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Abstract

Background: Cancer stem cells (CSCs) or tumor-initiating cells (TICs) represent a small population of cancer cells
with self-renewal and tumor-initiating properties. Unlike the bulk of tumor cells, CSCs or TICs are refractory to
traditional therapy and are responsible for relapse or disease recurrence in cancer patients. Stem cells have distinct
metabolic properties compared to differentiated cells, and metabolic rewiring contributes to self-renewal and
stemness maintenance in CSCs.

Main body: Recent advances in metabolomic detection, particularly in hyperspectral-stimulated raman scattering
microscopy, have expanded our knowledge of the contribution of lipid metabolism to the generation and
maintenance of CSCs. Alterations in lipid uptake, de novo lipogenesis, lipid droplets, lipid desaturation, and fatty
acid oxidation are all clearly implicated in CSCs regulation. Alterations on lipid metabolism not only satisfies the
energy demands and biomass production of CSCs, but also contributes to the activation of several important
oncogenic signaling pathways, including Wnt/β-catenin and Hippo/YAP signaling. In this review, we summarize the
current progress in this attractive field and describe some recent therapeutic agents specifically targeting CSCs
based on their modulation of lipid metabolism.

Conclusion: Increased reliance on lipid metabolism makes it a promising therapeutic strategy to eliminate CSCs.
Targeting key players of fatty acids metabolism shows promising to anti-CSCs and tumor prevention effects.

Keywords: Cancer stem cells, Lipid metabolism, Metabolomics, Lipid droplets, Lipid desaturation, de novo
lipogenesis, Fatty acid oxidation

Background
Cancer stem cells (CSCs) or tumor initiating cells (TICs)
are small subpopulations (0.001–0.1%) of cancer cells
that may account for cancer initiation, metastasis, ther-
apy resistance, and recurrence [1, 2]. CSCs exhibit
self-renewal and tumor-initiating properties and are able
to recapitulate the bulk hierarchy of cancer tissues [3].
Evidence suggests that epithelial-mesenchymal transition
(EMT) is associated with stemness acquisition. Cancer
cells after EMT usually exhibit stem cell-like characteris-
tics, and thus CSCs are also believed to act as
metastasis-initiating cells [4–8]. The origin of CSCs is

still under debate. It has been proposed that CSCs may
arise from normal stem cells or tissue progenitor cells as
a result of stochastic genetic mutations and epigenetic
alterations [9]. Nevertheless, some evidence suggests
that differentiated cells might also stochastically dediffer-
entiate into a more primitive state with tumor-initiating
potential [10–12]. Kelly et al. demonstrated that large
numbers of leukemia-initiating cells (LICs) can recapitu-
late the bulk hierarchy of cancer in genetically compat-
ible models [11]. They claimed that the rarity of TICs in
xenotransplant experiments is mainly a result of the lim-
ited ability of human tumor cells to adapt and survive in
an alien (mouse) milieu. However, the hierarchical and
stochastic models are not mutual exclusive. Though not
all cancers follow the hierarchical model [13, 14], the
presence of CSCs is clearly demonstrated in various can-
cer types using distinct cell surface markers and enzym-
atic assays, including leukemia [15], breast cancer [16],
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glioblastoma [17], colorectal cancer [18–20], pancreatic
cancer [21–23], liver cancer [24], lung cancer [25], and
ovarian cancer [26, 27]. For example, in acute myeloid
leukemia (AML), CSCs populations are CD34(+)
CD38(−) [15]. In breast cancer, CSCs were identified as
CD44(+) CD24(−/low) lineage [16] or ALDH1-positive
[28] populations. In glioma, the CD133(+) or CD44(high)/
Id1(high) fractions are recognized as CSCs [17, 29].
Overexpression of CD44 variant isoform (CD44v), which
is mainly generated by ESRP1 and ESRP2 mediated al-
ternative splicing on CD44 mRNA [30], is observed in
various CSCs [31] High level of CD44v8–10 protects
CSCs from reactive oxygen species (ROS), which is
known to play a “double-edged sword” role in cancer de-
velopment [31].

Autophagy, Ferroptosis and redox regulation in CSCs
It remains a great challenge to eliminate CSCs and im-
prove the survival of patients, because CSCs are typically
quiescent and resistant to conventional radio- and
chemotherapy [32, 33]. It was believed that CSCs largely
contribute to formation of clinically undetectable
minimal residual disease(MRD) after conventional
anti-tumor therapies, and therefore are implicated in
disease persistence or relapse. Alterations in cellular bio-
energetics impart CSCs in MRD to develop adaptive or
acquired resistance to anti-tumor therapy, thus leading
to tumor recurrence [34]. For example, comprehensive
transcriptomic and metabolic analyses of oncogene
ablation-resistant pancreatic cancer cells possessing
CSCs characteristics revealed enhanced mitochondrial
respiration but diminished dependence on the Warburg
effect, as well as increased autophagy and lysosome activity,
suggesting metabolic alterations and active autophagy are
critical features of CSCs [35]. Autophagy primarily acts as a
lysosomal dependent metabolic-recycling mechanism
which is important for cell survival in stress [36–38]. It has
been considered that autophagy may exert a anticarcino-
genic role in early stage of cancer development by safe-
guarding against genomic instability through the clearance
the old and dysfunctional mitochondria and protein aggre-
gates [36, 39]. Furthermore, autophagy may exert tumor
suppressive function through destabilizing the transcription
factor nuclear factor erythroid 2-related factor 2 (NRF2),
which imparts tumor cells with resistance to redox stress
[40]. Nevertheless, active autophagy is recognized as one of
the hallmarkers of cancer [41]. In established cancers, con-
stitutive activation of autophagy contributes to accquired
therapeutic resistance. For example, active autophagy pro-
tects glioblastoma multiforme (GBM) cells from the un-
favorable tumor microenvironment characterized by
hyper-oxidative, hypoxic, nutrient-poor conditions [42].
Further more, compelling evidence suggests that
autophagic-lysosomal pathway largely contributes to

generation, maintenance and differentiation of CSCs [43].
Many studies have shown that CSCs frequently have
higher basal level of autophagy than that of non-stem can-
cer cells. Active autophagy help CSCs to rapidly respond
to metabolic stress to maintain their energetic balance.
For example, the fusion of lipid droplets with autophago-
somes, a process named lipophagy, confer a survival ad-
vantage on oncogene ablation-resistant pancreatic cancer
cells through increase of fatty acid β-oxidation [35]. A
number of studies have shown either chemical or genetical
blockade of autophagy impairs self-renewal and tumori-
genicity of CSCs [44–46]. Recent studies revealed that
some of “conventional” agents used in non-cancerous dis-
eases treatment exert antitumor therapeutic effects by
modulating autophagic pathway, suggesting that drug
re-positioning targeting autophagy may be a promising
therapeutic strategies for human malignancies [40].
Ferroptosis is recognized as an iron-dependent form

of nonapoptotic cell death implicated in various human
diseases, including ischemic tissue damage and human
malignant diseases [47]. Recent study unveiled the cru-
cial role of autophagy in ferroptosis. Pharmacological in-
duction of ferroptosis leads to lysosomal degradation of
cellular iron storage proteins ferritin and ferritinophagy
cargo receptor NCOA4 in an autophagy dependent
manner (a process known as ferritinophagy), suggesting
the close relationship between ferroptosis and autopha-
gic cell death [48]. Recently, a synthetic derivative of
natural product salinomycin named as ironomycin se-
questers lysosomal iron and induces ferroptosis, showing
a selective antitumor activity against breast CSCs in vitro
and in vivo [49]. In addition, ferroptosis is triggered by
iron-dependent excessive lipid hydroperoxides accumu-
lation due to insufficient antioxidant glutathione (GSH)
level, the cystine/glutamate antiporter system x(c)(−) is
likely to be involved [50]. System x(c)(−) is composed of
a light chain, xCT, and a heavy chain, 4F2 heavy chain
(4F2hc) [50]. Upregulation of xCT contributes to drug
resistance in pancreatic cancers [51]. Up-regulation of
xCT also has been demonstrated in other cancers in in-
cluding lymphomas [52], and gliomas [53, 54]. CD44v
has recently been shown to involved in the scavenging
of ROS via the stabilization of xCT protein at the cellu-
lar membrane, thus activation of CD44v-xCT-GSH axis
play a crucial role in redox regulation of CSCs and is
likely contribute to the relapse and distant metastasis
after repeated radiation therapy [55]. Remarkably,
chemotherapy is able to induce ectopic expression of
CD44v, which is evidenced in osteosarcoma and hepatic
cancer cells of the Li-Fraumeni patient [56]. This is
probably due to the selective clonal amplification of un-
detectable number of CD44v8–10-positive CSCs under
the pressure of excessive ROS after radiation and
chemotherapy.
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Metabolic alterations in human Cancer
Cancer cells exhibit a distinct metabolic profile as com-
pared to it’s normal counterparts. Due to the rapid
tumor cells proliferation and inadequate blood vessels
formation, tumor microenviroments are characterized by
hypoxic, hyper-oxidative, acidic and nutrients-poor con-
ditions, therefore cancer cells must adapt it’s cellular
bioenergetics efficiently to deal with this kind of un-
favorable microenvironments, a process named meta-
bolic reprogramming. Metabolic reprogramming is
essential to sustain cancer cells proliferation and survival
when the oncogenic signaling is blocked [35, 57]. Most
human cancers show constitutive aerobic glycolysis even
in oxygen-rich conditions, a phenomenon called
Warburg effect [58, 59]. This kind of metabolic rewiring
not only satisfies the energy demands for continuous
proliferation, but also provides plenty of building blocks
for cellular compartments. Metabolic regulation of stem-
ness is increasingly recognized as fundamental in the
control of stem cell fate. In contrast to most differenti-
ated cells, pluripotent stem cells (PSCs) rely primarily
on aerobic glycolysis rather than mitochondrial oxidative
phosphorylation(OXPHOS) to minimize ROS produc-
tion, which impairs self-renewal ability [60, 61]. Reduced
mitochondrial respiration in quiescent hematopoietic
stem cells (HSCs) prevent oxidative damage from ROS,
enabling long-term survival because HSCs are sensitive
to ROS [62]. Aerobic glycolysis also contributes to ac-
quisition of stemness in CSCs. It has been demonstrated
that poorly differentiated cancers show much higher
glucose uptake than differentiated cancers, suggesting
that a high glycolytic flux in tumor tissues mainly results
from a blockade of CSCs differentiation [63]. Conversely,
activation of mitochondrial metabolism leads to loss of
pluripotent potential and induction of differentiation in
P19 embryonal carcinoma stem cells [64]. Recently, Peng
et al. demonstrated that breast cancer stem cells
(BCSCs) have high levels of pyruvate dehydrogenase
kinase 1 (PDK1), which inhibits mitochondrial
OXPHOS. Depletion of PDK1 significantly diminishes
ALDH1-positive BCSCs, which leads to decreased
sphere-formation ability [65], suggesting targeting aer-
obic glycolysis may be usefull to eliminating CSCs. How-
ever, to date, attempts to inhibit glycolysis as cancer
therapy remain unsatisfactory [66], which is mainly due
to CSCs are very heterogeneous and may thus have di-
vergent metabolic landscapes [67]. In addition to glu-
cose, some cancer cells also use glutamine heavily [68].
However, little is known about the role of glutaminolysis
in stem cell homeostasis.
Unlike HSCs, normal neuro stem cells(NSCs) show

low levels of glycolysis [69], suggesting that the meta-
bolic phenotype of pluripotent cells is highly plastic and
strongly influenced by tissue microenviroments and

nutrient availability [70]. A growing body of evidences
indicates that CSCs/TICs are more dependent on oxida-
tive metabolism than glycolysis [61, 71]. For example,
oncogene ablation resistant pancreatic cells with feature
of CSCs strongly rely on mitochondrial respiration ra-
ther than Warburg effect [35]. CSCs from ovarian cancer
primarily rely on fatty acid β-oxidation (FAO) and are
resistant to glucose deprivation [72].

Metabolic and redox cues of Phenoconversion in
CSCs
As mentioned above, metabolic cues play a central role
in cell fate determination. A growing body of literatures
indicates that metabolism reprogramming and CSCs
properties are two highly entwined processes during
tumor development [73]. On one hand, chronic meta-
bolic stress in premalignant environments may drive the
phenoconversion of non-stem cancer cells to a stem-like
state in a Wnt-dependent manner [74]. In addition,
chronic oxidative stress at non-cytotoxic doses promotes
neoplastic transformation and stem cell characteristics
in kidney epithelial cells [75], suggesting that ROS may
act as a “double-edged sword” in the acquisition of stem
cell characteristics in a dose-dependent manner. On the
other hand, impairment of mitochondrial metabolism
via inhibition of complex I or loss of mitochondrial
DNA leads to genetic inactivation of p53 and to a glyco-
lytic switch in neural progenitor/stem cells (NPCs),
which result in genomic instability and glioma formation
and support the notion that metabolic stress triggers the
conversion of normal NSCs to a glioma-initiating NSCs
[69]. In the established tumor tissues, tumor cells con-
tinually undergo persistent and high level of oxidative
stress [76]. In terms of the survival against excessive de-
gree of redox stress, CSCs must adapt it’s cellular bio-
energetics efficiently to this kind of unfavorable
conditions, a NRF2-dependent anti-ROS signal pathway
may be involved [34] . Activation of NRF2 promotes
tumor cells resistant to redox stress, whereas inactiva-
tion of NRF2 with the flavonoid chrysin effectively sensi-
tizes BEL-7402/ADM tumor cells to doxorubicin by
downregulating the PI3K/Akt and ERK pathways [77].
Redox balance may contribute to autophagy associated
drug resistance, that why NRF2 inhibitors suppress can-
cer stemness and sensitize GBM cells to temozolomi-
de(TMZ), an alkylating agent for GBM and anaplastic
astrocytoma treatment, which induces autophagy and
subsequent therapeutic resistance [42, 78]. Recently,
Yoshida et al. demonstrated that CD44v but not the
standard CD44, promotes proteasome degradation of
c-Myc protein via suppressing redox stress-induced Wnt
activation [31]. High amount of CD44v8–10 cooperate
with Fbw7, a well-defined ubiquitin ligase of c-myc pro-
tein [79], precisely regulate the proliferation and
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dormancy cycle of CSCs through modulating c-myc pro-
tein stability at the invasive front [31, 80].
Studies unveiled that glioma CSCs reside in either peri-

vascular niche or perinecrotic microenviroment [81, 82].
In the perivascular niche, glioma CSCs interact closely
with endothelial cells which secrete factors to maintain
the self-renewal of CSCs [81]. It has been demonstrated
that the CD44 ligand osteopontin enriched in perivascular
niche promotes glioma CSCs-like phenotypes and radi-
ation resistance. These effects were mediated by HIF-2α
in a cooperative manner with γ-secretase generated CD44
intracellular domain [83]. On the other hand, a hypoxic
and perinecrotic microenviroment, which known to
stimulate glycolysis and induce autophagy, promote
acquisition of a stem-like state and increase the CSCs
population through stabilization of both HIF1 and
HIF2 [82, 84, 85]. It has been shown that two of
pluripotency transcription factors, OCT4 and c-Myc,
were directly activated by HIF-2α [86, 87].

Alterations in lipid metabolism in CSCs
Though the bulk tumor cells and CSCs share some com-
mon metabolic features as compared to normal cells, it
has been proposed that the metabolic state of TICs/
CSCs subtlely differs from that of non- stem cancer cells
[88]. Fatty acids metabolism not only supports energy
production but also plays an important role in biosyn-
thetic pathways and redox homeostasis. Recent advances
in proteomics and metabolomics have deepened our
knowledge of the role of fatty acids metabolism in deter-
mining CSCs fate [89–91]. For example, Chen et al. de-
scribed that NANOG, a master factor in controlling
stem cell fate, stimulates the generation of stem-like
TICs and hepatocellular carcinoma (HCC) oncogenesis
via metabolic reprogramming from OXPHOS to fatty
acids oxidation [60], suggesting lipid metabolism is fun-
damental for NANOG positive CSCs.
Lipids are essential components of cell and organelle

membranes, and fatty acids are required for proliferation
of the bulk tumor mass and also for CSCs maintenance
[89, 92, 93]. There is a strong contribution from the lipid
metabolism, whereas the role of glycolysis in CSCs main-
tenance may be more tumor-specific. For example, glioma
stem cells (GSCs) use less glycolysis than differentiated
glioma cells but maintain higher levels of ATP production
[94]. Further more, the glycolytic intermediates could be
used by CSCs for de novo lipogenesis to increase
self-renewal growth [66], suggesting different metabolic
pathway could be well coordinated in CSCs to maximize
the benefits. Both lipid catabolism and anabolism alter-
ations are associated with acquisition of stemness during
cancer development (Fig. 1). For example, BCSCs exhibit
elevated long-chain FAO metabolites compared to
non-stem cancer cells. Moreover, inhibition of FAO by

etomoxir markedly decreases viability and tumorsphere-
forming potential of BCSCs but exert little effect on
non-stem cancer cells, suggesting that FAO is critical to
self-renewal of BCSCs [89].

Lipid droplets in CSCs
Lipid droplets (LDs) are intracellular spherical organelles
surrounded by a single layer of phospholipids that store
lipids [95]. Cancer cells have more LDs compared to nor-
mal cells [95]. During metabolic stress resulting from
blocked glycolysis, free fatty acids (FFAs) from LDs sustain
ATP production though FAO (Fig. 1). Breakdown of LDs
in an autophagy-dependent manner, a selective autophagy
named lipophagy, enables FFAs mobilization to the mito-
chondria (Fig. 1), which is pivotal for survival when meta-
bolic restrictions in cancer cells are induced by oncogenic
signaling blockade [57, 96]. LDs also protect lipid from
peroxidation, as toxic lipid peroxides trigger ferroptosis
[47]. In addition, lipid quantification in prostate cancer is
associated with the tumor stage, thus serving as a quanti-
tative marker for disease diagnosis [97]. LDs formation is
induced by hypoxia via HIF1- and HIF2-mediated repres-
sion of carnitine palmitoyltransferase 1A (CPT1A), a key
enzyme in involved in mitochondrial FAO [98] (Fig. 2). In
addition to de novo lipogenesis, increase in extracellular
lipid uptake also contributes to LDs accumulation and
tumor initiation capacity in CSCs [99] (Fig. 1).
CSCs display more LDs compared to the bulk cancer

cells in several cancer types. For example, Tirinato et al.
demonstrated that colorectal cancer stem cells (CRCSCs)
exhibit higher lipid levels compared to normal epithelial
colon cells (NECCs), colon carcinoma cells (CCCs), and
sphere-derived adherent cancer cells (SDACs). The au-
thors showed that CRCSCs have higher LDs content than
SDACs and CCCs, whereas NECCs exhibit the lowest
LDs content. Interestingly, lipid content in colorectal can-
cer cells directly correlates with CD133 and Wnt pathway
activity. Furthermore, CRCSCs with high LDs content ex-
hibit higher clonogenic and tumorigenic potential than
LDlow CRCSCs [100]. Similarly, ovarian cancer stem cells
(OCSCs) (ALDH+/CD133+) isolated from the COV362
cell line have higher LDs content than ALDH−/CD133−

cancer cells [90]. Elevated LDs content in CSCs not only
provide an alternative energy source when glycolysis is
blocked, but also protect fatty acids from harmful peroxi-
dation in the stem cell niche, thus enabling stem cell
proliferation [101]. Whereas inhibition of phospholipase
A2 leads to reduction in LDs and triggers apoptosis in
cancer cells [57].

De novo lipid biosynthesis in CSCs
A metabolic hallmark of cancer is the increase in de novo
lipogenesis [102] (Fig. 1). Unlike most non-malignant
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cells, cancer cells are highly dependent on de novo lipo-
genesis to satisfy energy demands because of the limited
availability of dietary lipids. CSCs may siphon glycolytic
metabolic intermediates into de novo lipid biosynthesis to
increase self-renewal growth [66]. Yasumoto et al. re-
ported that both 14[C]-glucose and 14[C]-acetate incorpor-
ation into lipids is more pronounced in GSCs, indicating
that de novo lipogenesis is more active in these cells than
in differentiated bulk glioma cells [103]. Intriguingly, fatty
acid synthase (FASN), a key lipogenic enzyme, is overex-
pressed in patients-derived GSCs but is dramatically de-
creased upon serum-induced differentiation, suggesting
that enhanced de novo lipogenesis contributes to maintain
the undifferentiated status of GSCs. Inhibition of lipogen-
esis in GSCs by pharmacologically targeting FASN with
cerulenin significantly reduces stemness marker (SOX2,
nestin, CD133, and FABP7) expression levels, invasive-
ness, and sphere formation in GSCs, whereas glial fibril-
lary acidic protein GFAP levels are increased. Using
proteomic and metabolomic analyses, Brandi et al. dem-
onstrated that pancreatic CSCs have higher levels of gly-
colysis and increased de novo lipogenesis activity
compared to bulk parental cancer cells, but reduced mito-
chondrial OXPHOS levels. The authors showed that
FASN is overexpressed and is more sensitive to inhibition

Fig. 2 NANOG mediated metabolic reprogramming contributes to
CSCs self-renewal and chemoresistance. NANOG binding on FAO
genes(Acadvl, Echs1, and Acads) promoters stimulates it’s transcription
but exerts opposite effect on OXPHOS genes(Cox6a2 and Cox15)
transcription, leading to metabolic switch from OXPHOS to FAO and
less ROS production in CSCs/TICs. NANOG also promotes lipid
desaturation via up-regulating SCD1 expression. OXPHOS, oxidative
phosphorylation; FAO, fatty acid oxidation

Fig. 1 Alterations in lipid metabolism in CSCs. Both lipid catabolism and anabolism alterations contribute to stemness acquisition in CSCs, including lipid
uptake, de novo lipogenesis, lipid desaturation, lipolysis, lipophagy, and FAO. Extracellular FFAs are transported into cells via CD36 and then reused via
β-oxidation in mitochondria to release acetyl-CoA. Acetyl-CoA is converted to citrate by citrate synthase and then enters the Krebs cycle for complete
oxidation. Alternatively, de novo fatty acids synthesis starts with acetyl-CoA and builds up by the addition of two-carbon units. In addition to lipid
catabolism, fatty acids are esterified to glycerol and then triglycerides are stored in lipid droplets. Breakdown of lipids droplets via lipolysis or lipophagy
enables stored energy mobilization to the mitochondria. Additionally, saturated fatty acids are desaturated into mono-unsaturated fatty acids by SCD1.
Alterations in lipid metabolism not only satisfy energy demands for CSCs proliferation, but also provide essential components for biosynthetic pathways
and redox homeostasis. ACC, acetyl-CoA carboxylase; ACLY, ATP citrate lyase; FASN, fatty acid synthase; CD36, cluster of differentiation 36; FAs, fatty acids;
MUFAs, mono-unsaturated fatty acids; SCD1, stearoyl-CoA desaturase 1; CPT1, carnitine palmitoyltransferase 1; TCA cycle, tricarboxylic acid cycle; FAO, fatty
acid oxidation; and LD, lipid droplet

Yi et al. Journal of Experimental & Clinical Cancer Research  (2018) 37:118 Page 5 of 18



by cerulenin in Panc1 CSCs than in the parental non-stem
cancer cells. [91]. BCSCs (CD24− CD44+ ESA+) isolated
from MCF10DCIS.com cells, which give rise to ductal car-
cinoma in situ, exhibit higher expression levels of lipo-
genic genes such as ATP citrate lyase (ACLY), acetyl CoA
carboxylase 1 (ACC1), and FASN compared to non-stem
cancer cells(Fig. 1). Ectopic expression of sterol regulatory
element-binding protein-1 (SREBP1) gene, a master regu-
lator of lipogenesis, upregulates downstream lipogenic
genes (ACLY, ACC1, and FASN) concomitant with in-
creased lipogenesis, growth, and mammospheres forma-
tion in MCF10A stem-like cells. Upregulation of these
lipogenic genes promotes cell viability and proliferation in
MCF10A stem-like cells [104]. ACC converts acetyl-CoA
to malonyl-CoA during lipid biosynthesis. Inhibition of
ACC by soraphen A also notably decreases the number of
ALDH1+-CSCs-like cells and impairs mammosphere for-
mation in MCF-7 cells [66].

Lipid desaturation in CSCs
Lipid unsaturation is essential in breast, colon, and pros-
tate cancer cells [105, 106]. Administration of unsatur-
ated fatty acids by gavage to BALB/c mice
pre-inoculated with colorectal cancer cells amplify
CD133(+) subpopulations, induces stemness and pro-
motes tumor formation and metastasis [107]. Most
mono-unsaturated fatty acids (MUFAs) are the catalytic
product of stearoyl-CoA desaturase (SCD) (Fig. 1), a
rate-limiting enzyme, that adds a cis-double bond at the
delta 9 position in acyl-CoA chains [108]. It has been
shown that overexpression of SCDs promotes cancer
cells proliferation and inhibits cell death [105, 106, 109].
Lipid unsaturation was recently recognized to be a

unique metabolic biomarker for ovarian CSCs [90].
Ovarian CSCs harbor more unsaturated lipid-containing
LDs than non-stem cancer cells, implying that CSCs rely
much more on unsaturated lipids than bulk tumor cells.
Blocking lipid desaturase decreases ovarian CSCs marker
expression and prevents tumor initiation in vivo [90],
which is consistent with the pilot study that SCD1 acts
as a stemness regulator in breastcancer [109]. Import-
antly, these observations indicate that lipid desaturase
may be an ideal target for tumor prevention in cancers
from various tissue origins.
There are currently several possible mechanisms under-

lying CSCs regulation by lipd desaturation. Lipids are es-
sential components of cellular membranes, the fluidity of
which is determined by the degree of lipid unsaturation.
Membrane mechanical properties are critical in cell div-
ision, migration, and signal transduction [110]. Reducing
membrane fluidity exerts an inhibitory effect on meta-
static capacity and stem cell-like properties of breast can-
cer cells [111]. Increase in polyunsaturated fatty acids
prevent lipotoxicity of saturated fatty acid (SFA) to the

membrane system, which impair membrane fluidity [112].
Palmitate, a lipotoxic metabolite mainly derived from
SFA, drives solid-like domain separation from the ER
membrane and thus reduces membrane fluidity [113]. De-
crease in palmitic acyl (C16:0)-containing glyceropho-
spholipids promotes HCC cell proliferation and
invasiveness, highlighting that excessive palmitic acid im-
pairs HCC development [114]. Compared to non-CSCs,
CSCs have lower cell membrane tension and exhibit sig-
nificant shape deformation in response to stimuli. Increase
in membrane tension by immersing CSCs in hypotonic
medium leads to a decrease in polarized CSCs [115]. Be-
cause cell polarity is essential for asymmetric division and
migration [116, 117], CSCs would benefit from increased
fatty acid unsaturation in lowering membrane tension and
preventing symmetric division or loss of pluripotency. It’s
worthy to note that lipotoxic metabolites, including palmi-
tate and stearate, are the preferred substrates of SCDs
[108], suggesting SCDs may be crucial to maintain mem-
brane fluidity of CSCs.
Recent studies have further deepened our understanding

of how lipid desaturation interplays with oncogenic signal-
ing pathways to generate CSCs. It has been demonstrated
that NF-kB signaling activation and ALDH1A1 promotes
lipid desaturation [90] (Fig. 2). Reciprocally, inhibition of
desaturases with CAY 10566 and SC-26196 dramatically
represses NF-kB transcriptional activity and ovarian CSCs
characteristics, though the detailed mechanisms under-
lying NF-kB activation by SCD1 or unsaturated fatty acids
still remain unclear. MUFAs produced by SCDs also amp-
lify Wnt signaling via stabilization of β-catenin in rodent
hepatic stellate cells (HSCs) and mouse liver TICs [118]
(Fig. 2). Furthermore, MUFAs increase cytosolic levels of
nuclear import of elav-like protein 1 (HuR), thus promot-
ing HuR-mediated stabilization of Lrp5 and Lrp6 mRNAs
[118]. The third oncogenic signaling link to lipid desatur-
ation in CSCs generation is the Hippo/YAP signaling
pathway. SCD1 activity promotes nuclear accumulation of
YAP and increases transcriptional activity in lung adeno-
carcinoma CSCs in a Wnt-dependent manner, which is
evidenced by Wnt3a rescuing YAP protein from SCD1
inhibition(Fig. 2) [119]. Co-expression of SCD1 with
β-catenin and YAP/TAZ transcriptional target birc5 pre-
dicts unfavorable clinical outcomes in lung adenocarcin-
oma patients [119]. In addition to directly promoting
stemness in CSCs, unsaturated fatty acids also stimulate
mesenchymal stem cells to increase secretion of angio-
genic factors such as interleukin-6, VEGF, and nitric oxide
[120], which play a crucial role in angiogenesis and metas-
tasis in human cancers.

Elevated lipolysis and extracellular lipid uptake sustain CSCs
FFAs produced by host cell lipolysis also fuel tumor
growth [121]. Recently, Singh et al. demonstrated that
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blocking lipolysis in the digestive system of adult Dros-
ophila melanogaster selectively induces necrotic death
in normal and transformed stem cells without affecting
differentiated cells [122]. Melanosphere-derived CSCs
have increased lipid uptake when compared with differ-
entiating melanosphere-derived cells [123]. Leukemic
stem cells (LSCs) residing in gonadal adipose tissue
(GAT), which act as a LSC niche to support LSC me-
tabolism, trigger lipolysis to release FFAs through se-
cretion of pro-inflammatory cytokines such as TNF-α,
IL-1α, IL-1β, and CSF2. These FFAs are transported
into LSCs via CD36(Fig. 1), a fatty acid transporter
enriched in a sub-population of LSCs, and then reused
via β-oxidation in LSC mitochondria to support LSC
survival and evade chemotherapy. Loss of CD36 re-
duces homing of LSCs to GAT and leukemic burden in
mice [124]. Enrichment of CD36 was also observed in
glioma CSCs. Uptake of oxidized phospholipids such as
oxLDL, a natural ligand of CD36, drives glioma CSCs
proliferation but exerts no effect on differentiated gli-
oma cells [125]. In addition to affecting proliferation of
CSCs, uptake of palmitic acid via CD36 also specifically
activates the metastatic potential of CD44bright oral
squamous cell carcinoma (OSCC) metastasis-initiating
cells [126], highlighting the central role of lipids uptake
in fueling tumor metastasis.

Elevated FAO fuels CSCs
Oncogenic K-Ras mutation contributes to CSCs activa-
tion in colorectal cancer tumorigenesis, increased FAO
may be involved [127]. Oncogenic K-ras (G12D) activa-
tion stimulates mitochondrial FAO to support metabol-
ism and drive non-small cell lung cancer (NSCLC)
development via up-regulating autophagy [128].
MYC-driven triple-negative breast cancer (TNBC) has
an increased reliance on FAO for uncontrolled tumor
growth [129]. Furthermore, mitochondrial FAO also
drives triple negative breast cancer cells(TNBC) metasta-
sis [130]. A recent study unveiled that NANOG stimu-
lates mitochondrial FAO gene expression but represses
mitochondrial OXPHOS gene expression [60] (Fig. 3).
Metabolic reprogramming from OXPHOS to FAO is
critical for NANOG-mediated HCC TIC generation
[60]. Inhibition of FAO impairs TIC self-renewal and
tumorigenicity and sensitizes TICs to sorafenib, which is
a broadly used chemotherapy drug against HCC.
Mitochondrial FAO plays an important role in satisfy-

ing energy requirements in TICs (Fig. 1). Increased FAO
supports CSCs survival when glucose metabolism be-
comes limiting [131, 132]. Increase in FAO is critical to
inflammatory signaling-mediated CSCs generation. For
example, inhibition of FAO blocks BCSCs self-renewal
and increases its chemo-sensitivity [89]. Activation of

Fig. 3 Regulation of SREBP1 and lipid metabolism by oncogenic signaling in CSCs. Oncogenic PI3K (H1047R)- and K-Ras (G12 V) activates SREBP1
and SREBP2 to support de novo lipid synthesis and cell growth. The mTOR signaling regulates SREBP1 level through both transcriptional or
translational mechanisms. Activation of PI3K.AKT/mTOR signaling pathway or FGFR3 leads to stabilization of SREBP1 protein and promotes SREBP1
translocation to nucleus. Mitotic kinase Cdk1 and Plk1 physically interact with nuclear SREBP1 protein. Sequentially phosphorylation of SREBP1 by
Cdk1 and Plk1 blocks binding between the ubiquitin ligase Fbw7 and SREBP1 and attenuates SREBP1 degradation. Upon EGFR signaling
activation, the nuclear form of PKM2 physically interacts with SREBP1, activating SREBP target gene expression and lipid biosynthesis
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Src oncoprotein is also associated with CSCs generation
[133]. FAO plays a crucial role in Src oncoprotein activa-
tion through autophosphorylation at Y419 in TNBC
[134]. LSCs lacking CPT1A, a rate-controlling enzyme
in FAO, are refractory to avocatin B, a lipid derived from
avocado fruit that selectively kills AML stem cells with
little effect on its normal counterpart [135], highlighting
the importance of FAO in the establishment of
chemo-resistance.
Mitochondrial FAO also benefits stem cells via several

different mechanisms. First, FAO reduces ROS produc-
tion, which is harmful to stem cells [131], that why dis-
rupting their redox defense capability exerts therapeutic
effect against CSCs [136]. Second, mitochondrial FAO is
essential for pluripotency maintenance in HSCs and NSCs
via controlling the asymmetric division in HSCs [137,
138]. Reduced FAO flux potentiates NSCs symmetric dif-
ferentiating divisions at the expense of self-renewal [139].
Third, FAO pathway activation by peroxisome
proliferator-activated receptor contributes to Tie2+ HSC
expansion through induction of mitophagy [140]. In
addition to maintaining the redox balance of CSCs, mito-
chondrial FAO is also important for epigenetic regulation
of gene transcription, because acetyl coenzyme A, an
intermediate product of FAO, is required for histone
acetylation by the histone acetyltransferase p300 [141].

Key modulators of lipid metabolism in CSCs
NANOG
NANOG is a key transcription factor implicated in pluri-
potency maintenance and self-renewal in ES cells.
NANOG is expressed in various human cancers and is
associated with poor prognosis [142–144]. Re-activation
of NANOG in CSCs is critical for stemness maintenance
and self-renewal [145–147], in which it orchestrates
mitochondrial metabolic reprogramming [60]. ChIP-seq
revealed that NANOG binds to mitochondrial OXPHOS
gene (Cox6a2 and Cox15) promoters and represses those
genes transcription. In contrast, NANOG binds to FAO
genes (Acadvl, Echs1, and Acads) promoters and stimu-
lates it’s transcription, a cooperative interaction with
peroxisome proliferator-activated receptor δ(PPARδ)
involved(Fig. 3). Thus, overexpression of NANOG re-
presses mitochondrial respiratory activity and ROS
production, but stimulates FAO to favor HCC TIC
self-renewal and chemo-resistance, whereas silencing
NANOG has opposite effects [60]. Either re-expression
of OXPHOS genes (Cox6a2 or Cox15) or silencing FAO
genes (Echs1 and Acadvl) leads to impairment of TIC
self-renewal, suggesting that reprogramming the metab-
olism from mitochondrial OXPHOS to FAO by NANOG
is an intrinsic character of CSCs, not a conditional adap-
tation. Interestingly, NANOG reduces long-chain FA
levels but upregulates SCD1 expression in HCC TICs

[60] (Fig. 3). Inhibition of SCD by PluriSin#1, a
small-molecule SCD inhibitor, diminishes NANOG-posi-
tive stem cells in induced pluripotent stem cells (iPS) and
prevents tumorigenicity of iPS derivatives (iPSD) [148],
suggesting that lipid desaturation is also required for
NANOG-mediated CSCs generation. It is worthy to note
that PluriSin#1 preferentially induces NANOG-positive
stem cell apoptosis but has little effect on differentiated
cardiomyocytes derived from iPS, showing a promising
clinical application for cancer therapy.

SREBP1
SREBP1, a master transcriptional regulator of lipogen-
esis, belongs to the SREBP transcription factor family
and plays an important role in fatty acid and cholesterol
biosynthesis [149]. SREBP1 is required to maintain lipo-
genesis under lipid- and oxygen-deprived conditions.
Several lipogenesis enzymes are directly regulated by
SREBP1, including ACLY, ACC1, and FASN [104]
(Fig. 4). SREBP1 overexpression is observed in various
human cancers and promotes tumor growth [150–154].
SREBP1 is also upregulated in BCSCs, supporting its
stem cell behavior [104]. Activation of SREBP1 and
SREBP2 is required for oncogenic PI3K (H1047R)- and
K-Ras (G12 V)-stimulated de novo lipid synthesis and
breast epithelial cell growth [155] (Fig. 4). In addition to
promoting lipogenesis, SREBP1 contributes to gener-
ation of mono-unsaturated fatty acids by inducing SCD1
expression [156, 157] (Fig. 4). Inhibition of SREBP1 sig-
nificantly blocks spheroid growth in glioblastoma [157].
SREBP1 protein is stabilized upon sequential phosphor-
ylation by mitotic kinase Cdk1 and Plk1 during mitosis,
blocking binding between the ubiquitin ligase Fbw7 and
SREBP1 and attenuating SREBP1 degradation [158–160]
(Fig. 4). In addition, nuclear accumulation of mature
SREBP1 is promoted by PI3-kinase/Akt/target of rapa-
mycin (mTOR)C1 signaling [161] (Fig. 4). Activation of
EGFR signaling induces nuclear translocation of pyru-
vate kinase M2 (PKM2) [162], a key enzyme in Warburg
effect [163]. A latest study unveiled that nuclear PKM2
physically interacts with SREBP1 and stimulates lipid
biosynthesis through stabilizing SREBP-1 protein(Fig. 4),
providing further evidence to show the crosstalk be-
tween glycolysis and fatty acids metabolism [164].

MYC
MYC is overexpressed in various human cancers [165],
and its potential to reprogram the cellular metabolism in
cancer is well-recognized [166–168]. Importantly, the
role of MYC in metabolic reprogramming has been con-
firmed in vivo. Though MYC is not necessary for hepa-
toblastoma development, depletion of MYC delays
tumor progression through reducing fatty acid trans-
porter CD36 expression, with a concomitant decrease in
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LDs accumulation and FAO levels [169]. Inhibition of
FAO significantly delays constitutively active MYC-
driven lymphoma development in a transgenic model
[170, 171], whereas increase in FAO facilitates the tricarb-
oxylic acid (TCA) cycle and ATP production in
MYC-overexpressing TNBC [172]. It is worthy to note
that inhibition of FAO by etomoxir in a MYChigh TNBC
patient-derived xenograft (PDX) reduces the energy me-
tabolism and inhibits tumorigenesis but has little effect on
a MYClow TNBC PDX model, suggesting a therapeutic po-
tential in MYC-overexpressing TNBC tumors [129].

SCD
SCD1 and SCD2 are two major isoforms of SCDs.
Deletion of SCD1, the most abundant desaturase, de-
creases cardiac FFA and ceramide content in mice by re-
ducing lipogenesis and activating lipolysis [173]. SCD2
expression is up-regulated to compensate SCD1 defi-
ciency in mice liver [174]. Increased SCD1 expression
has been observed in CSCs from ovarian, lung, breast
cancer, and HCC [90, 109, 118, 175, 176]. In early stages
of lung ADC, SCD1 is co-expressed with CSCs markers
(CD133, CD24, CD44, and SOX2) [177]. High expres-
sion levels of SCD1 are tightly associated with disease
progression and unfavorable clinical outcomes in lung
cancer [177], HCC [118, 176], and breast cancer [105].
SCD1 expression is also negatively correlated with tumor
differentiation in human HCC [178].
SCD1 is pivotal for CSCs/TIC generation and stemness

maintenance [90, 118, 119, 175]. For example, silencing

SCD1 in MCF10A cells significantly reduces mammo-
sphere formation and the number of CD44+/CD24− cells
[109]. Genetic disruption of either SCD1 or SCD2 simi-
larly inhibits TIC self-renewal and prevents experimental
HCC formation induced by chemical carcinogens in mice
[118]. However, it’s remain elusive whether SCD1 overex-
pression enhances stemness in non-stem cancer cells.
Surprisingly, SCD1 is decreased in LSCs and plays a
tumor-suppressive role in chronic myeloid leukemia [179],
indicating that SCD1 function is context-dependent.
SCD1 expression is regulated by distinct oncogenic

signaling pathways. SCD1 levels are transcriptionally and
translationally controlled by mammalian mTOR
signaling [180] (Fig. 2). In rodent HSCs and TICs, SCD1
expression is induced by Wnt-β-catenin signaling and re-
ciprocally stabilizes the β-catenin protein [118] (Fig. 2). Li
Junjie et al. demonstrated that NF-kB p65 binds to the
SCD1 gene promoter (− 215 to − 206 and + 79 to + 88 bp)
and induces its expression in ovarian cancer [90] (Fig. 2).
Furthermore, SCD1 is a target of NANOG and is required
for NANOG-mediated TIC generation [60] (Fig. 2). In
breast cancer cells, SCD1 expression is induced by
17β-estradiol [181]. SCD1 expression is also induced by
cancer-associated fibroblasts-released factors and pro-
motes breast cancer cells migration, thus linking tumor
microenvironment to metabolic reprogramming of CSCs
[182]. Fibroblast growth factor receptor 3 (FGFR3) also
stimulates SCD1 expression to accelerate tumor growth
via activating SREBP1 in bladder cancers [183] (Fig. 4).
Genetic or pharmacological inhibition of SCD1 exerts

a powerful anti-CSCs effect in various cancer types,

Fig. 4 Interaction between oncogenic signaling and lipid desaturation in CSCs. Oncogenic activation of K-RAS, PI3K/AKT/mTOR signaling stimulates
de novo lipogenesis via upregulation of SREBP1. Increase of SCD1 expression and lipid desaturation by NANOG or oncogenic signaling in CSCs or TICs
reciprocally amplify NF-κB, Wnt/β-catenin, and Yap activation. Activation of JAK/STAT3 promotes CPT1B expression and activates the FAO pathway,
which in turn contributes to Src oncoprotein activation. SREBP1, sterol regulatory element-binding protein-1
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including lung [175, 177], colon CSCs [184], ovarian
[90], breast [109], and liver cancers [118, 178]. Silencing
SCD1 or inhibiting its activity with betulinic acid (BetA)
leads to rapid cell death in colon CSCs [184]. ROS gen-
eration may largely contribute to apoptosis after SCD1
inhibition [185]. Furtehr more, SCD1 activity is required
for autophagosome formation [186]. SCD1 inhibition
triggers cell death of pancreatic β-cells due to impair-
ment of autophagy [187]. Nevertheless, the role of au-
tophagy in SCD1 inhibition-induced cell death is
controversial because pharmacological inhibition of
SCD1 induces autophagic cell death via stimulating
AMPK signaling [188]. SCD1 inhibition also induces
liver TIC differentiation via the ER stress-induced un-
folded protein response [176]. Importantly, inhibition of
SCD1 overcomes drug resistance of lung adenocarcin-
oma CSCs to cisplatin [177] and liver TICs to chemo-
therapeutic drugs [176, 178], making it a desirable
approach for novel combined therapeutic strategies.

FASN and ACSVL3
FASN is a key enzyme in lipogenesis. It is highly
expressed in patient-derived GSCs but markedly de-
creased after differentiation. Treatment of GSCs with
cerulenin, a pharmacological inhibitor of FASN, leads to
reduction of de novo lipogenesis and loss of stemness
[103]. Overexpression of very long-chain acyl-CoA syn-
thetase 3 (ACSVL3) has been demonstrated in lung can-
cer and glioma [189, 190]. Activation of both oncogenic
receptor tyrosine kinases (RTK) c-Met and EGFR con-
tributes to increased ACSVL3 levels in glioma cells,
whereas silencing ACSVL3 leads to de-activation of Akt
signaling [189]. Recently, Sun et al. demonstrated that
ACSVL3 is implicated in GSCs maintenance and tumor
initiation capacity. In addition, knockdown of ACSVL3
in neurosphere cells impairs its self-renewal and induces
differentiation [191].

CD36
CD36 is a scavenging receptor that is enriched in CSCs
[124, 125] (Fig. 1). It has been shown that CD36, ITGA6,
and CD133 are co-expressed in glioblastoma, and CD36
may be used to functionally distinguish CSCs from
non-CSCs [125]. Otherwise, CD36 is highly expressed in
metastasis-initiating cells (CD44bright dye+) of OSCC
cells compared to its CD44bright dye− counterpart.
CD36(−) cells lose the ability to form a single lymph
node metastasis, whereas CD36(+) cells develop more
lymph node metastases than their parental cells.
However, both CD36(+) and CD36(−) cells efficiently
form oral lesions and primary tumors when orally inocu-
lated into NSG mice, highlighting it’s distinct role of
CD36(+) cells in metastasis. CD36(+)CD44bright cells
have higher expression levels of key enzymes involved in

FAO (ACADVL, ACADM, and HADHA). Blocking lipid
uptake with anti-CD36 antibodies in metastasis-initiating
cells inoculated in mice successfully prevents metastasis
initiation but not primary tumor formation [126]. In
addition, loss of CD36 significantly sensitizes LSCs to
chemotherapy and impairs tumorigenicity in mice [124].
However, challenging the accepted notion that
chemo-resistant cells are LSCs, Farge et al. demonstrated
that cytarabine (AraC)-resistant cells are neither LSCs nor
quiescent cells, although AraC-resistant cells exhibit high
levels of CD36 expression and FAO activity [192].

CPT1A and CPT1B
Mitochondrial FAO is initiated with the transfer of
long-chain fatty acids from the cytosol into the mito-
chondrial matrix by CPT1 and CPT2. CPT1 (also named
CPT1A) is a rate-limiting enzyme in FAO and is located
in the outer mitochondrial membrane (Fig. 1), whereas
CPT2 is located in the inner mitochondrial membrane.
CPT1A is overexpressed in prostate cancer and is asso-
ciated with a high tumor grade [193, 194]. High expres-
sion levels of CPT1A predict unfavorable clinical
outcomes in AML [195] and ovarian cancer [196]. Gen-
etic or pharmacological inhibition of CPT1A exerts
anti-tumor activity in prostate cancer [193], melanoma
[197], breast [198], and ovarian cancer [196]. CPT1A is
required for stem cell maintenance in neural stem/pro-
genitor cells (NSPCs) [138]. CPT1A-dependent FAO
flux is high in quiescent NSPCs but decreases in prolif-
erating NSPCs. Reduced FAO flux triggers NSPC differ-
entiation and loss of pluripotency [139]. CPT1B is one
of the three isoforms of CPT1. Recently, Wang et al.
demonstrated the role of JAK/STAT3 signaling in the
regulation of BCSCs and cancer chemoresistance
through promoting CPT1B expression and FAO in
BCSCs. Blocking JAK/STAT3 signaling inhibits the
self-renewal of BCSCs and re-sensitizes them to chemo-
therapy [89].

Targeting lipid metabolism as novel therapeutic
strategies against CSCs
CSCs are resistant to most traditional treatments.
However, their dependency on lipid metabolism for pro-
liferation and survival offers an Achilles heel for the
elimination of these cells. Targeted clearance of CSCs
could be achieved by intervening in different aspects of
fatty acid metabolism such as lipogenesis, lipid uptake,
lipid desaturation, and FAO. Due to the high costs and
risk to discover and develop novel therapeutic agents,
therapeutic strategies of drug repositioning for
difficult-to-cure diseases treatment gain increasing atten-
tions [40]. For instance, terfenadine, a “conventional”
agents used to auto-immune disorders such as allergic
dermatitis, has been demonstrated to reduce VEGF
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secretion from mast cells resided in the hypoxic micro-
environment, and exerts great potential to kill melan-
oma cells via ROS-mediated apoptosis and autophagy
[199, 200].

Targeting lipogenesis
FASN is the most targetable among lipogenesis genes.
Several FASN inhibitors display anti-tumor activity in
preclinical cancer models (Table 1). Most importantly,
some inhibitors show selective activity against CSCs
rather than bulk tumor cells. Strikingly, Orlistat, a
FDA-approved anti-obesity drug targeting FASN, exerts a
potent anti-tumor activity in various cancers [201, 202].
Remarkably, inhibition of FASN by Orlistat in EGFR mu-
tated NSCLC suppresses tumor growth in vitro and in
vivo through reducing EGFR palmitoylation but inducing
mutant EGFR ubiquitination and subsequent proteasomal
degradation [203].

Resveratrol
Resveratrol is a natural phytochemical compound
extracted from grapes, red wine, berries, and peanut-
s(Table 1). Pre-clinical trials revealed that resveratrol
exerts chemo-therapeutic and chemo-preventive effects
against human cancers [204]. Further more, recent
study demonstrated that resveratrol inhibits EMT and
overcomes doxorubicin resistance in gastric cancer
through modulating PTEN/Akt signaling pathway
[205].. It has been shown that resveratrol at low dosage
stimulates KEAP1/Nrf2 pathway and protects cells
against oxidative agents, which may be the underlying
mechanisms for it’s cancer chemoprevention function.

However, high concentrations of resveratrol promotes
ROS production leading to cell death [206–208]. Res-
veratrol suppresses lipogenesis and induces apoptosis in
BCSCs by suppressing FASN expression [104, 209],
making it attractive for clinical utilization. Resveratrol
treatment inhibits GSCs proliferation at low doses and
induces necrosis at higher doses but has no effect on
normal NSCs behavior [210]. SIRT2 activation is re-
quired for resveratrol-mediated GSCs proliferation ar-
rest but not for necrosis induced by high doses of
resveratrol. Several clinical trials are currently under-
way [NCT00721877, NCT00920803, NCT00433576,
and NCT00578396]. Pterostilbene, a dimethylated de-
rivative of resveratrol with a higher bioavailability and
is more lipophilic, exerts more potent suppressive ac-
tivity against CSCs and cancer metastasis [211, 212].

Cerulenin
Cerulenin, a fungal metabolite, is another natural
pharmacological inhibitor of FASN (Table 1). Cerulenin
preferentially inhibits pancreatic CSCs proliferation
compared to its parental cell [91]. It also inhibits gli-
oma CSCs proliferation, migration and induces CSCs
differentiation to glial cells [103]. The anti-tumor activ-
ity of cerulenin is enhanced by the combined use of
oxaliplatin in human colon cancer cells [213]. Cerule-
nin also exerts an inhibitory effect on protein palmitoy-
lation, thus affecting CD36 membrane trafficking [214].

Targeting lipid desaturation
It is noteworthy that the SCD requirement for TIC gen-
eration was recently confirmed in a genetic mouse

Table 1 Inhibitors of lipid enzymes involved in CSCS

Metabolism type Drug Targeting enzyme Cancer type Stage

Lipogenesis Resveratrol FASN Breast cancer CSCs [104, 209].
Glioblastoma CSCs [210, 231].
Pancreatic CSCs [232]

Clinical Trial

Cerulenin FASN Glioma CSCs [103], Pancreatic CSCs [91] Pre-clinical

Orlistat FASN NSCLC [203] FDA-approved anti-obesity drug

Lipid uptake CD36 antibody CD36 OSCC [126] Pre-clinical

MTN CD36 Glioblastoma CSCs [125] Pre-clinical

FAO Etomoxir CPT1A MYC-overexpressing TNBC [129], leukemia [219, 220] Pre-clinical

ST1326 CPT1A Lymphoma [170], acute myeloid leukemia [221] Pre-clinical

Lipid desaturation SSI-4 SCD1 Liver CSCs [176], Pre-clinical

BetA SCD1 CRC [184] Pre-clinical

PluriSin#1 SCD1 Teratomas [148]

MF-438 SCD1 Lung cancer CSCs [177] Pre-clinical

A939572 SCD1 CRC [185], clear cell renal cell carcinoma [233] Pre-clinical

Cay10566 SCD1 Breast Carcinoma [216] Pre-clinical

T-3764518 SCD1 CRC [234] Pre-clinical

OSCC oral squamous cell carcinomas, CRC colorectal cancer, TNBC triple-negative breast cancer, MTN 2-methylthio-1,4-naphthoquinone, FAO fatty acid β-oxidation
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model [118]. High dependence on unsaturated fatty
acids makes SCD a promising target to eradicate CSCs
[215]. Several kinds of SCD1 inhibitors exhibit anti-tumor
activity in pre-clinical cancer models (Table 1). SSI-4 is a
novel SCD1 inhibitor that reverts sorafenib resistance in
liver CSCs. SSI-4 display anti-tumor activity against liver
CSCs without serious side effects in pre-clinical animal
models [176]. Importantly, SSI-4 in combination with so-
rafenib show a maximal suppressive effect against tumori-
genesis in a sorafenib-resistant PDTX model. Notably, the
minimum dose of SSI-4 that has anti-tumor activity is ap-
proximately 10 mg/kg, a much lower concentration than
that of other inhibitors such as A939572. MF-438 is an-
other SCD1 inhibitor that reverts cisplatin resistance in
lung CSCs [176]. A939572 and Cay10566 are also two
widely used SCD1 inhibitors [173, 182, 185, 216]. A series
of novel and potent SCD inhibitors are currently being de-
veloped [217]. Table 1 summarizes the potent SCD1 in-
hibitors used in pre-clinical stage.

Targeting FAO
The dependency on FAO of CSCs makes it reasonable
to target these cells using FAO inhibitors. Etomoxir is a
specific inhibitor of mitochondrial CPT1A [218] (Table 1).
Camarda et al. used a clinically relevant PDX model and
found that etomoxir treatment markedly decreases ATP
production and tumor growth in a MYChigh TNBC PDX
model [129]. Etomoxir inhibits FAO in leukemia CSCs,
thus suppressing cell proliferation and sensitizing human
leukemia cells to apoptosis [124, 219, 220]. ST1326 is a
CPT1A inhibitor that inhibits FAO and exerts cytotoxic
activity against leukemia cell lines but not against normal
CD34+ bone marrow cells [221] (Table 1). ST1326 treat-
ment also prevents MYC-driven lymphomagenesis in a
Eμ-myc transgenic mice model [170].

Targeting lipid uptake
The scavenger receptor CD36 is enriched in CSCs and is
responsible for extracellular lipid uptake [124–126]. In-
creased lipid uptake is observed in melanoma, glioblast-
oma, and leukemia CSCs, offering a promising avenue to
develop novel therapeutic strategies [99, 123, 124].
Inhibition of CD36 by 2-methylthio-1,4-naphthoquinone
treatment decreases self-renewal and induces apoptosis
of CSCs in glioblastoma [125] (Table 1). Alternatively,
CD36-neutralizing antibodies block extracellular lipid
uptake of CSCs in OSCC and markedly inhibits tumor
growth without side effects [126] (Table 1). Dependence
on extracellular lipids also makes it reasonable to de-
velop lipid nanoparticles as a Trojan horse to deliver
drugs into CSCs. Many such strategies are being devel-
oped [222, 223]. For example, delivery of lipid nanoparti-
cles containing miR-200c combined with paclitaxel

(PTX) into breast CSCs exhibits profound anti-tumor
activity [224].

Conclusions
Recent advances in metabolomics have deepened our
understanding of the contribution of metabolic repro-
gramming to tumorigenesis, which is now a
well-recognized hallmark of cancer [225]. Alterations in
lipid metabolism such as increase in fatty acid uptake,
de novo lipogenesis, formation of LDs, FAO, and lipid
desaturation are intensively involved in CSCs generation
and stemness maintenance. Fatty acid metabolism not
only satisfies the energy demands and biomass produc-
tion of CSCs, but also contributes to the activation of
several important oncogenic signaling pathways, includ-
ing Wnt/β-catenin and Hippo/YAP signaling. Targeting
key players of fatty acids metabolism shows promising to
anti-CSCs and tumor prevention effects.
Although targeting the cell metabolism provides

promising opportunities for eliminating CSCs, we have
to face the dilemma of heterogeneity and metabolic plas-
ticity of these cells [226–229]. CSCs and tumor cells
may adapt its metabolic profile based on nutrients avail-
ability. For example, when the Warburg effect is re-
versed with cetuximab, HNSCC cells express high levels
of ACC, which rewires cancer metabolism from glycoly-
sis to lipogenesis to support energy demands and prolif-
eration [230]. Although increased lipogenesis has been
well documented in CSCs from various cancer types,
most chemical compounds targeting FASN does not
show a therapeutic efficacy in pre-clinical cancer models
and only one FASN inhibitor has entered clinical trials.
Owing to the metabolic flexibility of CSCs, it is difficult
to effectively eliminate these cells by targeting a single
metabolic pathway. A great challenge is to develop strat-
egies to synergistically target multiple metabolic path-
ways in CSCs. An additional challenge comes from the
metabolic similarities between CSCs and normal stem
cells. For example, mitochondrial FAO is essential for
NANOG-driven HCC TIC generation [60], but also
contributes to expansion of normal HSCs and NSCs
[137, 138]. Thus, the side effects of FAO inhibitors on
normal HSCs and NSCs will have to be considered.
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