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Abstract

Background: When profiling multiple health care providers, adjustment for case-mix is essential to accurately
classify the quality of providers. Unfortunately, misclassification of provider performance is not uncommon and can
have grave implications. Propensity score (PS) methods have been proposed as viable alternatives to conventional
multivariable regression. The objective was to assess the outlier classification performance of risk adjustment methods
when profiling multiple providers.

Methods: In a simulation study based on empirical data, the classification performance of logistic regression (fixed
and random effects), PS adjustment, and three PS weighting methods was evaluated when varying parameters such
as the number of providers, the average incidence of the outcome, and the percentage of outliers. Traditional
classification accuracy measures were considered, including sensitivity and specificity.

Results: Fixed effects logistic regression consistently had the highest sensitivity and negative predictive value, yet a
low specificity and positive predictive value. Of the random effects methods, PS adjustment and random effects
logistic regression performed equally well or better than all the remaining PS methods for all classification accuracy
measures across the studied scenarios.

Conclusions: Of the evaluated PS methods, only PS adjustment can be considered a viable alternative to random
effects logistic regression when profiling multiple providers in different scenarios.

Keywords: Propensity score, Risk adjustment, Classification, Profiling, Random effects, Logistic regression, Simulation
study

Background
In the last decades, performance of health care providers,
for instance hospitals, has come under immense scrutiny.
Government institutions, patients and providers them-
selves are increasingly demanding performance indicators
of the quality of care. These can be based on clinical out-
come measures such as mortality or complication rates
[1–3]. For example, when profiling (i.e., assessing the
performance of) well-established, high-risk procedures
such as coronary artery bypass grafting (CABG), mortal-
ity is considered an appropriate outcome measure and
thus often used [2–4]. After adjustment for differences
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in patient characteristics between providers, these mor-
tality rates can be used to classify providers as perform-
ing as expected (normal) or either better or worse than
expected (outlying). Unfortunately, when using customary
methodologies to adjust these outcome measures across
providers, misclassification of provider performance is
not uncommon, which may in turn have immense eco-
nomic and societal implications [5–8].
When making comparisons between health care

providers, an essential step is the adjustment for dif-
ferences between providers in the risk profiles of their
patients. This is often referred to as risk adjustment.
Taking into account the differences in relevant patient
characteristics between providers (also known as case-
mix) is crucial to obtain accurate and reliable estimates of
provider performance [1, 9]. However, many studies have
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found that traditional regression based methods lead to
inadequate adjustment for case-mix and are thus unable
to correctly classify providers in a consistent manner. In
addition, this classification performance is highly depen-
dent on the statistical model applied and the classification
criteria used [1, 3, 6, 10–13], especially when low-volume
providers are included or outcomes are rare [14–17].
Propensity score (PS) methods have previously been

put forward for risk adjustment [18]. These methods
showed superior performance over conventional multi-
variable regression in several observational dichotomous
treatment settings, e.g. when samples are small [19–27].
Furthermore, a simulation study [28] found that some PS
methods performed on par with multivariable regression
when profiling several providers, in line with results found
in analogous settings where multiple treatment options
were compared [29–32]. Seeing as PS methods have cer-
tain attractive advantages over conventional regression
including the easy assessment of balance on relevant case-
mix variables between multiple providers and their flexi-
bility for different types of outcomes [20, 22], PS methods
are considered viable alternatives for risk adjustment prior
to provider profiling.
However, extended methodological research on the per-

formance of PS and regression based methods when
profiling many providers are still lacking [33]. The
aim of this study was to compare several PS methods
with conventionally used (hierarchical) logistic regres-
sion on their ability to identify (or classify) health care
providers that performed better or worse than expected
(i.e. outliers). A simulation study, based on empirical
data from the field of cardiac surgery, was used to
assess how the classification accuracy of each method dif-
fered in varying circumstances that may be encountered
in practice.

Methods
Risk adjustment methods
Before detailing the set up of the simulation study, the
following risk adjustment methods are explained: fixed
effects logistic regression (LRF ), random effects logistic
regression (LRR), generalized propensity score (gPS) case-
mix adjustment (gPSA), gPS inverse probability weighting
(gPSW ), gPS inverse probability weighting with trimming
(gPSWT ) and gPS marginal mean weighting through strat-
ification (gPSMWS).

Fixed and random effects logistic regression
When dealing with dichotomous outcomes, such as
mortality, multivariable logistic regression models are
traditionally used for risk adjustment. These models can
include the individual providers of which we want to
determine the performance as either fixed or random
effects. Fixed effects logistic regression (LRF ) assumes

that all variation between providers is due to differences
in case-mix and that the model specification is correct.
By including providers as dummy variables, direct com-
parisons between providers can be made [34, 35]. Ran-
dom effects logistic regression (LRR) accounts for the
increased similarity between patients attending the same
provider, the hierarchical structure of the data, and allows
for residual variance between providers that may not be
attributable to performance. In addition, the dimension-
ality of the model is greatly reduced by only estimating
the parameters of the distribution underlying the provider
effects [36]. LRR is considered especially suitable when
between-provider variation is to be quantified, provider-
level variables are measured, or low volume providers are
to be profiled [6, 13, 34, 37, 38].
How the provider effects are included in the model can

have profound consequences on the accuracy of classi-
fying providers as either normal or outliers. As provider
effects are assumed to come from an underlying distri-
bution in LRR, effect estimates of providers (especially
those with low volume) can borrow information from the
other providers, shrinking these effects towards the mean
of all providers [34]. This results in the identification of
fewer performance outliers as compared to when LRF is
used [35–40]. Given the fundamental difference in how
the model is formulated, the decision whether to use LRF
or LRR is largely dependent on the goal of the profiling
exercise. At present, most papers advocate the use of LRR
due to the hierarchical nature of provider profiling, and its
conservativeness in identifying outliers.

Generalized propensity scoremethods
The propensity score (PS) was defined by Rosenbaum
and Rubin in 1983 as “the conditional probability of
assignment to a particular treatment given a vector of
observed covariates” [25]. They demonstrated that in
observational studies for causal effects, adjustment for
PSs was sufficient to remove bias due to observed covari-
ates assuming exchangeability and positivity (referred to
as ignorability by Rosenbaum and Rubin [25]). Exchange-
ability requires that the conditional probability of receiv-
ing the treatment only depends on observed covariates
and not on the outcome. Positivity implies that the
probability of receiving any treatment given observed
covariates is positive. For health care provider profil-
ing, the received treatment is not a medical intervention
but instead the provider attended. When comparing two
providers, each patient’s PS is their fitted probability of
attending one of the providers, estimated by regressing
the provider indicator on the observed case-mix vari-
ables using a logistic regression model. Note that some
strong predictors of provider attendance, such as the
patient’s address, may be omitted from this model as they
are not expected to be related to an outcome such as
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mortality and thus do not qualify as a confounder. For
multiple provider comparisons, the generalized propen-
sity score (gPS) can be used to adjust for observed
case-mix variables. The gPS is described by Imbens [29]
as the conditional probability of attending a particular
provider given case-mix variables, and was further devel-
oped by Imai & van Dyk [41]. The gPSs of each patient for
each provider can be estimated using multinomial logis-
tic regression including all relevant observed case-mix
variables.
There are several different ways to utilize the extracted

gPSs to determine the average performance of each
provider. In gPS case-mix adjustment (gPSA), provider
effects on the outcome are conditional on the gPSs (for
further details see: [31, 42]). For gPS weighting (gPSW )
the sample is first re-weighted by the inverse gPS of
the provider actually attended. In the weighted sample,
marginal provider effects can be estimated by only includ-
ing the providers in the outcomemodel (for further details
see: [31]). Extreme weights can be trimmed to a certain
percentile to reduce the influence of outlying weights and
potential model misspecification (as applied in gPSWT ).
However, this can also lead to biased estimates due to infe-
rior risk adjustment [43]. gPSMWS combines elements of
gPS stratification and gPSW and has been suggested to
be superior to gPSW in both a binary and multiple treat-
ment setting [32, 44, 45]. In this method, the gPSs for
each provider are first stratified into several categories
prior to weighting each individual by his/her representa-
tion within their stratum. Subsequently, marginal provider
effects can be estimated just as in gPSW (see [44] for
a detailed description). While other methods have also
been described in the literature, such as gPS stratifica-
tion [46] or gPS matching [30, 46, 47], these methods
have either been shown to perform worse than the afore-
mentioned methods [22, 27, 48, 49] or are logistically
impractical when dealing with large numbers of providers
[30, 44, 47].

Simulation study
A Monte Carlo simulation study was conducted based
on empirical data from the field of cardiac surgery. This
allowed us to mimic a situation with perfect risk adjust-
ment in which the observed outlier classification accuracy
of each method was compared with true outlier status
as fixed in each generated dataset. Several parameters
were varied across different scenarios each simulated 1000
times (see section Scenarios). Simulations were peformed
using R (v3.1.2) [50]. R scripts used for the simulation
study are available upon request.

Data source
Open heart surgery is a field that has been subject to
many developments in risk-adjusted mortality models

for quality control in the last decades [4, 40]. A selec-
tion of anonymized data from the Adult Cardiac Surgery
Database provided by the Netherlands Association of
Cardio-Thoracic Surgery was used as a realistic founda-
tion for the simulation study.
The Adult Cardiac Surgery Database contains patient-

and intervention characteristics of all cardiac surgery per-
formed in 16 centers in the Netherlands as of 1 January,
2007. This dataset has previously been described and used
by Siregar et al. for benchmarking [51, 52]. For the sim-
ulation study described in this paper, all patients from
the 16 anonymized centers undergoing isolated CABG
with an intervention date between 1 January, 2007 and 31
December, 2009 were included in the cohort. The average
in-hospital mortality was 1.4%, ranging from 0.7 to 2.3%.
The center indicator variable and outcome measure (in-
hospital mortality) were removed from the dataset. Of the
dichotomous variables included in the EuroSCORE, only
those with an overall incidence over 5% were used. The
final dataset was thus comprised of the following eight
relevant predictors of mortality following CABG: age
(centered), sex, chronic pulmonary disease, extracardiac
arteriopathy, unstable angina, LV dysfunction moderate,
recent myocardial infarction, and emergency interven-
tion. This final dataset represented the case-mix pro-
file of 25114 patients included in the selected cohort
and was used to generate the data for the simulation
study.

Data generation
Using a bootstrap procedure, patients were resampled
from the final dataset selected from the empirical data
described above. As such, samples were constructed of
a desired size containing patients with realistic case-mix
profiles. For each bootstrap sample, the eight case-mix
variables (Z1, . . . ,Z8) were included as covariates in a
multinomial logistic regression model to determine each
patients probability of assignment to each provider:

πk = eαk+βk1Z1+...+βk8Z8

K∑

j
eαj+βj1Z1+...+βj8Z8

, (1)

where k represents a provider with k = {1, . . . ,K}, αk
is the provider-specific intercept and βk1, . . . ,βk8 are the
provider-specific coefficients for each case-mix variable.
These coefficients were set equal within each provider
(βk1 = . . . = βk8), yet differed between providers,
with coefficient values drawn from a uniform distribution
between 0 and 1. The coefficients of one provider, which
acted as reference, were all set to 0.
Patients were assigned a provider based on the prob-

abilities calculated in Eq. 1. To ensure a fixed number
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of patients per provider as determined in each scenario,
patients were continually resampled until each provider
(k) had its required volume (nk) of patients. The amount
of patients in the final sample (N) was dependent on the
number of providers (K) and the volumes of the providers
(nk), which varied over the scenarios described in section
Scenarios.
Each patient’s value on the dichotomous outcome vari-

able (Y ) was generated using a random intercept logistic
regression model:

logit[pik]= γ00 + α0k + β ′
1Z1ik + ... + β ′

8Z8ik , (2)

where pik is the probability of mortality of the ith patient
attending the kth provider, γ00 is the overall intercept,
α0k are the provider-specific random intercepts, and
Z1ik , . . . ,Z8ik correspond to each patient’s scores on the
case-mix variables. α0k ∼ N

(
μ, σ 2), where μ = 0 for

normal providers and μ = ±H ∗ σ for performance
outliers that are either below or above average. H thus
represents the amount of standard deviations by which
the normal distribution is shifted when drawing the ran-
dom intercepts of the true outlying providers. σ was set
equal to 0.1942, corresponding to the standard deviation
of the provider-specific intercepts found when fitting a
random intercepts model on the full cohort of the dataset
described in section Data source. When H = 2 the
mean of the random effects distributions of the outlying
providers are then 0.3884 and -0.3884, corresponding to
odds ratios of 1.475 and 0.678 respectively, keeping all else
constant. Note that the overlap between the normal and
outlier distributions is actually larger in practice, due to
sampling variability. In a simple case, assuming an average
incidence of the outcome of 10%, this distance is reduced
to about 1.75 ∗ σ .
The coefficients of the case-mix variables

(
β ′
1, . . . ,β ′

8
)

corresponded to the odds ratios of the original
EuroSCORE prediction model [53]. The average inci-
dence of the outcome over all providers was fixed by
manipulating the overall intercept (γ00) of the outcome
model. In addition, each provider was required to have
an incidence of the outcome of at least 1% to prevent
separation and estimation problems when using the risk
adjustment methods.
In this data generating mechanism, the case-mix vari-

ables acted as confounders of the provider-outcome
relation. As no interaction terms were included in the
model, the provider effects were assumed constant over
the different levels of the case-mix variables. Given the
use of a random intercepts model to generate the out-
come, LRR and the gPS methods were favored over LRF .
Also note that both the gPS (Eq. 1) and outcome mod-
els (Eq. 2) were perfectly specified and contained the

same relevant case-mix variables. While a strong assump-
tion, this reduced the variability in performance over
simulations and limited the complexity of the simula-
tion study. As such, LRR and gPSA were expected to
have comparable performance due to the similarity of
the methods. Investigations into the consequences of
model misspecification were outside the scope of the
current study.

Scenarios
The parameters deemed relevant to manipulate are out-
lined below. Table 1 contains the parameter settings of the
studied scenarios.

• The number of providers, K : 10, 20, 30, 40, or 50.
• The average incidence of mortality, p··: 3, 10 or 20%.
• The percentage of true outliers, P(out): 8, 20 or 40%.

This ensured an equal number of true outliers
selected from both outlier distribution for each K
studied.

• The amount of standard deviations the outlier
random intercept distribution was shifted, H: 1, 2, 3,
or 4.

• Outliers were either drawn from both outlier
distributions (S = 2) or only from the below-average
performance distribution (S = 1).

• Half of the providers were allocated either
min(nk) = 500 ormin(nk) = 1000 patients, while
the other half were always of sizemax(nk) = 1000.

• Whenmin(nk) = 500, on average either half,
P(nmin) = 0.5, or all, P(nmin) = 1, of outlying
providers had a sample size of 500. This allowed us to
investigate the consequences of a potential correlation
between provider volume and quality [17, 54, 55].

Statistical analysis
The risk adjustment methods introduced earlier, were
applied on each of the generated datasets. In LRF a logistic

Table 1 Parameter Settings of Scenarios Studied Through
Simulations

Scenario K p·· P(out) H S min(nk) P(nmin)

1 10-50 0.10 0.2 2 2 1000 0.5

2 50 0.03-0.20 0.2 2 2 1000 0.5

3 50 0.10 0.08-0.4 2 2 1000 0.5

4 50 0.10 0.2 1-4 2 1000 0.5

5 50 0.10 0.2 2 1-2 1000 0.5

6 50 0.10 0.2 2 2 500-1000 0.5

7 50 0.10 0.2 2 2 500 0.5-1

Shown are the Number of Providers (K), Average Mortality Rate Over Centers (p··),
Percentage of True Outliers (P(out)), Factor by Which the Outlier Distributions Were
Shifted (H), Amount of Sides That the Outliers Were Drawn From (S), Minimum
Provider Volume (min(nk)), and the Probability of Outliers Being Small Providers
(P(nmin))
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regression model only including the case-mix variables
(Z1, . . . ,Z8) was first fit to extract the overall intercept.
Next, a second logistic regression model was fit without
intercept including all K providers as dummy variables
as well as Z1, . . . ,Z8. Provider effects were classified
as below or above average outliers if their 95% Wald
confidence intervals did not include the overall inter-
cept extracted from the first logistic regression model.
In LRR a random intercepts logistic regression model
was fit including the K providers as random effects and
Z1, . . . ,Z8 as fixed effects. Providers of which the empiri-
cal Bayes effect estimate deviated more than two observed
standard deviations from the overall intercept of the fitted
model were classified as outliers.
For the four gPS methods applied to the generated

data sets, outliers were classified in identical fashion as
described for LRR. For gPSA a random intercepts logistic
regression model was fit including the K providers as ran-
dom effects and K − 1 gPSs as fixed effects. In gPSW , each
patient was assigned a weight equal to the inverse of the
gPS of the provider actually attended. A weighted random
intercepts logistic regression was then performed as in
LRR with only the K providers included as random effects.
gPSWT was identical to gPSW , except that the highest 2%
of weights were trimmed to the 98th percentile based
on results from similar scenarios in [43]. The determina-
tion of the optimal trimming threshold was beyond the
scope of this study. For gPSMWS the gPSs for each provider
were first stratified into L = 5 strata, determined suffi-
cient to remove over 90% of the selection bias [25, 56, 57].
Next the marginal mean weight (MMW) was calculated
for each patient according to the formula described by
Hong [44]:

MMW = nsk ∗ Pr(X = k)
nX=k,sk

, (3)

where nsk is the number of patients in stratum s of
provider k, Pr(X = k) is the proportion of patients
assigned to provider k in the observed dataset and nX=k,sk
is the amount of patients in stratum sk that actually
attended provider k. The MMWs were then used to
weight the sample as in gPSW with the following anal-
ysis and outlier classification proceeding in an identical
manner.
The logistic regression models in LRF were fit using

the function glm from the stats package, part of the R
program [50]. The random intercept logistic regression
models applied in all other methods (LRR, gPSA, gPSW ,
gPSWT , gPSMWS) were fit using the function glmer from
the lme4 package [58]. All models used in each method
were properly specified, had the correct functional form
and did not include interactions.

Classification performance
The classification accuracy of each risk adjustment
method was evaluated by comparing the observed classifi-
cation of each provider as normal or outlying with the true
status, as determined when generating the data. While
alternative methods are available to classify outliers, the
approach presented above suffices to enable a fair compar-
ison of the different risk adjustment methods. Traditional
classification accuracy performance measures including
sensitivity, specificity, positive predictive value (PPV), and
negative predictive value (NPV) were computed for each
generated data set and averaged over all simulations. In
addition, 90th percentile confidence intervals were cal-
culated for each of these performance measures. Finally,
a measure of classification eagerness was considered by
calculating the proportion of simulated datasets in which
at least one outlier (not necessarily a true outlier) was
observed.

Results
Figures 1, 2, 3, 4, 5, 6 and 7 show the classification perfor-
mance of different risk adjustment methods for all studied
scenarios (see Table 1). The 90th percentile confidence
intervals over all bootstrap samples of these performance
measures are displayed in Tables 2, 3, 4, 5, 6, 7 and 8
in the Appendix. Across all scenarios, the eagerness of
LRF surpassed that of the gPS methods and LRR. As
these latter methods used random effects models to adjust
for case-mix, conservativeness was to be expected. Of
the gPS methods, gPSW and gPSMWS were most eager
to identify outliers, while gPSA was most conservative
with a performance identical to LRR. LRF consistently
had a much higher sensitivity (∼ 75%) than the other
methods (∼ 15%), of which LRR and gPSA scored sev-
eral percentage points higher than their counterparts. gPS
methods and LRR had very high specificities (between
90 and 100%) across the board with LRF coming in at
75%. As for the PPV, LRR and gPSA systematically scored
best around 90%, with LRF , gPSW and gPSMWS perform-
ing worst with PPVs around 30%. With respect to the
NPV, all gPS methods and LRR had almost identical per-
formance (∼ 80%). LRF consistently scored about 10%
higher.
Scenario 1: number of providers. Figure 1 shows the

effect of K on classification performance. As expected,
the eagerness of all methods quickly approach 100% for
increasing K. Even though the sensitivity, specificity, and
NPV of the gPS methods and LRR seemed largely unaf-
fected by K, LRR and gPSA had a slightly higher sensitivity
compared to the other methods when K approached 50.
While the PPV of LRR, gPSA, and LRF decreased by about
8%, the PPV of gPSW and gPSWT increased by about 12
and 15% respectively. Meanwhile the sensitivity and NPV
of LRF was unaffected by K, while the specificity initially
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Fig. 1 The eagerness, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for differing amounts of providers
(K), when using different risk adjustment methods. All other parameters were fixed (see scenario 1 of Table 1)

Fig. 2 The eagerness, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for different average incidences of
mortality (p··) when using different risk adjustment methods. All other parameters were fixed (see scenario 2 of Table 1)



Brakenhoff et al. BMCMedical ResearchMethodology  (2018) 18:54 Page 7 of 16

Fig. 3 The eagerness, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for different proportions of true
outliers (P(out)) when using different risk adjustment methods. All other parameters were fixed (see scenario 3 of Table 1)

Fig. 4 The eagerness, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the factor by which the outlier
distributions are shifted (H) when using different risk adjustment methods. All other parameters were fixed (see scenario 4 of Table 1)
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Fig. 5 The eagerness, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for the amount of outlier
distributions (S) when using different risk adjustment methods. All other parameters were fixed (see scenario 5 of Table 1)

Fig. 6 The eagerness, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for different minimum provider
volumes,min(nk), when using different risk adjustment methods. All other parameters were fixed (see scenario 6 of Table 1)
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Fig. 7 The eagerness, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) for different percentages of outliers
being allocated the minimum sample size, P(nmin), when using different risk adjustment methods. All other parameters were fixed (see scenario 7
of Table 1)

sloped downwards, before leveling off from K = 30
onwards.
Scenario 2: incidence of mortality. In Fig. 2 the influence

of p·· on classification performance was investigated. All
methods approached an eagerness of 100% as p·· rose with
LRR and gPSA increasing the most. When p·· = 0.03, the
sensitivity of gPS methods and LRR did not surpass 10%
while that of LRF dropped below 40%. As p·· increased,
this rose by about 12% for LRR, gPSA and gPSMWS, and
over 45% for LRF . Only the specificity of LRF was influ-
enced by p··, dropping by about 25% as p·· increased. As
for the PPV, all gPS methods and LRR had a positive rela-
tionship with p··, while LRF decreased as p·· rose. The
NPV of all methods was mainly unaffected by p··; only
LRF dropped towards the level of the other methods when
p·· = 0.03.
Scenario 3: percentage of true outliers. The influence of

P(out) on classification performance is explored in Fig. 3.
Increasing P(out) had little influence on the eagerness or
specificity of all methods. Only the sensitivity of LRR and
gPSA seemed to sharply decline towards the same level
as the other gPS methods (7%) as P(out) increased. The
PPV of all methods had a strong positive relationship with
P(out), with LRF , gPSW and gPSWT rising by about 25%,
and LRR and PSA rising by about 10%. The NPV of all

methods decreased as P(out) increased. Especially the gPS
methods and LRR all decreased in identical fashion by over
20%. As both NPV and PPV are influenced by the preva-
lence (in our case the proportion of true outliers) these
results were to be expected.
Scenario 4: outlier distribution shift. The relationship

betweenH and classification performance was explored in
Fig. 4. As expected, the eagerness of all methods increased
towards 100% as H reached 4. The sensitivity of all meth-
ods was positively related to H, with LRF increasing by
more than 50% and LRR and gPSA by about 25%, about
10% more than the PS weighting methods. While the
specificity remained unchanged, the PPV increased for all
methods, with gPSWT increasing most by about 50%. The
PPV of LRF leveled off after an increase of about 20%. The
NPV of LRF was the only one affected, increasing by about
20% as H approached 4.
Scenarios 5 through 7. The effect of S, min(nk),

and P(nmin) on classification performance is shown in
Figs. 5, 6 and 7. As expected, with performance out-
liers on both sides (S = 2) all performance measures
increased at least slightly for all methods. Including both
small and large providers (min(nk) = 500) had a small
effect on classification performance. For LRF the sensitiv-
ity and NPV increased slightly while the specificity and
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PPV decreased incrementally. Of the remaining meth-
ods, the PPV of gPSW and gPSWT and the eagerness of
gPSA and LRR decreased slightly. When all outliers were
allocated the minimum sample size (P(nmin) = 1), the
sensitivity, specificity and NPV of LRR and the gPS meth-
ods was unchanged. For the PPV, LRR and gPSA slightly
declined while gPSW and gPSWT slightly increased.
All accuracy measures of LRF slightly decreased as
P(nmin) increased, with sensitivity dropping the most by
about 10%.

Discussion
In this study, the outlier classification performance of gen-
eralized propensity score (gPS) risk adjustment methods
was compared to traditional regression-based methods
when profiling multiple providers.Fixed effects logistic
regression (LRF ) consistently had the highest eagerness,
sensitivity and negative predictive value (NPV), yet had
a low specificity and positive predictive value (PPV). Of
the random effects methods, gPS adjustment (gPSA) and
random effects logistic regression (LRR) were the most
conservative, yet performed equally well or better than
all the remaining gPS methods for all classification accu-
racy measures across the studied scenarios. A decision on
which of the studied methods to use should depend on
the goal of the profiling exercise, taking into consideration
the distinct differences between fixed and random effects
risk adjustment methods outlined in section Fixed and
random effects logistic regression.
While all gPS methods and LRR used a random inter-

cepts model in the analysis stage, LRF solely included fixed
effects. This was evident in the large performance differ-
ences between these methods and is in line with many
published simulation studies examining fixed and ran-
dom effects regression [6, 37, 39]. Also notable was the
reactivity of LRF to changes in most parameters as com-
pared to the more stable random effects methods, for
example with the sensitivity dropping sharply when out-
liers differed little from normal providers or the when the
outcome was rare.
The sensitivity of all random effects methods was

low across all scenarios. This was to be expected as
the maximum achievable sensitivity was limited by the
substantial overlap of the observed normal and outlier
provider effect distributions. The degree of overlap was
determined by the fixed standard deviation of the ran-
dom effects distributions from which the effects were
drawn, sampling variability and the distance between
the normal and outlier distributions. When this dis-
tance (H) was increased the sensitivity quickly rose
(see Fig. 4).
The overall identical performance of gPSA and LRR was

to be expected given the inclusion of the same case-mix
variables in both the gPS and outcome models. However,

the inferior performance of the gPS weighting meth-
ods across all studied scenarios was surprising. Earlier
findings suggested that gPS weighting (gPSW ) outper-
formed gPS weighting with trimming (gPSWT ) and had a
performance on par with that of gPSA and LRR [28]. In
the current study, trimming outlying weights had a posi-
tive effect on performance. Also unexpected was how gPS
marginal mean weighting through stratification (gPSMWS)
performed even worse in the majority of scenarios, dis-
puting earlier claims of its superior performance [32, 44,
45]. A possible reason for this may be our omission of an
essential step of the MMWSmethod, in which individuals
that fall out of the common area of support are removed.
This was done because for an increasing number of
providers, effective sample sizes were reduced to 0. In
addition, to ensure a fair and pragmatic comparison, the
MMWSmethod was applied under similar circumstances
as the other gPSmethods where the assessment of balance
across groups is often ignored because there is no consen-
sus on how to do this properly when comparing multiple
providers.
To explore the effect of many different parameters on

classification performance, a simulation study was used.
Due to the enormous amount of parameter combinations,
a full factorial design was abandoned in favor of a uni-
variate investigation of each parameter. Some parameter
settings that might be seen in practice, such as provider
volumes smaller than 500 patients, were omitted to pre-
vent separation and convergence problems in addition
to limiting the scope of the study. While scenarios were
chosen to reflect realistic and sometimes extreme situa-
tions that may be encountered when profiling providers,
more extensive investigation into the effect of the studied
parameters and others may be necessary to judge the con-
sistency of the results in all possible settings. Furthermore,
several choices made when generating the data (such as
the parameters of the provider effect distributions) will
not reflect situations encountered in practice. Even so, it
is not likely that this would affect the presented results.
Strengths of the approach utilized in this paper were
that the covariance structure of the case-mix variables
was extracted from an empirical dataset and that associ-
ations between the case-mix variables and the outcome
were taken from the original EuroSCORE model. Further-
more, drawing provider-specific random intercepts from
three normal distribution of which only the mean dif-
fered was deemed theoretically realistic. This trimodal
approach allowed the investigation of all cells of the con-
fusion matrix and has been applied in similar simulation
studies [6].
To limit the complexity and scope of the simulation

study, several important features of the risk adjustment
process were disregarded. When applying PS methods
it is essential to assess the overlap of the estimated PS
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distributions prior to fitting the outcome model. How-
ever, this step is often omitted in practice as there is
no consensus on how to assess balance on multiple
case-mix variables when considering more than three
providers. Disregarding it in our simulation study allowed
us to evaluate all methods including their drawbacks.
Furthermore, all PS and outcome models were assumed
properly specified with no unmeasured confounding by
including all the case-mix variables used for data gener-
ation in the analysis phase. While the authors acknowl-
edge that performance of the risk adjustment methods
may differ in more realistic situations, the results from
this controlled simulation study may act as reference
for essential further studies into the effect of misspec-
ification and unobserved confounding on classification
performance. Several authors have already recently com-
mented on the potential effects of misspecification in
comparable, yet simpler situations [59, 60]. Lastly, it is
important to stress that the data was generated under
the assumption of a random intercepts model, and thus
inherently favored the random effects methods. Fur-
ther simulation studies may be performed to investigate
the effect of using different data generating mechanisms
on the performance of the considered risk adjustment
methods.

Conclusions
This study has demonstrated that of the gPS methods
studied, only gPS case-mix adjustment can be considered
as a viable alternative to random effects logistic regression
when profiling multiple providers in different scenarios.
The former method may be preferred as it allows the
assessment of balance across providers prior to fitting the
outcome model. Additionally, the many different scenar-
ios investigated can give guidance on the classification
performance that may be expected when dealing with
different provider profiling exercises.

Appendix
Confidence interval tables
The following 7 tables show the 90th percentile confi-
dence intervals of the performance measures assessed for
each method within each scenario. Note that the number
of true outliers in the studied scenarios depended on the
amount of providers (K) and the percentage of true out-
liers (P(out)). As a result performance measures such as
the sensitivity could only take on a limited number of
values within each sample. In addition, a difference of
one in the number of outliers observed would also lead
to a relatively large change in the studied performance
measures.

Table 2 The 90th percentile confidence intervals for all performance measure estimates of each method for Scenario 1 in Table 1
(corresponding to Fig. 1)

Measure K LRF LRR gPSA gPSW gPSWT gPSMWS

Sensitivity 10 0.00, 1.00 0.00, 0.50 0.00, 0.50 0.00, 0.50 0.00, 0.50 0.00, 0.50

20 0.25, 1.00 0.00, 0.25 0.00, 0.25 0.00, 0.25 0.00, 0.25 0.00, 0.25
30 0.33, 1.00 0.00, 0.33 0.00, 0.33 0.00, 0.17 0.00, 0.33 0.00, 0.33
40 0.50, 1.00 0.00, 0.25 0.00, 0.25 0.00, 0.25 0.00, 0.25 0.00, 0.25
50 0.50, 0.90 0.00, 0.30 0.00, 0.30 0.00, 0.20 0.00, 0.20 0.00, 0.20

Specificity 10 0.50, 1.00 1.00, 1.00 1.00, 1.00 0.88, 1.00 0.88, 1.00 0.88, 1.00
20 0.56, 0.88 0.94, 1.00 0.94, 1.00 0.88, 1.00 0.94, 1.00 0.88, 1.00
30 0.54, 0.88 0.96, 1.00 0.96, 1.00 0.92, 1.00 0.92, 1.00 0.92, 1.00
40 0.56, 0.84 0.97, 1.00 0.97, 1.00 0.91, 1.00 0.94, 1.00 0.91, 1.00

50 0.57, 0.80 0.98, 1.00 0.98, 1.00 0.92, 1.00 0.95, 1.00 0.90, 1.00

PPV 10 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

20 0.20, 0.67 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

30 0.25, 0.58 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

40 0.26, 0.55 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

50 0.27, 0.53 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

NPV 10 0.75, 1.00 0.80, 0.89 0.80, 0.89 0.78, 0.89 0.78, 0.89 0.78, 0.89
20 0.80, 1.00 0.80, 0.84 0.80, 0.84 0.78, 0.84 0.79, 0.84 0.78, 0.84
30 0.82, 1.00 0.79, 0.86 0.79, 0.86 0.79, 0.83 0.79, 0.86 0.79, 0.85
40 0.84, 1.00 0.79, 0.84 0.79, 0.84 0.78, 0.84 0.79, 0.84 0.78, 0.84
50 0.84, 0.97 0.80, 0.85 0.80, 0.85 0.79, 0.83 0.79, 0.83 0.79, 0.83

K = number of providers; PPV = positive predictive value; NPV = negative predictive value
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Table 3 The 90th percentile confidence intervals for all performance measure estimates of each method for Scenario 2 in Table 1
(corresponding to Fig. 2)

Measure p.. LRF LRR gPSA gPSW gPSWT gPSMWS

Sensitivity 0.03 0.20, 0.70 0.00, 0.20 0.00, 0.20 0.00, 0.20 0.00, 0.20 0.00, 0.10

0.10 0.50, 0.90 0.00, 0.30 0.00, 0.30 0.00, 0.20 0.00, 0.20 0.00, 0.20

0.20 0.68, 1.00 0.00, 0.30 0.00, 0.30 0.00, 0.20 0.00, 0.20 0.00, 0.30

Specificity 0.03 0.75, 0.95 0.97, 1.00 0.97, 1.00 0.92, 1.00 0.92, 1.00 0.95, 1.00

0.10 0.57, 0.80 0.98, 1.00 0.98, 1.00 0.92, 1.00 0.95, 1.00 0.90, 1.00

0.20 0.45, 0.72 0.97, 1.00 0.97, 1.00 0.92, 1.00 0.95, 1.00 0.90, 1.00

PPV 0.03 0.18, 0.67 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

0.10 0.27, 0.53 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

0.20 0.26, 0.43 0.50, 1.00 0.50, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

NPV 0.03 0.80, 0.92 0.80, 0.83 0.80, 0.83 0.79, 0.83 0.79, 0.83 0.79, 0.82

0.10 0.84, 0.97 0.80, 0.85 0.80, 0.85 0.79, 0.83 0.79, 0.83 0.79, 0.83

0.20 0.86, 1.00 0.80, 0.85 0.80, 0.85 0.79, 0.83 0.79, 0.83 0.79, 0.85

p.. = average mortality rate over providers; PPV = positive predictive value; NPV = negative predictive value

Table 4 The 90th percentile confidence intervals for all performance measure estimates of each method for Scenario 3 in Table 1
(corresponding to Fig. 3)

Measure P(out) LRF LRR gPSA gPSW gPSWT gPSMWS

Sensitivity 0.03 0.20, 0.70 0.00, 0.20 0.00, 0.20 0.00, 0.20 0.00, 0.20 0.00, 0.10

0.10 0.50, 0.90 0.00, 0.30 0.00, 0.30 0.00, 0.20 0.00, 0.20 0.00, 0.20

0.20 0.68, 1.00 0.00, 0.30 0.00, 0.30 0.00, 0.20 0.00, 0.20 0.00, 0.30

Specificity 0.03 0.75, 0.95 0.97, 1.00 0.97, 1.00 0.92, 1.00 0.92, 1.00 0.95, 1.00

0.10 0.57, 0.80 0.98, 1.00 0.98, 1.00 0.92, 1.00 0.95, 1.00 0.90, 1.00

0.20 0.45, 0.72 0.97, 1.00 0.97, 1.00 0.92, 1.00 0.95, 1.00 0.90, 1.00

PPV 0.03 0.18, 0.67 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

0.10 0.27, 0.53 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

0.20 0.26, 0.43 0.50, 1.00 0.50, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

NPV 0.03 0.80, 0.92 0.80, 0.83 0.80, 0.83 0.79, 0.83 0.79, 0.83 0.79, 0.82

0.10 0.84, 0.97 0.80, 0.85 0.80, 0.85 0.79, 0.83 0.79, 0.83 0.79, 0.83

0.20 0.86, 1.00 0.80, 0.85 0.80, 0.85 0.79, 0.83 0.79, 0.83 0.79, 0.85

P(out) = percentage of true outliers; PPV = positive predictive value; NPV = negative predictive value
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Table 5 The 90th percentile confidence intervals for all performance measure estimates of each method for Scenario 4 in Table 1
(corresponding to Fig. 4)

Measure H LRF LRR gPSA gPSW gPSWT gPSMWS

Sensitivity 1 0.20, 0.70 0.00, 0.20 0.00, 0.20 0.00, 0.20 0.00, 0.10 0.00, 0.20

2 0.50, 0.90 0.00, 0.30 0.00, 0.30 0.00, 0.20 0.00, 0.20 0.00, 0.20

3 0.80, 1.00 0.10, 0.40 0.10, 0.40 0.00, 0.30 0.00, 0.30 0.00, 0.30

4 0.90, 1.00 0.20, 0.50 0.20, 0.50 0.00, 0.30 0.00, 0.40 0.00, 0.40

Specificity 1 0.57, 0.82 0.95, 1.00 0.95, 1.00 0.92, 1.00 0.92, 1.00 0.90, 0.97

2 0.57, 0.80 0.98, 1.00 0.98, 1.00 0.92, 1.00 0.95, 1.00 0.90, 1.00

3 0.57, 0.82 0.97, 1.00 0.97, 1.00 0.95, 1.00 0.95, 1.00 0.92, 1.00

4 0.55, 0.80 1.00, 1.00 1.00, 1.00 0.95, 1.00 0.97, 1.00 0.95, 1.00

PPV 1 0.11, 0.41 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 0.50

2 0.27, 0.53 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

3 0.33, 0.56 0.75, 1.00 0.75, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

4 0.36, 0.56 1.00, 1.00 1.00, 1.00 0.00, 1.00 0.33, 1.00 0.00, 1.00

NPV 1 0.76, 0.90 0.79, 0.83 0.79, 0.83 0.79, 0.83 0.79, 0.82 0.78, 0.83

2 0.84, 0.97 0.80, 0.85 0.80, 0.85 0.79, 0.83 0.79, 0.83 0.79, 0.83

3 0.92, 1.00 0.81, 0.87 0.82, 0.87 0.79, 0.85 0.80, 0.85 0.79, 0.85

4 0.96, 1.00 0.83, 0.89 0.83, 0.89 0.80, 0.85 0.80, 0.87 0.79, 0.87

H = factor by which the outlier distributions were shifted; PPV = positive predictive value; NPV = negative predictive value

Table 6 The 90th percentile confidence intervals for all performance measure estimates of each method for Scenario 5 in Table 1
(corresponding to Fig. 5)

Measure S LRF LRR gPSA gPSW gPSWT gPSMWS

Sensitivity 1 0.40, 0.80 0.00, 0.20 0.00, 0.20 0.00, 0.10 0.00, 0.20 0.00, 0.20

2 0.50, 0.90 0.00, 0.30 0.00, 0.30 0.00, 0.20 0.00, 0.20 0.00, 0.20

Specificity 1 0.55, 0.78 0.97, 1.00 0.97, 1.00 0.92, 1.00 0.92, 1.00 0.90, 0.97

2 0.57, 0.80 0.98, 1.00 0.98, 1.00 0.92, 1.00 0.95, 1.00 0.90, 1.00

PPV 1 0.20, 0.41 0.00, 1.00 0.00, 1.00 0.00, 0.67 0.00, 1.00 0.00, 0.67

2 0.27, 0.53 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

NPV 1 0.80, 0.93 0.80, 0.83 0.80, 0.83 0.79, 0.82 0.79, 0.83 0.78, 0.83

2 0.84, 0.97 0.80, 0.85 0.80, 0.85 0.79, 0.83 0.79, 0.83 0.79, 0.83

S = amount of sides that the outliers were drawn from; PPV = positive predictive value; NPV = negative predictive value
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Table 7 The 90th percentile confidence intervals for all performance measure estimates of each method for Scenario 6 in Table 1
(corresponding to Fig. 6)

Measure min(nk) LRF LRR gPSA gPSW gPSWT gPSMWS

Sensitivity 500 0.40, 0.90 0.00, 0.20 0.00, 0.20 0.00, 0.20 0.00, 0.20 0.00, 0.20

1000 0.50, 0.90 0.00, 0.30 0.00, 0.30 0.00, 0.20 0.00, 0.20 0.00, 0.20

Specificity 500 0.62, 0.85 0.97, 1.00 0.97, 1.00 0.92, 1.00 0.92, 1.00 0.90, 1.00

1000 0.57, 0.80 0.98, 1.00 0.98, 1.00 0.92, 1.00 0.95, 1.00 0.90, 1.00

PPV 500 0.26, 0.56 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

1000 0.27, 0.53 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

NPV 500 0.83, 0.97 0.80, 0.83 0.80, 0.83 0.79, 0.83 0.79, 0.83 0.79, 0.83

1000 0.84, 0.97 0.80, 0.85 0.80, 0.85 0.79, 0.83 0.79, 0.83 0.79, 0.83

min(nk) = minimum provider volume; PPV = positive predictive value; NPV = negative predictive value

Table 8 The 90th percentile confidence intervals for all performance measure estimates of each method for Scenario 7 in Table 1
(corresponding to Fig. 7)

Measure P(nmin) LRF LRR gPSA gPSW gPSWT gPSMWS

Sensitivity 0.5 0.40, 0.90 0.00, 0.20 0.00, 0.20 0.00, 0.20 0.00, 0.20 0.00, 0.20

1 0.30, 0.80 0.00, 0.20 0.00, 0.20 0.00, 0.20 0.00, 0.20 0.00, 0.20

Specificity 0.5 0.62, 0.85 0.97, 1.00 0.97, 1.00 0.92, 1.00 0.92, 1.00 0.90, 1.00

1 0.62, 0.85 0.98, 1.00 0.98, 1.00 0.92, 1.00 0.92, 1.00 0.92, 1.00

PPV 0.5 0.26, 0.56 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

1 0.21, 0.50 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00 0.00, 1.00

NPV 0.5 0.83, 0.97 0.80, 0.83 0.80, 0.83 0.79, 0.83 0.79, 0.83 0.79, 0.83

1 0.81, 0.94 0.80, 0.83 0.80, 0.83 0.79, 0.83 0.79, 0.83 0.79, 0.83

P(nmin) = probability of outliers being small providers; PPV = positive predictive value; NPV = negative predictive value
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