Skip to main content
. Author manuscript; available in PMC: 2019 Jun 1.
Published in final edited form as: Psychol Aging. 2018 May 10;33(4):572–585. doi: 10.1037/pag0000251

Table 3. Multi-level Modeling Analyses Predicting Daily Emotion Regulation Flexibility.

Model 1 Model 2
Age Age2 Age Age2 Cognitive functioning

Parameter Intercept γ(SE) R2 γ(SE) R2 γ(SE) R2 BF γ(SE) R2 BF γ(SE) R2 BF
Categorical variability 4.14(.13) -.007(.004) .008 <-.001(<.001) .003 -.009(.005) .016 .47 <-.001(<.001) .022 .73 -.028(.06) <.001 .57
Temporal variability
 Situation selection -.008(.001)* .109 <.001(<.001) <.001 -.003(.002) .009 .68 <.001(<.001) .006 1.10 .024(.02) .004 1.30
 Situation modification .911(.05) -.006(.001)* .062 <-.001(<.001) <.001 -.002(.002) .013 .80 <.001(<.001) .006 1.40 -.013(.02) .001 .98
 Distraction 1.04(.05) -.006(.001)* .056 <.001(<.001) <.001 -.002(<.001) .010 .73 <.001(<.001) .015 .86 .013(.02) .001 .89
 Detached reappraisal 1.13(.05) -.007(.001)* .068 <-.001(<.001) <.001 -.004(.002) .014 .66 <.001(<.001) <.001 1.40 .034(.02) .008 .94
 Positive reappraisal 1.25(.05) -.006(.001)* .055 -.001(<.001) .004 -.003(.002) .007 .92 <-.001(<.001) <.001 .77 .020(.02) .002 1.10
 Suppression 1.26(.05) -.009(.001)* .101 <-.001(<.001) .003 -.003(.002) .014 .89 <.001(<.001) .006 .61 .023(.02) .004 1.50
 Repertoire 1.17(.05) <-.001(.002) <.001 <.001(<.001)* .024 -.001(.002) .003 .63 <-.001(<.001) <.001 .96 -.011(.01) .001 1.10

Note. γ(SE) = unstandardized fixed effect estimates with standard errors in parentheses. R2 = semi-partial R2 effect size. BF = Bayes factors. Cognitive functioning = fluid cognitive functioning latent score. We also controlled for the mean-level of outcome (i.e., strategy use or repertoire) when predicting temporal variability.

*

p < .05.