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Fish in schooling formations navigate complex flow fields replete
with mechanical energy in the vortex wakes of their companions.
Their schooling behavior has been associated with evolutionary
advantages including energy savings, yet the underlying physi-
cal mechanisms remain unknown. We show that fish can improve
their sustained propulsive efficiency by placing themselves in
appropriate locations in the wake of other swimmers and inter-
cepting judiciously their shed vortices. This swimming strategy
leads to collective energy savings and is revealed through a com-
bination of high-fidelity flow simulations with a deep reinforce-
ment learning (RL) algorithm. The RL algorithm relies on a policy
defined by deep, recurrent neural nets, with long–short-term
memory cells, that are essential for capturing the unsteadiness
of the two-way interactions between the fish and the vortical
flow field. Surprisingly, we find that swimming in-line with a
leader is not associated with energetic benefits for the follower.
Instead, “smart swimmer(s)” place themselves at off-center posi-
tions, with respect to the axis of the leader(s) and deform their
body to synchronize with the momentum of the oncoming vor-
tices, thus enhancing their swimming efficiency at no cost to
the leader(s). The results confirm that fish may harvest energy
deposited in vortices and support the conjecture that swimming
in formation is energetically advantageous. Moreover, this study
demonstrates that deep RL can produce navigation algorithms
for complex unsteady and vortical flow fields, with promising
implications for energy savings in autonomous robotic swarms.

fish schooling | deep reinforcement learning | autonomous navigation |
energy harvesting | recurrent neural networks

There is a long-standing interest for understanding and
exploiting the physical mechanisms used by active swim-

mers in nature (nektons) (1–4). Fish schooling, in particular, one
of the most striking patterns of collective behavior and com-
plex decision-making in nature, has been the subject of intense
investigation (5–9). A key issue in understanding fish-schooling
behavior, and its potential for engineering applications (10),
is the clarification of the role of the flow environment. Fish
sense and navigate in complex flow fields full of mechanical
energy that is distributed across multiple scales by vortices gen-
erated by obstacles and other swimming organisms (11, 12).
There is evidence that their swimming behavior adapts to flow
gradients (rheotaxis), and, in certain cases, it reflects energy-
harvesting from such environments (13, 14). Hydrodynamic
interactions have also been implicated in the fish-schooling pat-
terns that form when individual fish adapt their motion to that
of their peers, while compensating for flow-induced displace-
ments. Recent experimental studies have argued that fish may
interact beneficially with each other (9, 15, 16), but in ways that
challenge (17) the earlier proposed mechanisms (5, 6) govern-
ing fish schooling. However, the role of hydrodynamics in fish
schooling is not embraced universally (8, 18, 19), and there is lim-
ited quantitative information regarding the physical mechanisms
that would explain such energetic benefits. Experimental (15,
16) and computational (20) studies of collective swimming have
been hampered by the presence of multiple deforming bodies
and their interactions with the flow field. Moreover, numerical

simulations have demonstrated that a coherent swimming group
cannot be sustained without exerting some form of control
strategy on the swimmers (21, 22). Here, we use deep rein-
forcement learning [deep RL (23)] to discover such strategies
for two autonomous and self-propelled swimmers and eluci-
date the physical mechanisms that enable efficient and sustained
coordinated swimming.

During fish propulsion, body undulations and the sideways
displacement of the caudal fin generate and inject a series of
vortex rings in its wake (24–26). When fish swim in formation,
these vortices may assist the locomotion of fish that intercept
them judiciously, which in turn can reduce the collective swim-
ming effort. Such vortex-induced benefits have been observed in
trout, which curtail muscle use by capitalizing on energy injected
in the flow by obstacles present in streams (13, 27). Here, we
examine configurations of two and three self-propelled swim-
mers in a leader(s) –follower(s) arrangement and investigate
the physical mechanisms that lead to energetically beneficial
interactions by considering four distinct scenarios. Two of these
involve smart followers that can make autonomous decisions
when interacting with a leader’s wake and are referred to as
interacting swimmers (IS) (e.g., the follower in Fig. 1). Addition-
ally, we consider two distinct solitary swimmers (SS) that swim
in isolation in an unbounded domain. In the case of interacting
swimmers, ISη denotes swimmers that learn the most efficient
way of swimming in the leader’s wake (without any positional
constraints) and acquire a policy πη in the process. In turn, swim-
mer ISd attempts to minimize lateral deviations from the leader’s
path, resulting in a locally optimal policy πd . These autonomous
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Fig. 1. Efficient coordinated swimming of two and three swimmers.
(A) DNS of two swimmers, in which the leader swims steadily and the
follower maintains a specified relative position such that it increases its effi-
ciency by interacting with one row of the vortex rings shed by the leader.
The flow is visualized by isosurfaces of the Q criterion (28). (B) DNS of
three swimmers, where the two followers maintain specified positions that
increase their efficiency by interacting with both rows of the vortex rings
shed by the leader. (C) DNS of three swimmers with the follower benefit-
ting from one row of wake vortices generated by each leader. Animations
of the 3D simulations are provided in Movies S1–S3.

swimmers take decisions by virtue of deep RL, using visual cues
from their environment (Fig. 2A). The solitary swimmers SSη and
SSd execute actions identical to ISη and ISd , respectively, and
serve as “control” configurations to assess how the absence of a
leader’s wake impacts swimming-energetics.

Deep RL for Swimmers
RL (29) has been introduced to identify navigation policies
in several model systems of vortex dipoles, soaring birds and
microswimmers (30–32). These studies often rely on simplified
representations of organisms interacting with their environment,
which allows them to model animal locomotion with reduced
physical complexity and manageable computational cost. How-
ever, the simplifying assumptions inherent in such models often
do not account for feedback of the animals’ motion on the
environment. High-fidelity numerical simulations, although sig-
nificantly more computationally demanding, can account for
such important considerations to a greater extent, for instance,

by allowing flapping or swimming motions that closely mimic
the interaction of real animals with their environment. This
makes them invaluable for investigating concepts that may be
carried over readily to bioinspired robotic applications, with min-
imal modification. This consideration has motivated our present
study, where we expand on our earlier work (33), combining
RL with direct numerical simulations (DNSs) of the Navier–
Stokes (NS) equations for self-propelled autonomous swimmers.
We first investigate 2D swimmers in a tandem configuration
to scrutinize the strategy adopted by the RL algorithm for
attaining the specified goals. Based on the observed behav-
ior and the physical intuition we gain from examining these
smart swimmers, we formulate simplified rules for implement-
ing active control in significantly more complex 3D systems. This
reverse-engineering approach allows us to determine simple and
effective control rules from a data-driven perspective, without
having to rely on simplistic models which may introduce errors
owing to underlying assumptions.

Efficient Autonomous Swimmers
We first analyze the kinematics of swimmers ISη and ISd (Fig. 2),
which were described previously, and were trained to attain spe-
cific high-level objectives via deep RL (see Methods for details).
In both cases, the swimmer trails a leader representing an adult
zebrafish of length L, swimming steadily at a velocity U , with tail-
beat period T [Reynolds number Re =L2/(Tν)≈ 5000]. After
training, we observe that ISd is able to maintain its position
behind the leader quite effectively (∆y ≈ 0; Fig. 2D), in accor-
dance to its reward (Rd = 1− |∆y |/L). Surprisingly, ISη with a
reward function proportional to swimming efficiency (Rη = η),
also settles close to the center of the leader’s wake (Fig. 2D and
Movie S4), although it receives no reward related to its relative
position. This decision to interact actively with the unsteady wake
has significant energetic implications, as described later in the
text. Both ISd and ISη maintain a distance of ∆x ≈ 2.2L from
their respective leaders (Fig. 2C). ISη shows a greater procliv-
ity to maintain this separation and intercepts the periodically
shed wake vortices just after they have been fully formed and
detach from the leader’s tail. In addition to ∆x = 2.2L, there is
an additional point of stability at ∆x = 1.5 (Fig. 2E). The differ-
ence 0.7L matches the distance between vortices in the wake of
the leader. In both positions, the lateral motion of the follower’s
head is synchronized with the flow velocity in the leader’s wake,
thus inducing minimal disturbance on the oncoming flow field.
We note that a similar synchronization with the flow velocity
has been observed when trout minimize muscle use by interact-
ing with vortex columns in a cylinder’s wake (13). ISη undergoes
relatively minor body deformation while maneuvering (Fig. 2F),
whereas ISd executes aggressive turns involving large body cur-
vature. Trout interacting with cylinder wakes exhibit increased
body curvature (27), which is contrary to the behavior displayed
by ISη . The difference may be ascribed to the widely spaced vor-
tex columns generated by large-diameter cylinders used in the
experimental study; weaving in and out of comparatively smaller
vortices generated by like-sized fish encountered in a school
(Fig. 2B) would entail excessive energy consumption.

We note that maintaining ∆y = 0 requires significant effort
by ISd (SI Appendix, Fig. S2D), which is expected, as this swim-
mer’s reward (Rd ) is insensitive to energy expenditure. One
of our previous studies (33) demonstrated that minimizing lat-
eral displacement led to enhanced swimming efficiency (com-
pared with the leader), albeit with noticeable deviation from
∆y = 0. This conclusion is markedly different from our cur-
rent observation and can be attributed to the use of improved
learning techniques which are better able to achieve the speci-
fied goal. In the present study, recurrent neural networks aug-
mented with “long short-term memory” cells (SI Appendix, Fig.
S3) help encode time dependencies in the value function and
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Fig. 2. Learning efficient swimming strategies: Differences between 2D and 3D flow fields. (A) The smart swimmer relies on a predefined set of variables
to identify its “observed state” (such as range and bearing relative to the leader that are depicted). Additional observed-state parameters are described in
Methods. (B) Comparison of vorticity field in the wake of 2D (Upper) and cross-section of the 3D (Lower) swimmers (red, positive; blue, negative). In 2D, the
leader’s wake vortices are aligned with its centerline. In contrast, in 3D flows, the wake vortices are diverging, leaving a quiescent region behind the leader.
In 2D, smart followers must align with the leader’s centerline. In 3D, they must orient themselves at an angle to harness the wake vortex rings (WRs). Every
half a tail-beat period, the smart follower in 2D simulations (ISη) autonomously selects the most appropriate action encoded in policy πη learned during
training simulations, which allows it to maximize long-term swimming efficiency (Movie S4). The smart follower is capable of adapting to deviations in the
leader’s trajectory (Movie S5), as these situations are encountered when performing random actions during training. (C) Relative horizontal displacement
of the smart followers with respect to the leader, over a duration of 50 tail-beat periods starting from rest (solid blue line, ISη ; dash-dot red line, ISd).
(D) Lateral displacement of the smart followers. (E) Histogram showing the probability density function (PDF; left vertical axis) of swimmer ISη ’s preferred
center-of-mass location during training. In the early stages of training (first 10,000 transitions; green bars), the swimmer does not show a strong preference
for maintaining any particular separation distance. Toward the end of training (last 10,000 transitions; lilac bars), the swimmer displays a strong preference
for maintaining a separation distance of either ∆x = 1.5L or 2.2L. The solid black line depicts the correlation coefficient, with peaks in the black curve
signifying locations where the smart follower’s head movement would be synchronized with the flow velocity in an undisturbed wake (see SI Appendix
for relevant details). (F) Comparison of body deformation for swimmers ISη (Upper) and ISd (Lower), from t = 27 to t = 29. Their respective trajectories are
shown with the dash-dot lines, whereas the dashed gray line represents the trajectory of the leader. A quantitative comparison of body curvature for the
two swimmers may be found in SI Appendix, Fig. S1.

produce far more robust smart swimmers than simpler feed-
forward networks (33). The performance of our deep recurrent
network is compared with that of a feedforward network in SI
Appendix, Fig. S4 and indicates that the deep network is bet-
ter able to achieve the goal of in-line following, but at the
penalty of increased energy expenditure. As a result, ISd suc-
ceeds in correcting for oscillations about ∆y = 0 much more
effectively by undergoing severe body undulations (Fig. 2F),
leading to increased costs (SI Appendix, Fig. S2). These obser-
vations confirm that following a leader indiscriminately can be
disadvantageous if energetic considerations are not taken into
account. Thus, it is unlikely that strict in-line swimming is used
as a collective-swimming strategy in nature, and fish presum-
ably adopt a strategy closer to that of ISη , by coordinating
their motion with the wake flow. We note that patterns simi-
lar to the ones reported in this study have been observed in a
recent experimental study (17). The behavior of swimmer ISη

is also compared qualitatively to that of a real fish following
a companion in Movie S6, and we observe that the motion
of ISη resembles the swimming behavior of the live follower
quite well.

Intercepting Vortices for Efficient Swimming
To determine the impact of wake-induced interactions on swim-
ming performance, we compare energetics data for ISη and SSη

in Fig. 3. The swimming efficiency of ISη is significantly higher
than that of SSη (Fig. 3A), and the cost of transport (CoT), which
represents energy spent for traversing a unit distance, is lower
(Fig. 3B). Over a duration of 10 tail-beat periods (from t = 20

to t = 30; SI Appendix, Fig. S2) ISη experiences a 11% increase
in average speed compared with SSη , a 32% increase in aver-
age swimming efficiency and a 36% decrease in CoT. The benefit
for ISη results from both a 29% reduction in effort required
for deforming its body against flow-induced forces (PDef ) and
a 53% increase in average thrust power (PThrust ). Performance
differences between ISη and SSη exist solely due to the pres-
ence/absence of a preceding wake, since both swimmers undergo
identical body undulations throughout the simulations. Compar-
ing the swimming efficiency and power values of four distinct
swimmers (SI Appendix, Fig. S2 and Table S1), we confirm that
ISη and SSη are considerably more energetically efficient than
either ISd or SSd .

The efficient swimming of ISη [e.g., point ηmax (A) in Fig. 3A]
is attributed to the synchronized motion of its head with the lat-
eral flow velocity generated by the wake vortices of the leader
(Movie S4v). This mechanism is evidenced by the correlation
curve shown in Fig. 2E and by the coalignment of velocity vec-
tors close to the head in Fig. 4 A and B. As shown in Movie
S7, ISη intercepts the oncoming vortices in a slightly skewed
manner, splitting each vortex into a stronger (W1U , Fig. 4A)
and a weaker fragment (W1L). The vortices interact with the
swimmer’s own boundary layer to generate “lifted vortices” (L1),
which in turn generate secondary vorticity (S1) close to the body.
Meanwhile, the wake and lifted vortices created during the pre-
vious half-period, W2U , W2L, and L2, have traveled downstream
along the body. This sequence of events alternates periodically
between the upper (right lateral) and lower (left lateral) surfaces,
as seen in Movie S7. Interactions of ISη with the flow field at
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Fig. 3. Energetics data for a smart follower maximizing its swimming effi-
ciency. Swimming efficiency (A) and CoT (B) for ISη (solid blue line) and
SSη (dash-double-dot black line), normalized with respect to the CoT of
a steady solitary swimmer. Four instances of maximum and minimum effi-
ciency, which occur periodically throughout the simulation at times (nTp +

0.12), (nTp + 0.37), (nTp + 0.62), (nTp + 0.87), have been highlighted. Tp = 1
denotes the constant tail-beat period of the swimmers, whereas n repre-
sents an integral multiple. The decline in η at point E (t≈ 27.7, η= 0.86)
results from an erroneous maneuver at t≈ 26.5 (Movie S7), which reveals
the existence of a time delay between actions and their consequences.

points ηmin(D) and (E) in Fig. 3A are analyzed separately in SI
Appendix, Figs. S5 and S6.

We observe that the swimmer’s upper surface is covered in a
layer of negative vorticity (and vice versa for the lower surface)
(Fig. 4 A, Upper) owing to the no-slip boundary condition. The

wake or the lifted vortices weaken this distribution by generat-
ing vorticity of opposite sign (e.g., secondary vorticity visible in
narrow regions between the fish surface and vortices L1,W1L,
L2, and L3) and create high-speed areas visible as bright spots
in Fig. 4 A, Lower. The resulting low-pressure region exerts a
suction force on the surface of the swimmer (Fig. 4 B, Upper),
which assists body undulations when the force vectors coincide
with the deformation velocity (Fig. 4 B, Lower) or increases
the effort required when they are counteraligned. The detailed
impact of these interactions is demonstrated in Fig. 4 C–F. On
the lower surface, W1L generates a suction force oriented in the
same direction as the deformation velocity (0< s < 0.2L in Fig.
4B), resulting in negative PDef (Fig. 4E) and favorable PThrust

(Fig. 4F). On the upper surface, the lifted vortex L1 increases
the effort required for deforming the body (positive peak in Fig.
4C at s = 0.2L), but is beneficial in terms of producing large pos-
itive thrust power (Fig. 4D). Moreover, as L1 progresses along
the body, it results in a prominent reduction in PDef over the
next half-period, similar to the negative peak produced by the
lifted vortex L2 (s = 0.55L in Fig. 4E). The average PDef on
both the upper and lower surfaces is predominantly negative (i.e.,
beneficial), in contrast to the minimum swimming efficiency
instance ηmin(D), where a mostly positive PDef distribution sig-
nifies substantial effort required for deforming the body (SI
Appendix, Fig. S5). We observe noticeable drag on the upper
surface close to s = 0 (Fig. 4 B, Upper and Fig. 4D), attributed
to the high-pressure region forming in front of the swimmer’s
head. Forces induced by W1L are both beneficial and detrimen-
tal in terms of generating thrust power (0< s < 0.2L in Fig. 4F),
whereas forces induced by L2 primarily increase drag but assist
in body deformation (Fig. 4E). The tail section (s = 0.8L to 1L)
does not contribute noticeably to either thrust or deformation
power at the instant of maximum swimming efficiency.

Energy-Saving Mechanisms in Coordinated Swimming
The most discernible behavior of ISη is the synchronization
of its head movement with the wake flow. However, the most
prominent reduction in deformation power occurs near the mid-
section of the body (0.4≤ s ≤ 0.7 in Fig. 4 C and E). This
indicates that the technique devised by ISη is markedly differ-
ent from energy-conserving mechanisms implied in theoretical
(6, 34) and computational (20) work, namely, drag reduction
attributed to reduced relative velocity in the flow and thrust
increase owing to the “channelling effect.” In fact, the predomi-
nant energetics gain (i.e., negative PDef ) occurs in areas of high
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Fig. 4. Flow field and flow-induced forces for ISη , corresponding to maximum efficiency. (A) Vorticity field (red, positive; blue, negative) with velocity vectors
shown as black arrows (Upper) and velocity magnitude shown in Lower (bright, high speed; dark, low speed). The snapshots correspond to t = 26.12, i.e.,
point ηmax(A) in Fig. 3A. Demarcations are shown at every 0.2L along the body center line for reference. The wake vortices intercepted by the follower (W1U,
W1L, W2U, W2L), the lifted vortices created by interaction of the body with the flow (L1, L2, and L3), and secondary vorticity S1 generated by L1 have been
annotated. (B) Flow-induced force vectors (Upper) and body deformation velocity (Lower) at t = 26.12. (C and D) Deformation power (C) and thrust power
(D) (with negative values indicating drag power) acting on the upper surface of follower. The red line indicates the average over 10 different snapshots
ranging from t = 30.12 to t = 39.12. The envelope signifies the SD among the 10 snapshots. (E and F) Deformation power (E) and thrust power (F) on the
lower (left lateral) surface of the swimmer.
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Fig. 5. The 3D swimmer interacting with WRs. (A) Swimming efficiency for
a 3D leader (dash-dot red line) and a follower (solid blue line) that adjusts its
undulations via a proportional-integrator (PI) feedback controller to main-
tain a specified position in the wake. After an initial transient, the patterns
visible in the efficiency curves repeat periodically with Tp. Time instances
where the follower attains its minimum and maximum swimming efficiency
have been marked with an inverted red triangle and an upright green tri-
angle, respectively. The sudden jumps at t≈ 18.3 and 19.3 correspond to
adjustments made by the PI controller. (B) An oncoming WR is intercepted
by the head of the follower and generates a new LR (C) similar to the 2D
case (Fig. 4). As this ring interacts with the deforming body, it lowers the
swimming efficiency initially (t≈ 17.8; A and C), but provides a noticeable
benefit further downstream (t≈ 18.2; A and D).

relative velocity, for instance, near the high-velocity spot gen-
erated by vortex L2 (Fig. 4). This dependence of swimming
efficiency on a complex interplay between wake vortices and
body deformation aligns closely with experimental findings (13,
27). We remark that the majority of the results presented here
are obtained with a steadily swimming leader. However, with no
additional training, ISη is able to exploit the wake of a leader exe-
cuting unfamiliar maneuvers, by deliberately choosing to interact
with the unsteady wake, as seen in Movies S5 and S6. The smart
follower is able to respond effectively to such unfamiliar situa-
tions, since it is exposed to a variety of perturbations while taking
random actions during training. This observation demonstrates
the robustness of the RL algorithm to uncertainties in the envi-
ronment and further establishes its suitability for use in realistic
scenarios.

Having examined the behavior and physical mechanisms asso-
ciated with energy savings, we now formulate and test a simple
control rule that enables efficient coordinated swimming. We
remark that this is a combination of RL and DNSs in a reverse-
engineering context, where: (i) We use the capability of RL to
discern useful patterns from a large cache of simulation data; (ii)
we analyze the physical aspects of the resulting optimal strategy,
to identify the behavior and mechanisms that lead to energetic
benefits, and finally; (iii) we use this understanding to devise a
rule-based control algorithm for sustained energy-efficient syn-
chronized swimming, in a notably more complex 3D setting. To
the best of our knowledge, there is no work available in the lit-
erature that investigates the flow physics governing interactions
among multiple independent swimmers, by using high-fidelity
simulations of 3D NS equations.

Given the head-synchronization tendency of the 2D smart
swimmer ISη , we first identify suitable locations behind a 3D

leader where the flow velocity would match a follower’s head
motion (SI Appendix, Fig. S7). A feedback controller is then
used to regulate the undulations of two followers to main-
tain these target coordinates on either branch of the diverging
wake, as shown in Fig. 1B and Movie S1. We note that a
fish following in-line behind the leader would not benefit in
the present 3D simulations, since the region behind the leader
remains quiescent owing to the diverging wake. The controlled
motion yields an 11% increase in average swimming efficiency
for each of the followers (Fig. 5A) and a 5% reduction in each
of their CoT. Overall, the group experiences a 7.4% increase
in efficiency when compared with three isolated noninteracting
swimmers. The mechanism of energy savings closely resembles
that observed for the 2D swimmer; an oncoming WR (Fig.
5B) interacts with the deforming body to generate a “lifted-
vortex” ring (LR; Fig. 5C). As this new ring proceeds along
the length of the body, it modulates the follower’s swimming
efficiency as observed in Fig. 5. Remarkably, the positioning of
the lifted ring at the instants of minimum and maximum swim-
ming efficiency resembles the corresponding positioning of lifted
vortices in the 2D case; a slight dip in efficiency corresponds
to lifted vortices interacting with the anterior section of the
body (Fig. 5C and SI Appendix, Fig. S5), whereas an increase
occurs upon their interaction with the midsection (Figs. 4
and 5D).

These results showcase the capability of machine learning,
and deep RL in particular, for discovering effective solutions to
complex physical problems with inherent spatial and temporal
nonlinearities, in a completely data-driven and model-free man-
ner. Deep RL is especially useful in scenarios where decisions
must be taken adaptively in response to a dynamically evolving
environment, and the best control strategy may not be evident a
priori due to unpredictable time delay between actions and their
effect. This necessitates the use of recurrent networks capable
of encoding time dependencies, which can have a demonstra-
ble impact on the physical outcome, as shown in SI Appendix,
Fig. S4. In conclusion, we demonstrate that deep RL can pro-
duce efficient navigation algorithms for use in complex flow
fields, which in turn can be used to formulate control rules that
are effective in decidedly more complex settings and thus have
promising implications for energy savings in autonomous robotic
swarms.

Methods
We perform 2D and 3D simulations of multiple self-propelled
swimmers using wavelet adapted vortex methods to discretize
the velocity–vorticity form of the NS equations (in 2D) and
their velocity pressure form along with the pressure-projection
method (in 3D) using finite differences on a uniform computa-
tional grid. The swimmers adapt their motion using deep RL.
The learning process is greatly accelerated by using recurrent
neural networks with long short-term memory as a surrogate of
the value function for the smart swimmer. Details regarding the
simulation methods and the RL algorithm are provided in SI
Appendix.
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