA transcript undergoes alternative 

splicing in two distinct regions to produce protein isoforms of variable length. Inclusion of 

variable exons 6a, 6b, 7a, or 7b encodes the VEGFAxxx isoforms, where ‘xxx’ refers to the 

final number of amino acids293. In addition, inclusion of variable exon 8b, instead of exon 

8a, at the 3′ end of the transcript produces the anti-angiogenic VEGFAxxxb isoforms294. 

VEGFAxxxb splicing is promoted by SRSF6 overexpression, whereas SRSF1 and SRSF5 

overexpression promote VEGFAxxx
295. Adult human tissues express predominantly anti-

angiogenic VEGFxxxb isoforms, such as the common VEGF165b isoform, but their 

expression often decreases as tumors progress296. Decreased expression of VEGF165b is 

found in human metastatic melanoma and prostate tumors297,298. A shift in expression from 

VEGF165b to VEGF165 occurs in colon and squamous cell carcinoma tumors80,299. However 

neither the expression of VEGFAxxx nor of VEGFAxxxb correlates with patient survival in 

head and neck tumors300. Finally, overexpression of VEGF165b reduces tumor growth in 

mouse xenograft models of colon, renal, prostate, or soft tissue tumors299,301,302. In vitro 
VEGFA165b binds to the same receptor as do VEGFA165 and with the same affinity; 

however, VEGFA165b is unable to stimulate the VEGF signaling pathway. Thus, anti-

angiogenic VEGFAxxxb isoforms can inhibit VEGFAxxx-mediated angiogenesis298.

Isoforms enabling cell invasion and metastatic dissemination

CD44—CD44 is a transmembrane glycoprotein that binds hyaluronic acid and functions in 

cell division, survival, and adhesion. The CD44s isoform contains exons 1–5 and 16–20, 

whereas inclusion of any of the variable exons 6–10 generates one of the CD44v 
isoforms303. Regulators of CD44 alternative splicing include ESRP1, hnRNPA1, and 

SRSF2, all of which promote CD44v splicing126,304–306, whereas hnRNPL inhibits CD44v 

expression307. CD44v isoforms are expressed in both normal and tumor tissues, but their 

expression frequently increases in gastric, ovarian, bladder, colon, and prostate 

tumors304,308–314. CD44v expression is often associated with tumor progression, is 
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frequently found in recurrent tumors, and correlates with increased grading312,313,315. The 

role of CD44v isoforms in tumor progression remains a topic of discussion. Expression of 

exogenous CD44v8-10 increases tumor initiation frequency in gastric cancer models309, 

and, similarly, CD44v9 facilitates invasion in prostate cancer312,313. However, some ovarian 

tumors express higher levels of CD44s than CD44v, and patients expressing CD44v8-10 
have longer survival rates311,316. Finally, EMT not only affects, but is also affected by CD44 
isoform expression. Epithelial cells express predominantly CD44v, but switch to CD44s 
after undergoing EMT in breast and ovarian tumor models304,311. CD44s is required for 

EMT in breast and ovarian cancer models, and its expression enhances migration304,316. 

CD44s expression also induces a mesenchymal phenotype, increases cell invasion, and 

results in poor differentiation and distant metastasis in gallbladder cancer models317. 

However, CD44v expressing gallbladder cancer cells are still highly tumorigenic even 

though exhibit decreased invasive potential317.

ENAH—ENAH, also known as Mena, regulates actin nucleation and polymerization and 

modulates cell morphology and motility. Splicing of the ENAH transcript generates three 

main isoforms, which play different roles in tumor progression. Inclusion of exon INV 

produces MENA-INV, inclusion of exon 11a produces MENA11a, and skipping of exon 6 

produces MENAΔv6318. Alternative splicing of MENA is regulated by ESPR1 and 

ESPR2319. The ratio of Mena isoforms varies between normal and tumor tissues. For 

example, breast tumors express high levels of Mena11a or MenaINV, while limited to no 

expression of these isoforms is detected in normal tissue. In addition, MenaINV expression 

increases with tumor grade, metastasis and tumor progression, and is accompanied by a 

decrease in Mena11a320–322. Expression of both pan-Mena and Mena11a increases in lung 

tumors compared to normal tissue; however, low Mena11a expression correlates with 

decreased survival rates in lung cancer patients, and patients expressing high levels of 

Mena11a do significantly better323. Expression of Mena11a also correlates with epithelial 

markers and decreased invasion, whereas MenaINV and MenaΔv6 expression correlate with 

mesenchymal markers, and increased invasion and metastasis318,321,323–325. Knockdown of 

Mena11a in breast cancer cell lines decreases cell migration, and ectopic Mena11a 

expression reduces lamellipodia protrusion319.

MSTR1 (alias RON)—The receptor tyrosine kinase RON (MSTR1) is a member of the 

MET proto-oncogene family, which is implicated in tumor progression. Exons 5, 6, 11, and 

19 undergo alternative splicing to produce four isoforms: RONΔex11 (RONΔ165), 

RONΔex5-6 (RONΔ160), RONΔex5-6-11 (RONΔ155), and RONΔex19 (RONΔ170)326,327. 

Splicing of RONΔ165 is regulated by SRSF159,328. RONΔ165, RONΔ160 and RONΔ155 

are constitutively active, whereas RONΔ170 is a kinase-defective isoform that inhibits 

tumorigenesis by other active RON isoforms326,327,329. RONΔ160 likely exerts its 

tumorigenic potential by increasing β-catenin expression330. RONΔ165, RONΔ160, or 

RONΔ155 are expressed in human primary colon, ovarian, breast, and brain tumors, as well 

as in gastric and lung cancer cell lines59,328,329,331–333. Ectopic expression of RONΔ160 or 

RONΔ155 promotes tumor formation and lung metastasis in NIH3T3 xenograft mouse 

models331. Additionally, expression of RONΔ160 or RONΔ155, but not RONΔ165, induces 
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anchorage-independent growth in colon cancer cells lines330. However, RONΔ165 

expression increases motility and invasiveness in cancer cell lines59,329.

RAC1—Rac1 is a member of the Rho GTPase family, which is involved in signaling for cell 

motility and proliferation. Inclusion of RAC1 exon 3b produces the constitutively active 

RAC1b isoform, which contains 19 additional amino acids behind the switch II domain, a 

region important for Rac1 interaction with regulators and effectors334,335. SRSF1 is one of 

the regulators of RAC1 alternative splicing336. Rac1b has accelerated guanosine diphosphate 

(GDP)/guanosine triphosphate (GTP) exchange and impaired GTP hydrolysis, thus leading 

to prolonged signaling activity335,337,338. Furthermore, RAC1b is unable to interact with 

RHO-GDI, to signal downstream PAK1 and JNK kinases, or to activate the RelB 

pathway339,340, but can negatively regulate RAC1 activity341. RAC1b is expressed in breast, 

thyroid, colorectal, and lung tumors336,342–344. Increased expression of RAC1b in thyroid 

tumors correlates with metastasis and poor clinical outcome343. Rac1b expression in colon 

and thyroid cancer cell lines sustains cell survival by stimulating G1/S progression and 

protecting cells from apoptosis345–347.

KLF6—KLF6 belongs to the Kruppel-like family of transcription factors which regulate cell 

proliferation, differentiation, and survival. KLF6-SV1 uses an alternative 5′SS that causes a 

frame-shift and produces a protein isoform that contains 21 novel amino acids but lacks all 

three of the zinc finger domains348. Alternative splicing of KLF6 is regulated by SRSF1, 

TGF-β1, and Ras signaling349,350. Increased KLF6-SV1 expression is observed in prostate, 

lung, ovarian, brain, breast, pancreatic, and liver tumors, and correlates with poor patient 

survival349,351–356. Full-length KLF6-FL can act as a tumor suppressor, whereas KLF6-SV1 

is oncogenic. KLF6-SV1 knockdown in lung, ovarian, colon, and brain cancer cells 

increases apoptosis, whereas its overexpression promotes proliferation and 

survival349,352,353. Expression of KLF6-SV1 increases cell survival, migration and invasion 

in breast cancer cell lines, but has no effect on proliferation354. Ectopic KLF6-SV1 

expression does not alter tumor size, but increases metastasis incidence, in mice xenograft 

experiments354. Furthermore, KLF6-SV1 knockdown prevents tumor formation, while 

knockdown of the full-length isoform increases tumor growth, in ovarian cancer xenograft 

models. Finally, expression of KLF6-FL is associated with epithelial markers, whereas 

KLF6-SV1 is associated with a mesenchymal phenotype354.

Isoforms enabling drug resistance

BCL2L11 (alias BIM)—The BH3-only protein, BIM, is a pro-apoptotic protein encoded 

by BCL2L11. The three major isoforms, BIM-EL, BIM-L, and BIM-S, are pro-apoptotic but 

differ in their activity, BIM-S being most active357. In addition, two isoforms, BIMγ1 and 

BIMγ2, are generated by alternative splicing of exon 3, which contains a stop codon and 

results in a truncated protein that lacks the BH3 domain and thus lacks the pro-apoptotic 

activity58. SRSF1-overexpression induces alternative splicing of BIM to promote BIMγ1 

and BIMγ2 splicing58. PTBP1 and hnRNPC promote exon 3 skipping and expression of the 

pro-apoptotic BIM isoforms358. The BIMγ isoforms are expressed in leukemia, lung, and 

breast cancer cells58,359,360. Ectopic expression of BIMγ1 reduces apoptosis levels in 

mammary epithelial cells58. Finally, expression of BIM isoforms has been linked to drug 

Urbanski et al. Page 17

Wiley Interdiscip Rev RNA. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



response in tumors. High levels of BIM-EL correlate with a better induction of apoptosis in 

response to tyrosine kinase inhibitors in EGFR-mutant lung and HER2-amplified breast 

tumor models and predict responses in treatment-naïve patients361. In addition, expression of 

BIMγ isoforms in lung cancer patients with a BIM polymorphism increases resistance to 

tyrosine kinase inhibitors360.

HER2 (alias ErbB2)—HER2 is a tyrosine kinase from the EGFR family, frequently 

amplified or overexpressed in breast tumors. Skipping of exon 20 encodes d16HER2, a 

constitutively active protein that lacks 16 amino acids in the extracellular domain, and is 

primarily detected in breast tumors362–364. Alternative splicing of HER2 exon 20 is 

regulated by SRSF3 and hnRNPH1365. Expression of d16HER2 increases proliferation, 

induces EMT and invasion, and decreases sensitivity to the HER2-targeting antibody 

trastuzumab363,366–370. d16HER2 expression allows breast cancer cells to evade 

trastuzumab-induced apoptosis by upregulating Bcl-2 and activating SRC, a kinase involved 

in proliferation and migration370,371.

SPLICING ALTERATIONS AND THE TUMOR MICROENVIRONMENT

Our current understanding of RNA splicing alterations relies on the expression of splicing 

isoforms and their regulators in tumor cells. However, solid tumors are composed of a 

mixture of cell types in addition to cancer cells, including fibroblasts, various immune cell 

types, and endothelial cells, all of which influence tumor progression and drug responses372. 

Although cell-type specific splicing has been described, we know very little about splicing 

alterations in these cell types in the tumor context.

Matrix stiffness and composition affects RNA splicing

The local microenvironment, or niche, plays important roles in cell fate, cancer onset, and 

malignant evolution373. A major component of the niche is the extracellular matrix (ECM), a 

complex network of macromolecules with distinctive physical, biochemical, and 

biomechanical properties that undergoes remodeling during metastasis. Yet, it remains 

unclear how the ECM composition impacts splicing isoforms and their regulators during 

tumor progression and metastasis. Interestingly, cells grown in 3D cultures on an ECM 

exhibit different splicing profiles compared to the same cells grown on plastic, suggesting 

that ECM stiffness and composition can influence splicing choices64,374. Matrix stiffness 

can alter splicing, for example, through differential phosphorylation and activation of 

splicing regulators from the SR protein family375. Additionally, signaling through ECM 

proteins and integrin engagement can impact tumor initiation and metastasis, and can also 

selectively alter splicing. For example, laminin 511 promotes self-renewal and tumor 

initiation by engaging the α6Bβ1 integrin splice variant376. The expression of the α6Bβ1 

isoform is repressed by the splicing factor ESRP1 and depends on VEGF autocrine 

signalling257. Furthermore, ECM proteins are themselves regulated by splicing, and often 

undergo splicing switches during tumor progression. For example, the oncofetal ED-A and 

pro-angiogenic ED-B fibronectin isoforms differ in their integrin binding domain and show 

differential assembly into fibrils377,378. Malignant cells express high levels of ED-A 

fibronectin and its receptor, α5β1 integrin, both of which have been linked to radiation 
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resistance379. Interestingly, aberrant ECM can also alter fibronectin splicing in non-

malignant cells379. Similarly, tenascin-c expresses unique alternative splice forms in breast 

tumors380. In both patient samples and cell culture models, these ECM splicing isoforms 

have been linked to invasiveness379. Osteopontin SPP1 is another ECM protein that is 

overexpressed in various cancers and promotes oncogenic features. Splicing of SPP1 
generates multiple isoforms that play a role in cancer development and progression through 

their surface receptors CD44 and integrins381. Finally, metastatic lesions exhibit alterations 

in splicing isoforms that impact cell polarity, cell-cell interactions, and EMT. Examples of 

metastasis-specific splicing events include isoforms of fibronectin FN1, Tenascin C TNC, 
CD44, ENAH, and RAC1321,382,383. Alterations in upstream splicing regulators that control 

metastasis-associated splicing isoforms are found in human tumors115,128.

Splicing isoforms and immune cell functions

Other key components of the tumor microenvironment are immune cells, which can either 

promote or inhibit tumor growth384. RNA splicing controls multiple regulatory steps in 

immune cell development and function385. Transcriptome-wide studies identified a 

repertoire of splicing isoforms expressed in specific immune-cell types, and linked many of 

these events with lineage differentiation386; however, it is not known how changes in the 

immune cell repertoire impact splicing patterns in human tumors.

Alternative splicing plays a role in the control of innate immunity. For example, SF3A1 

regulates the splicing of genes involved in Toll-like receptor (TLR) signaling in 

macrophages, and controls the production of positive regulators of TLR signaling, IRAK1, 

CD14, and IKKβ, as well as negative regulators sTLR4 and Rab7b387. Another example is 

the splicing of the MyD88s isoform, which limits innate immune activation downstream of 

TLR signaling. MyD88s splicing is controlled by Eftdu2, SF3A1, and SF3B1388,389. 

Moreover, inclusion of an alternative TLR4 exon generates a soluble isoform that inhibits 

TNF-α and NF-κB signaling in macrophages, thereby acting as a negative feedback 

mechanism. Similarly, soluble isoforms of membrane receptors, such as IL-4R, -5R, and 

-6R, are frequently generated by splicing in immune cells385. Furthermore, alternative 

splicing plays a role in class switch from IgM to IgD during B-cell differentiation and also 

impacts the generation of a secreted form of IgM385. In addition, splicing can increase the 

transcript diversity of IgE by generating isoforms that are either secreted or membrane-

bound. Finally, loss of the RNA-binding protein HuR results in defective class-switching and 

leads to B-cell death390,391.

The best-studied examples of functional splicing events in T-cell differentiation are the cell-

surface glycoproteins CD44 and CD45 (PTPRC). Splicing of CD44, which is regulated by 

Sam68, produces an alternative CD44v isoform that is involved in both lymphocyte 

activation and metastasis, as described above385. CD45 isoforms, named RA/RB/RC/RO, are 

expressed in different patterns in functionally distinct T-cell populations, and CD45 splicing 

serves as a feedback mechanism to maintain T-cell homeostasis385. Briefly, naïve T-cells 

express a CD45 isoform that includes at least one of the variable exons 4, 5, and 6, each 

which encode an extracellular domain that is heavily glycosylated and thus prevents CD45 

homodimerization392. Upon T-cell activation, skipping of CD45 variable exons allows 
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homodimerization at the cell surface, which leads to an inactive form and decreased 

signaling through the T-cell receptor. HNRNPLL, HNRNPL, SRSF2, PTBP1, HNRNPE2, 

and HNRNPA1 have been all implicated in the regulation of CD45 splicing393–397. 

Moreover, stimulation of the T-cell receptor induces splicing changes in immune-related 

targets including CD45, Fyn, TRAF3, BRD8, and TRIM397–399.

SPLICING MODULATION AS CANCER THERAPEUTICS

Modulation of RNA splicing can provide novel therapeutic targets for oncology. Splicing 

modulation can be achieved either by fine-tuning the level or activity of splicing regulators, 

thus affecting the network of their downstream splicing targets, or by precisely targeting a 

single spliced isoform expressed in cancer cells (Figure 6).

Small molecules modulating the activity or levels of splicing regulators

Compounds that affect global splicing efficiency or SS selection have been identified over 

the years and their number is steadily increasing400. The molecular mechanisms of action of 

these agents are progressively being elucidated. The first group of compounds that impact 

splicing includes spliceostatins, sudemycins, and FD-895 and its parent pladienolides 

molecules or their derivatives (e.g. E7107 or FR901464), which all act directly on the core 

spliceosomal component SF3B1401,402,403,404 (Figure 6A). Interestingly, only a fraction of 

the splicing events (~10%) are affected by SF3B1 inhibition, suggesting that some SS, likely 

weak SS, are more sensitive than others to spliceosomal inhibitors17,29. Isoginkgetin, 

another splicing inhibitor, acts by preventing recruitment of the U4/U5/U6 tri-snRNPs, 

which leads to accumulation of the spliceosomal complex A405. Additionally, several small 

molecules alter the activity of splicing-factors, for example by targeting their regulatory 

kinases. Molecules such as NB-506, SRPIN34, diospyrin D1, and TG003 reduce SR-protein 

phosphorylation through the inhibition of proteins from the SRPK, CLK, DYRK, or 

topoisomerase families and thus modulate splicing of SR-protein targets406,407. 

Finallysulfonamides, a class of cancer drugs that achieve efficacy in a subset of cancer 

patients, have been recently shown to act by reducing the expression of splicing factor 

RBM39 (alias CAPERα) through a novel mode of targeted proteasomal degradation408,409. 

Treatment of cancer cell lines with sulfonamides triggers the association of RBM39 with the 

CUL4- DCAF15 ubiquitin ligase, leading to RBM39 poly-ubiquitination and proteasomal 

degradation408,409. Degradation of RBM39 leas to aberrant pre-mRNA splicing in a set of 

target genes408,409. Interestingly, DCAF15 expression and copy number correlated with 

sulfonamides sensitivity, suggesting that regulators of splicing-factor degradation could 

constitute promising drug targets.

While effective, these small molecules often lack specificity, and their exact mechanisms of 

actions are not always well understood, which could potentially lead to off-target effects and 

limit their clinical application. Interestingly, in vitro and in vivo data suggest that cancer 

cells are more sensitive than normal cells to global splicing inhibition, thus providing a 

therapeutic window that could be exploited even when using broad-spectrum splicing 

inhibitors151,152,410,411. Even though initial trials of an SF3B1 inhibitor, E7107, in solid 
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tumors were suspended due to unexpected toxicity, newer inhibitors, such as H3B-8800, are 

currently being tested in phase I trials for hematological malignancies412,413.

Splice-switching RNA-based therapeutics

RNA-based therapeutics offer the potential to target virtually any molecule, especially those 

lacking a catalytic activity that could be inhibited, or those not amenable to targeted 

antibody approaches414. FDA approval of Spinraza™, which is the first splicing-correcting 

therapy and uses antisense oligonucleotides (ASO) to treat spinal muscular atrophy (SMA), 

has opened the field for RNA-based approaches to target splicing defects415. Splice-

switching ASOs are 15- to 30-mer long chemically modified RNA molecules that can 

redirect a specific splicing event in order to prevent the production of a truncated or mutated 

protein, or to generate a specific protein isoform. Their specificity comes from their 

complimentary binding to a unique sequence on the mRNA, thus affecting only the targeted 

spliced isoform. Splice-switching ASOs can be designed to specifically target (i) a 5′ or 

3′SS, thus blocking its usage, (ii) a splicing enhancer sequence, thus preventing binding of a 

splicing activator and promoting exon skipping, or (iii) a splicing silencer sequence, thus 

preventing binding of a repressor and promoting exon inclusion416 (Figure 6B). Another 

splice-switching strategy is the use of bifunctional oligonucleotides made of an antisense 

portion that determines target specificity, and a non-hybridizing tail that recruits proteins or 

RNA/protein complexes that modulate SS selection417–419.

Natural unmodified DNA or RNA oligonucleotides are vulnerable to nuclease degradation 

and are unstable in vivo. Chemical modification of the phosphate backbone and/or the ribose 

ring can produce stable molecules with high substrate specificity, low toxicity, low 

immunogenicity, and that limit RNAse H degradation420. ASO designed to activate RNAse 

H cleavage will not be discussed here as they do not modulate alternative splicing but trigger 

degradation of their mRNA target. Several distinct ASO chemistries are currently used for 

splicing-modulation (Figure 6C). A common backbone modification uses phosphorothioates 

(PS) at the nucleotide link420. PS-ASOs are more hydrophobic, more nuclease resistant, and 

bind with higher affinity than ASOs with unmodified phosphodiester linkages421. PS-ASOs 

are often combined with ribose modifications such as 2′-O-(2-methoxyethyl) (2′-MOE) or 

2′ O-methyl (2′-OMe)420. Uniformly modified 2′-MOE/PS ASOs are effective when 

administered in saline by nearly all routes of administration and their tissue half-lives ranges 

from 2 to 4 weeks, but can even achieve 6 months in the central nervous system421. Another 

type of modification uses locked nucleic acid (LNA), which increases binding affinity and 

reduces off-target effects by allowing the usage of shorter sequences that are less likely to 

partially hybridize to non-target sequences416. A distinct class of backbone chemistry uses 

phosphorodiamidate linkages in morpholino oligomers (PMO or morpholino)416. PMOs are 

neutrally charged and provide better specificity and display lower toxicity than PS-ASOs. 

However, PMOs often need to be conjugated to a delivery moiety for in vivo delivery. 

Finally, peptide nucleic acid (PNA) offer specificity similar to PMO, but their low water 

solubility limits their use416.

However, efficient delivery to the target organ still remains one of the major challenges in 

the field of RNA-based therapeutics. The two challenging steps involve getting the ASO to 
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the tissue of therapeutic interest and then delivering it to the correct intracellular 

compartment422. In addition to naked formulations, ASO modifications, carriers and other 

approaches are currently being tested to increase splicing efficiency, lower the dosage, 

enable tissue-specific delivery, and limit toxicity and off-target effects416. In vivo, ASOs can 

be injected either systemically, or directly into the specific organ where the correction needs 

to be achieved416. For example, the FDA-approved 2′-MOE/PS ASO, SpinrazaTM, is 

delivered intrathecal in saline, and achieves a 4–6 months half-life in the cerebrospinal fluid 

after initial clearance423. Eteplirsen™, the first splice-switching PMO to received FDA-

approval for Duchenne Muscular atrophy is delivered by intravenous infusion. Renal 

clearance plays a major role in ASOs pharmacokinetics and biodistribution422. PS-ASOs 

bind to plasma proteins and slow their renal clearance, thus allowing broader tissue 

distribution, whereas uncharged PMO are cleared much faster and accumulate at lower 

levels422. Finally, efforts to deliver ASOs to specific tissues are ongoing422. The most 

promising targeted approach utilizes ASOs conjugated with an N-acetylgalactosamine 

(GalNac) that allows effective uptake by hepatocytes via an asialoglycoprotein receptor 

dependent mechanism422. Novel ASO delivery strategies are rapidly emerging. Yet, ASOs 

delivery to tumors will certainly face similar challenges as the delivery of other cancer drugs 

and will require further optimization to efficiently delivery therapeutics to cancer patients.

ASO-mediated correction of cancer-associated splicing isoforms can be achieved in vitro in 

human cell lines and in vivo in xenograft tumor models (Table 1). For example, ASO 

targeting of a splicing enhancer that regulates inclusion of exon 23 of the transcription factor 

STAT3 can shift expression from the STAT3α to the STAT3β isoform424. Induction of 

STAT3β, an isoform that lacks the C-terminal transactivation domain, leads to apoptosis and 

cell-cycle arrest in breast cancer cells, as well as to tumor regression in xenograft breast 

cancer models424. Another example is the ASO-mediated skipping of MDM4 exon 6 to 

decreases MDM4 protein abundance, an oncoprotein that inhibits p53-mediated tumor 

suppression425. Tumors express high levels of MDM4 as a result of a splicing switch 

between the NMD-degraded MDM4-S isoform expressed in normal cells, and the full-length 

exon 6-containing MDM4-L isoform produced in cancer cells. Skipping of MDM4 exon 6 

decreases tumor growth in patient-derived xenograft models of melanoma and lymphoma425. 

RNA-based therapeutics are currently being tested in the clinic in lymphoma and lung 

cancer patients to downregulate STAT3 expression426.

Cancer drugs affecting RNA splicing

Alternative splicing is modulated by a variety of cellular responses, including body 

temperature changes, circadian rhythm, exposure to radiations, as well 

chemotherapies427–430. Transcriptome-wide studies identified a repertoire of splicing 

isoforms expressed after treatment with the cancer drugs camptothecin, doxorubicin, or 

cisplatin82,431–433. A large fraction of these transcripts function in pathways frequently 

disrupted in cancer, i.e., cell cycle, DNA repair, genetic instability, and replicative 

immortality429. Additionally, treatment with gemcitabine, a first line chemotherapy for 

pancreatic cancer, leads to drug-resistance and is associated with a splicing switch to the 

oncogenic isoforms MKNK2-b and PKM2, as well as with the upregulation of SRSF1 and 

PTBP1434. Finally, cancer drugs can be combined with splicing-modulating compounds; for 
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example amiloride potentiates the effect of imatinib in CML, and sudemycin enhances the 

effects of ibrutinib in CLL435.

Interestingly, changes that affect SS selection can affect resistance to targeted cancer 

therapies. For example, treatment with vemurafenib, a BRAFV600 inhibitor, selects resistant 

cells expressing an alternatively spliced BRAF isoform that lacks the RAS-binding domain 

that normally regulates BRAF dimerization and activation436. Similarly, the BRCA1Δ11q 
isoform, a variant lacking the majority of exon 11, promotes resistance to PARP inhibition 

and cisplatin437. Moreover, expression of the oncogenic BARD1β splicing isoform impairs 

homologous recombination and sensitize colon cancer cells to PARP inhibition even in 

BRCA1 wild-type cells438. Finally, the selection for pre-existing alternatively spliced CD19 
isoforms bearing a compromised epitope explains resistance to CART-19 immunotherapy in 

B-ALL patients439.

CONCLUSION

Since RNA splicing was discovered forty years ago, our understanding of its role in human 

diseases has been expanding, but many questions remain unanswered. The recent years have 

undoubtedly shown that alterations in RNA splicing are frequent in tumors and contribute to 

disease pathogenicity. Cancer screening panels currently include splicing-factor mutations 

among the mutated genes in hematological malignancies. Alterations in splicing-factor 

levels and dysregulation of downstream splicing targets are tumor characteristics shared by 

many cancers. Interestingly, these factors can act either as tumor suppressors or as 

oncogenes, depending on the tumor type, suggesting cell-type-specific functions and targets. 

Splicing alterations represent a novel and rich source of potential therapeutic targets, and 

several clinical trials are currently testing them in cancer patients, such as SF3B1 inhibitors 

in MDS patients as described above412,413. The advances in RNA-based therapeutics will 

likely accelerate the development of splicing-modulating compounds as cancer therapeutics. 

Additionally, advances in other fields may be applied to address current challenges in 

delivery and efficacy of RNA-based therapeutics. For example, specific delivery to 

leukocytes can been achieved by loading siRNA onto lipid-based nanoparticles coated with 

anti-CD38 monoclonal antibodies440. This approach was proven effective at inhibiting 

cyclin D1 in vivo, suppressing tumor growth and prolonging survival of mice xenografted 

with human lymphoma cells440, thus opening a new avenue for the treatment of 

hematological malignancies. Similar targeted strategies could be utilized to deliver splice-

switching ASOs to the cells of therapeutic interest and increase their efficacy in tumors.

Alterations in splicing-factor levels are often detected in human tumors, yet only a fraction 

of these tumors exhibit copy number changes. Thus understanding the transcriptional and 

post-transcriptional regulation of splicing factors is critically needed to open new direction 

for drug targets. The pathways that control splicing-factor homeostasis in relevant normal or 

tumor tissues are not well understood, and it remains unclear how they become dysregulated 

in tumors. Another underexplored area is how the coupling of alternative splicing with NMD 

impacts splicing-factor regulation in tumors. Given that cancer cells exhibit differences in 

the regulation of NMD, the link between these two regulatory pathways in tumorigenesis 

warrants further attention and may provide novel therapeutic opportunities441,442. In 
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addition, tumors often exhibit alterations in multiple splicing factors, and thus understanding 

the regulatory networks of RNA-binding proteins and their targets will be crucial for the 

development of effective splicing-factor inhibitors.

Importantly, all previous studies exploring the role of splicing in human cancer are based on 

bulk tumor material, which contains a majority of tumor cells together with other cell types 

that have been shown to impact tumor development and drug response. Yet, whether 

oncogenic splicing isoforms are present in each individual cell type remains unknown. 

Variations in splicing patterns have rarely been studied at the single-cell level, and these 

differences have the potential to contribute to the heterogeneity in drug response. 

Interestingly, a bimodal variation in splicing patterns was observed among single dendritic 

cells, suggesting that single cells can exhibit distinct splicing isoforms443. Dissecting 

splicing heterogeneity in tumors at the single-cell level will likely be required for to ensure 

the success of future splicing-modulating cancer therapies.
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ASO antisense oligonucleotides

BH Bcl-2 homology domain

BPS branch point site

CLL chronic lymphocytic leukemia

CMML chronic myelomonocytic leukemia

ECM extracellular matrix

EMT epithelial-mesenchymal transition

HEAT Huntington, Elongation Factor 3, PR65/A, TOR domain

lncRNA long non-coding RNA

MDS myelodysplastic syndromes

miRNA microRNA

NMD nonsense-mediated decay

PMO phosphorodiamidate morpholino oligomer

PTC premature termination codon

RARS refractory anemia with ringed sideroblasts
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RCMD-RS refractory cytopenia with multilineage dysplasia and ringed sideroblasts

RNA ribonucleic acid

RRM RNA-recognition Motif

SMA spinal muscular atrophy

SR serine/arginine-rich

sRNA small nuclear RNA

snRNP small nuclear ribonucleoproteins

SS splice site

TLR Toll-like receptor
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Figure 1. Alternative-splicing alterations in cancer
Human tumors exhibit recurrent mutations in, or changes in the levels of, splicing regulatory 

factors, the latter of which can occur due to copy number changes, or alterations in the 

transcriptional, post-transcriptional, or post-translational regulation of splicing factors in 

response to signaling changes (top panel). These changes in splicing-factor levels lead to 

alterations in the splicing of their downstream targets, promoting events that follow one of 

the following patterns: exon skipping (ES), alternative 5′ or 3′ splice site (SS) selection 

(A5′SS or A3′SS), inclusion of mutually exclusive exons (MXE), or intron retention (IR) 

(middle panel). Misregulated splicing of isoforms involved in key cellular pathways 

contributes to tumor initiation and progression. Examples of cancer hallmarks and associated 

tumor isoforms are indicated (bottom panel).
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Figure 2. Components of the core and regulatory splicing machinery that exhibit alterations in 
human tumors
(A) Graphical representation of the stepwise assembly of spliceosomal complexes on a pre-

mRNA molecule and catalysis of the splicing reaction to generate mature spliced mRNA. 

First, the ATP-independent binding of U1 snRNP to the 5′ splice site (5′SS) of the intron 

initiate the assembly of the “Early” or E complex on the pre-mRNA. In addition, SF1 and 

U2AF2 bind respectively to the branch point site (BPS) and the polypyrimidine tract (Py-

tract). In the second step, the ATP-dependent interaction of U2 snRNP with the BPS leads to 

the formation of the A complex. This interaction is stabilized by the SF3a and SF3b protein 

complexes, as well as U2AF2 and U2AF1, and leads the displacement of SF1 from the BPS. 

Recruitment of the pre-assembled U4/U6/U5 tri-snRNP marks the formation of the 

catalytically inactive B complex. Major conformational changes, including release of U1 and 

U4, lead to spliceosome activation and formation of the B* complex. The first catalytic step 

of splicing, generates the C complex and results in the formation of the lariat. Complex C 

performs the second catalytic step of splicing, which results in the joining of the two exons. 

Post-splicing the spliceosome disassembles in an orderly manner, releasing the mRNA, as 

well as the lariat bound by U2/U5/U6. The snRNP are then further dissociated and recycled. 

(B) Spliceosomal core factors that exhibit recurrent somatic mutations in human tumors are 

listed next each complex (colored boxes) and are shown in more details for complexes E and 

A (right panels). In addition to core splicing factors, regulatory splicing factors (SF) that can 

bind to exonic or intronic splicing enhancer (ESE or ISE) or silencer (ESS or ISS) sequences 

to fine-tune splicing are also found altered in human tumors (grey boxes).
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Figure 3. Recurrent splicing-factor alterations detected in human tumors
Genomic alterations including expression changes and recurrent somatic mutations in 

splicing factors detected in more than 2% of tumors in several cohorts of patients, including 

TCGA data, are indicated per tumor type. Splicing-factor upregulation are depicted in red, 

downregulation in blue, and somatic mutations in green (See legend for details). Several 

splicing factors can be found both upregulated and downregulated in tumors of the same 

tissue, suggesting that distinct splicing-factor genomic alterations are associated with 

distinct tumor subtypes within the same tissue. AML: acute myeloid leukemia; AML/MDS: 

acute myeloid leukemia myelodysplastic syndrome; CMML: chronic myelomonocytic 

leukemia; HN: head and neck; MDS w/o RS: myelodysplastic syndrome without ringed 

sideroblasts; RARS/RCMD: refractory anemia with ringed sideroblasts and refractory 

cytopenia with multilineage dysplasia and ringed sideroblasts; MPN: myeloproliferative 

neoplasm. See references in text.
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Figure 4. Defects in splicing-factor regulation lead to changes in splicing-factor levels, activity, 
and cellular localization
Schematic representation of the transcriptional, post-transcriptional, and post-translational 

steps that impact the expression of a splicing factor (SF). See text for specific examples and 

references.
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Figure 5. Tumor-associated isoforms representative of the cancer hallmarks
Splicing event type, isoform structure, tumor expression, and experimental evidence for 

selected alternative splicing isoforms detected in human tumors. For simplicity, only the 

alternatively spliced sequences and the flanking exons and are shown (not at scale). The type 

of splicing event is indicated: ES: exon skipping; MXE: mutually exclusive exons; 5′ASS: 

5′ alternative splice site selection; IR: intron retention. The corresponding isoforms are 

shown in red or blue and their respective functions are indicated when known, to the right of 

the schematic figure of the isoform. The cancer hallmark associated with the red isoform is 

indicated in the left-hand column (See legend for details). ‘Tumor types,’ indicates, using 

dark-colored rectangles, the expression of tumor-associated isoforms in each of the indicated 

tumor types (‘other tumors’ include: adrenal, gallbladder, ampullary, bone, and brain; 

‘gynecological tumors’ include: ovarian, cervical, and uterine; ‘head and neck’ tumors 

include: oral, head and neck, tongue, esophageal, and thyroid). ‘Experimental evidence’ 

indicates, using dark gray rectangles, the expression and functional evidence for each 

isoform based the following experiments: (i) overexpression (OE) or knockdown (KD) in 

cell lines, (ii) tumor xenografts, (iii) expression in primary tissue, or (iv) expression in 

TCGA RNA-sequencing data. Known splicing regulatory proteins are listed for each gene. 

See text for references.
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Figure 6. Therapeutic strategies to target splicing alterations in tumors rely either on broad-
spectrum splicing inhibition or on isoform-specific modulation
(A) Small molecules targeting components of the spliceosome (e.g., SF3B1, or tri-sRNP) 

block their activity by preventing assembly of a functional spliceosome into the pre-mRNA, 

and thus globally inhibit splicing. Alternatively, broad splicing inhibition can be achieved by 

targeting the enzymes that modulating the activity of splicing regulatory factors (SF), using 

for example small molecules inhibitors of CLKs or SRPKs, two kinase families that regulate 

the phosphorylation and thus the activity of SR proteins. Compounds that affect splicing 

factor poly-ubiquitination and proteasomal degradation (e.g. sulfonamides) can also induce 

broad changes in splicing profiles. On the other hand, isoform specific inhibition can be 

achieved by using splice-switching antisense oligonucleotides (ASOs) that bind in a 

sequence-specific manner and modulate the outcome of a specific splicing isoform. (B) 
ASOs can promote exon skipping or inclusion by blocking the 5′SS, an exonic silencer 

(ESS), or enhancer element (ESE) or by preventing the usage of a mutant (MUT)/cryptic 

splice site. See text for details. (C) Properties of ASO chemistries are currently used for 

splicing-modulation. See text for details. 2′-MOE/PS: 2′-O-(2-methoxyethyl)/

phosphorothioate; 2′-OMe/PS: 2′ O-methyl/phosphorothioate; PMO: phosphorodiamidate 

morpholino oligomer; LNA: locked nucleic acid.
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