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The transition between epithelial and mesenchymal states has
fundamental importance for embryonic development, stem cell
reprogramming, and cancer progression. Here, we construct a
topographic map underlying epithelial–mesenchymal transitions
using a combination of numerical simulations of a Boolean net-
work model and the analysis of bulk and single-cell gene expres-
sion data. The map reveals a multitude of metastable hybrid
phenotypic states, separating stable epithelial and mesenchymal
states, and is reminiscent of the free energy measured in glassy
materials and disordered solids. Our work not only elucidates the
nature of hybrid mesenchymal/epithelial states but also provides
a general strategy to construct a topographic representation of
phenotypic plasticity from gene expression data using statistical
physics methods.

epithelial–mesenchymal transition | epigenetic landscape |
Boolean networks

Epithelial (E) cells can transdifferentiate into mesenchymal
(M) cells and vice versa under a cohort of transcription

factors, including the Snail and Zeb families (1). The E to M
transition (EMT), associated with the loss of cell–cell adhesion
and the gain of invasive traits, is considered to be a hallmark of
plasticity within a stem cell population and is particularly rele-
vant for tumors. For this reason, a great effort has been devoted
in the past to identify the critical biological functions regulat-
ing the EMT and its reverse, the M to E transition (MET).
Almost 80% of human malignancies originate from E tissues,
and a transition toward an M phenotype is usually associated
with more aggressive potential (2–5). Emerging evidence shows
that the EMT is a multiple-step process where cells express a
mix of markers, both characteristic of E and M cells (6–8). These
recent results are blurring the rigid distinction between E and M
phenotypes, indicating that cancer cells can acquire hybrid E/M
phenotypes, combining invasive capabilities with intracellular
adhesion (9, 10), becoming extremely aggressive and associated
with poor patient outcome (11, 12).

According to an old and influential metaphor from Wadding-
ton (13), the cell phenotype is analogous to a marble rolling
over an epigenetic landscape, and phenotypic plasticity corre-
sponds to the marble crossing a hill separating different valleys.
This landscape should correspond to the attractors of the kinet-
ics of gene regulatory networks (14–21) and be encoded in gene
expression data (22, 23). Here, we combine numerical simula-
tions of a large Boolean model for the EMT–MET network with
the analysis of a wide set of bulk and single-cell gene expression
data to reconstruct the topography underlying E/M plasticity.
Genetic circuits regulating the EMT have been widely investi-
gated theoretically, with models ranging from simple switches
composed of a few genes (24) to large complex networks requir-
ing extensive numerical simulations, in both discrete (25, 26)
and continuous time (27). Some of these models have provided
insights into particular EMTs, generating hypotheses that have
later been experimentally tested (26). We show how these mod-
els can be used to rationalize and classify genetic drivers of the
EMT and clarify the nature of hybrid E/M states guided by the
Waddington picture (13).

Our results reveal that EMT/MET occurs across an extremely
complex landscape characterized by a startling number of valleys
and mountains organized according to a scale-free hierarchi-
cal statistical pattern. We observe a multitude of stable E/M

states separated by a series of progressively less stable and more
hybrid states that are increasingly prone to phenotypic changes
in response to external perturbations. Hence, EMTs and METs
can take place in widely different locations and across multiple
paths, in close analogy with nonequilibrium phase transitions in
disordered solids (28, 29).

Model
To reconstruct the topographic landscape of E/M plasticity, we
chose to build on the large Boolean network model previously
used to investigate EMT in hepatocellular carcinoma (25, 26).
Since the model as it stands is hardwired toward EMT and MET
is completely suppressed, we added to the model a missing con-
tribution from the LIF/KLF4 pathway, whose role for MET has
been widely reported (30, 31) ( see SI Appendix, Fig. S1, Dataset
S1, and SI Appendix for details). In this way, we obtained a
network of N =72 nodes, whose state is defined by a string
of binary variables {si}, determining if each gene/factor i is
expressed/present (si =1) or not (si =−1). Regulatory relations
between two nodes i and j were encoded into a (nonsymmet-
ric) matrix Jij taking the value Jij =1 if j promotes i and
Jij =−1 when j inhibits i (see Dataset S2). The network nodes
evolve asynchronously according to a simple majority rule, so
that the node is set to si =1 if the sum of its promoting inter-
actions is larger than the sum of its inhibitory ones (see Fig.
1A) (32). In case of ties, the node was not updated, keeping its
present state (15). This evolution rule is the binary version of
the half-functional rule recently proposed in ref. 27 to construct
continuum kinetic reaction models from pathways and can be
formally expressed as

si(t +1)= sign

(∑
j

Jij sj (t)

)
, [1]
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Cells can change their phenotype from epithelial to mesenchy-
mal during development and in cancer progression, where
this transition is often associated with metastasis and poor
disease prognosis. Here we show this process involves the
transit through a multitude of metastable hybrid phenotypes
in a way that is similar to the driven dynamics of disor-
dered materials. Our method shows that highly aggressive
hybrid epithelial/mesenchymal cell phenotypes are located
in metastable regions that can easily switch under external
and internal perturbations. We propose a general mapping
strategy that can be used for other pathways, providing a
useful tool to visualize the ever increasing number of gene
expression data obtained from single cells and tissues.
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Fig. 1. The topography of E/M states displays a hierarchical complex structure. (A) Illustration of the Boolean update rule. The state of a node si depends on
the state of its promoters (Jij =+1,→) and inhibitors (Jij =−1, ). (B) PCA projection of 106 steady states. Color corresponds to the ratio of steady states
that express E-cadherin. The panel shows intricate patterns of transition between areas of high/low Ecadherin expression probability, colored in green/violet
shades. (C) A 3D reconstruction of topography of EMT. The xy projection reproduces the data in B. The z axis corresponds to the value of H, showing that
high-H states (colored in darker blue shades) coincide with the central transition area in B. (D) Distribution of steady-state abundances, computed from 107

steady states of the EMT model (blue symbols). The relative abundance a of a steady state is the fraction of times it is found, starting from random initial
conditions. The black line of slope −2 is shown only as a guide to the eye. The Inset shows the number of distinct steady states Uss as a function of the total
number of steady states Nss found in the simulations. (E) Clustering of steady states, computed using 500 steady states of the model. The heat map shows
the correlation between steady states. Colors adjacent to the dendogram mark the expression of E-cadherin (green) or lack of expression (violet). States
expressing E-cadherin cluster together but display additional hierarchical organization. (F) Overlap distribution over the 20% of steady states with lowest
H. A two-peak distribution marks the presence of two symmetric sets as in disordered magnets. (G) The broad overlap distribution over all steady states
resembles the one observed in spin glasses.

which is the same equation used to simulate the zero-temper-
ature dynamics in random ferromagnets (28) and spin glasses
(29). (Modifications of the model that include local random
fields and their relation to network reconstruction errors are dis-
cussed in SI Appendix. See also SI Appendix, Fig. S8.) Guided
by the analogy with magnetic systems, we defined a pseudo-
Hamiltonian H =−

∑
i,j Jij sisj . When interactions are strictly

symmetric (Jij = Jji), the fixed points of Eq. 1 are local minima
of H . This is not guaranteed in our case since the interaction
matrix is not symmetric (33, 34). We can, however, still show that
H is lowered under repeated application of the evolution rule in
Eq. 1 (see SI Appendix for full derivations and SI Appendix, Fig.
S9). Hence, H provides a measure of the stability of a network
state, with low-H states being more stable than high-H states.

Results
Simulated E/M Topography Displays Fractal Features. A pheno-
typic landscape associated with our EMT/MET network can be
reconstructed by performing a large number (M0 =107) of simu-
lations, starting from random initial conditions until the network
reaches a steady state where si does not change. (No limit cycles
are found; see SI Appendix for details.) In this way, we find a
large number of distinct steady states that can be projected into a
two-dimensional map using principal component analysis (PCA).
We classify these steady states according to the expression of
E-cadherin (CDH1), which we use as a reporter of the E/M
phenotype (see Fig. 1B). The E/M map reconstructed from the
model shows a clear separation between E and M states, with a

boundary layer where E and M states coexist in very close prox-
imity. A topographic representation of the stability of the states
can be obtained by projecting H on the same two-dimensional
map (Fig. 1C) showing that the boundary layer is more elevated
with respect to pure E/M states, suggesting that those states are
less stable. Furthermore, the map displays a very rough topogra-
phy, with two main valleys separated by a large barrier populated
by smaller and smaller valleys.

Given the sheer amount of distinct steady states (see Fig. 1D,
Inset), we resorted to a statistical analysis and computed the
probability distribution P(a) of the relative abundances of the
states, where a is the fraction of times we find a given state.
Fig. 1D shows that P(a) is a power law distribution, indicating
that most of the states are very rarely found [when a is small,
P(a) is large], but few states are found multiple times [when a is
large, P(a) is small]. Alternative functional forms for P(a) are
discussed in SI Appendix and shown in SI Appendix, Fig. S10. The
presence of a power law is a signature of a scale-free fractal orga-
nization of the map, as is also apparent by the correlation matrix
of the states. Fig 1E shows the presence of large correlated clus-
ters subdivided into smaller and smaller clusters. In the physics
of disordered systems, a hierarchical organization of the states is
traditionally revealed by a broad distribution P(qαβ) of states’
overlap qαβ =

∑
i(s

α
i s

β
i )/N , measuring the similarity between

two states {sαi } and {sβi } (35). Hierarchical ground state struc-
tures have been observed in short-range Ising spin glasses (see
refs. 36 and 37). When we restrict the sampling to low-H states,
P(qαβ) displays a two-peak structure, indicating the presence of
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two classes of distinct and separate states (Fig. 1F), but when we
consider all steady states, the overlap distribution becomes very
broad, resembling the one observed in spin glasses, as noticed a
long time ago for random Boolean networks (38–40).

Simulated Phenotypic Transitions Reveal Scale-Free Stochastic Fluc-
tuations. Once the topography associated with the E/M land-
scape has been established, we investigate how the landscape
changes when each one of the nodes is held fixed to si =±1,
which simulates overexpression (OE) or knockdown (KD) of the
corresponding gene (see SI Appendix for details). As an exam-
ple, Fig. 2 A and B reports the one-dimensional projection of the
topography under OE or KD of the SNAIL1 gene, a well-known
inducer of the EMT. SNAIL1 OE leads to a rightward tilt of the
landscape, favoring the M phenotype, while under SNAIL1 KD,
the landscape tilts to the left, favoring the E state. This behavior
is reminiscent of the effect of a magnetic field in a disordered
magnet, where the free-energy landscape tilts in the direction of
the field. If the network is initially in an E state, SNAIL1 OE
can induce EMT, but the success rate and the trajectory cru-
cially depend on the initial state (see Fig. 2C), with high-H states
much more likely to undergo EMT than low-H states (see SI
Appendix, Fig. S2). The variability in the outcome resulting from
the OE/KD of a single gene can also be quantified by measuring
the distribution of the number of nodes z affected by the process
(see Fig. 2D). The distribution decays as power law P(z )∼ z−τ ,
up to a cutoff value that increases with the H value of the initial
state (see Fig. 2E), a further indication that high-H states are
more susceptible to fluctuations (see also SI Appendix, Fig. S2).
The avalanche exponent of the power law distribution is τ ' 3/2,
a value expected for mean-field avalanches in driven disordered
systems (28).

Using the model, it is possible to perform OE/KD on all of
the nodes and estimate the probability of each node to induce
EMT or MET (see Fig. 2F). Ranking the nodes as a function of

their relevance for EMT, we recover well-known EMT inducers
such as SNAIL1, ZEB1, or TGF-β and MET suppressors such
as KLF4 and mir-200. The general pattern is that an inducer of
EMT by OE also induces MET by KD and similarly for MET.
We also simulate a transient version of OE/KD where a node
is switched (si→−si), but it is then allowed to eventually relax
back to its previous state. The results summarized in SI Appendix,
Fig. S2 are similar to those obtained under stable OE/KD, for
which the node variable is held fixed throughout the simulation,
but the probability of EMT/MET is always smaller.

E/M Topography Inferred from Gene Expression Data Agrees with
Simulations. To confirm that the topographic representation of
the E/M landscape obtained through the model provides an accu-
rate representation of cellular phenotype, we examined the large
cohort of gene expression data from human tissues provided by
the GTEx project (41). To directly compare experimental data to
the model, we designed a simple binarization strategy to decide
whether a gene is expressed or not in a particular sample or
cell. To calibrate the binarization scale, we used skin cells and
fibroblasts as reference E and M states, respectively, and set a
threshold based on the expression distribution of each gene in
these two datasets (see Fig. 3A and SI Appendix). Genes whose
expression was above the threshold were assigned to si =1 and
otherwise to si =−1. The same threshold could then be used to
binarize all of the 11,688 transcriptomes from different tissues
present in the GTEx database.

Using the topographic map of the E/M landscape constructed
from simulations, we could then localize individual samples pro-
jecting their gene expression data on the map as shown in Fig.
3B. We then used the model to infer the stability of each pheno-
type by computing H associated to each state (Fig. 3C). When
we plotted skin cells and fibroblasts on a two-dimensional map,
we saw that they correctly fell into E or M regions, respectively
(see Fig. 3B), but not all samples had the same value of H (see

Fig. 2. EMT/MET occurs with different probabilities through multiple paths. The model shows many forms of EMT/MET, and these occur with different
probabilities. (A and B) One-dimensional PCA projection of the H landscape where (A) OE or (B) KD of SNAI1 tilts the landscape toward the M or E
regions, respectively. (C) Transition map under SNAI1 OE. The model displays different forms of SNAI1-induced EMT. (D) The distribution of gene expression
avalanches after individual KD/OE is a power law with exponent τ ' 1.5. (E) The cutoff of the distribution depends on H, quantified here by quartiles, with
high-H states producing larger avalanches. (F) EMT/MET probabilities under KD/OE conditions. The model lays out a nondeterministic picture of EMT/MET,
where well-known factors such as SNAI1 (EMT) or KLF4 (MET) induce phenotypic transitions with higher probability (see Materials and Methods and SI
Appendix, Fig. S2 for further details).
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Fig. 3. Multitissue gene expression data display statistical features in agreement with simulations. (A) Illustration of the binarization process (see Materials
and Methods for details). Gene-level expression data are casted into node-level binary data using binarization thresholds, computed using two reference
samples (orange and black coloring). (B) Skin (orange) and fibroblast (black) samples from the GTEx project projected in PCA space. The E-cadherin expression
probability in the model is shown with green (100%) to violet (0%) shades. Fibroblast samples tend to be in areas of very low E-cadherin expression
probability. (C) Same as B but coloring the model steady states by average H. (D) Distribution of abundances, computed using all GTEx binarized samples
and the 14 most relevant nodes (see SI Appendix and SI Appendix, Fig. S3 for details). (E) Clustering of 500 GTEx samples (all tissues), displaying a hierarchical
structure qualitatively similar to that of the model (compare with Fig. 1E). (F) Overlap distribution over skin and fibroblast samples from the GTEx project
(compare with Fig. 1F). (G) Overlap distribution over all GTEx samples (compare with Fig. 1G).

Fig. 3C). We used the same strategy to localize on the same
topographic map the entire set of tissues present in the GTEx
database (see SI Appendix, Figs. S4 and S5) and showed that
they cover all of the available phase space. Assuming that the
GTEx database contains an unbiased random sampling of all
of the available states—which is a reasonable assumption given
that the GTEx project provides multitissue gene expression data
from healthy individuals only (41)—we analyzed the statistical
properties of these states. As shown in Fig. 3D, the abundance
distribution derived from GTEx data decays as a power law with
an exponent that is very close to the one found numerically (com-
pare with Fig. 1D and see SI Appendix and SI Appendix, Fig.
S4 for technical details). Furthermore, clustering of the states
showed a correlation matrix with hierarchical features that are in
reasonable agreement with the prediction of the model (compare
Fig. 3E with Fig. 1E). Finally, the overlap distribution dis-
played a two-peak structure when the statistics were restricted to
fibroblasts and skin cells (Fig. 3F), while a single-peaked distri-
bution was found when using all of the GTEx samples (Fig. 3G).
This is in close agreement with the simulation results reported in
Fig. 1 and confirms that experimental gene expression data give
rise to a topographic landscape quantitatively similar to the one
predicted by the model.

Tracing Bulk and Single-Cell RNA-Sequencing Trajectories Reveals the
Nature of Hybrid E/M States. The topographic representation of
E/M states derived above can be used to visualize and inter-
pret RNA-sequencing (RNA-seq) data obtained while the cells
are undergoing phenotypic transformations. We first consider
the classical example of TGF-β–induced EMT in a human lung

adenocarcinoma cell line (42). Fig. 4A reports the trajectory of
the states obtained from the bulk RNA-seq data recorded at
different time points after TGF-β induction. As expected, the
trajectory starts from the E region and crosses over to the M
region of the map, as revealed by coloring the map according
to the predicted expression of CDH1. Conversely, the trajectory
obtained from RNA-seq data for DOX-induced MET during
somatic cell reprogramming starts from the M valley and moves
into the E valley of the landscape (30).

Our methodology is even more revealing when applied to
single-cell RNA-seq (scRNA-seq) data, as shown in Fig. 4C,
which reports the time course of the states obtained from
scRNA-seq data undergoing EMT during embryonic to endo-
derm differentiation (43) [see also SI Appendix, Fig. S6 illustrat-
ing MET during fibroblast to cardiomyocyte reprogramming in
single-cell and bulk samples (44)]. As time goes on, cells origi-
nally in the E region transition to the M region between 24 and
36 h. After this time, even though EMT is apparently completed,
the kinetic evolution of the cell population does not stop, and the
region occupied by single-cell states shrinks. If we color the map
by the predicted expression of other markers, we observe that
the evolution moves cells in a low-KLF4 region (Fig. 4C; see also
SI Appendix, Fig. S7 for similar maps for other markers). Hence,
when applied to scRNA-seq data, our method can reveal subtle
features associated with phenotypic transformations.

This last point is best illustrated by analyzing recent data (6,000
single cells) obtained from 18 head and neck squamous cell car-
cinoma patients (45). The original analysis revealed the presence
of an aggressive cancer cell population, associated with metasta-
sis and poor prognosis, described as partial-EMT (pEMT) (45).
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Fig. 4. Single cells and bulk transcriptomic data
yield trajectories through the E/M map with puta-
tive hybrid states lying on high-H regions. (A) Data
from TGF-β–treated lung adenocarcinoma cell lines
[GSE17708 (42)] yield a trajectory moving from the
E to the M region. (B) Data from Dox-induced
somatic cell reprogramming [GSE21757 (30)] dis-
play a reverse trajectory from M to E. Experi-
mental data are shown as colored symbols with
time course marked with arrows. The colored back-
ground depends on the ratio of steady states of the
model that express E-cadherin at a given location
in PCA coordinates, ranging from 100% (green) to
0% (violet). (C) Experimental data from single-cell
embryonic-to-endoderm differentiation [GSE75748
(43)] move across the map as cells undergo EMT. The
background color indicates the ratio of steady states
that express E-cadherin or KLF4 (see SI Appendix,
Fig. S7 for more markers). (D) Localization of single-
cell gene expression data from tumor cells obtained
from head and neck squamous cell carcinoma
patients (45). All tumor cells correctly lie in the
E region of the map, with high pEMT-scored cells
located toward high-H areas. (E) The pEMT score
correlates with H. Each gray dot represents a single
cell. R and p denote the Pearson correlation coef-
ficient and its associated P value (Student’s t test,
two-tailed). The red line shows the average H.

Classification of cells as pEMT was based on a pEMT score com-
puted from the expression values of a set of 100 genes (45),
none of which directly maps into nodes of our model. It is
thus particularly remarkable to see that the projection of the
scRNA-seq data on our map reveals that tumor cells are correctly
located in the E region of the map and cells with high pEMT
score are typically located on higher ground with respect to low
pEMT cells (see Fig. 4D). This is corroborated by the strong
correlation between H and the pEMT score, as reported in
Fig. 4E.

Discussion
Our work builds on the premise that cell phenotypic plasticity
should emerge from the activity of a complex gene regulatory
network. The general assumption is that network activity and the
ensuing phenotypes are primarily determined by the topology on
the network rather than the specific values of the rate constants
of individual reactions (27). This allows us to rely on relatively
simple Boolean networks, where individual nodes are only char-
acterized by the presence or absence of activity (14). Application
of this program to the EMT/MET networks unveils the topog-
raphy of the epigenetic landscape (13) associated with this kind
of phenotypic plasticity. The map reconstructed from the model
and confirmed analyzing RNA-seq data shows a rugged land-
scape with scale-free fractal-like features that are reminiscent of
disordered solids and glassy materials (35).

A direct consequence of the landscape we uncover is that
individual cells can be found in an extremely large variety of
E or M states with intermediate or mixed states hierarchically
organized between two sets of more stable and phenotypically

well-defined states. Intermediate E/M states are particularly
prone to external perturbations, which can lead to scale-free
distributed avalanches with the potential to trigger extensive phe-
notypic changes. This extreme phenotypic plasticity is associated
with highly aggressive behavior of tumor cells, as we show by
analyzing recent scRNA-seq data from head and neck carcinoma
patients. Our topographic representation provides a quantitative
representation of the cell phenotypic plastic potential, encoded
here in the value of the pseudo-Hamiltonian H , which correlates
extremely well with other independent measures of pEMT. Fur-
thermore, a topographic representation of the E/M phenotypes
allows for a graphical representation of EMTs and METs in a
variety of different contexts, from cancer to development and
stem cell differentiation. Our general methodological strategy
is not restricted to EMT but could be readily applied to other
gene regulatory networks relevant to understanding a variety of
physiological functions and pathological conditions. The method
appears to be a promising tool to build convenient and accessible
maps to orient ourselves to the exploding amount of single-cell
sequencing data.

Materials and Methods
Conversion of Gene-Level Expression Values to Node-Level Binary States. We
computed node-level expression values as follows: All nodes except Hypoxia
and miR200 were mapped to one or more genes (see Dataset S1). If expres-
sion data for more than one gene of a given node were available, we took
the average of these for noncomplexes and the minimum for complexes. We
then binarized the node-level expression data using thresholds computed
via a weighted average of the log2 expression of two reference samples
(see Datasets for details). We used a weighted average to avoid subsampling
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when the reference samples were of unequal size. The statistical significance
of the binarization procedure was assessed with the Fisher’s exact test. The
EMT–MET model takes into account the localization of β-catenin by consid-
ering two separate nodes: one for β-catenin located in the nucleus, and one
for β-catenin in the membrane. In gene-expression datasets, it is not possi-
ble to infer the localization of β-catenin looking only at the expression level
of CTNNB1. To circumvent this issue, we considered β-catenin to be in the
nucleus if its targets TCF/LEF were expressed, and in the membrane other-
wise. If CTNNB1 was not expressed, the state of both nodes was set to −1
independently of the value of TCF/LEF.

Datasets. Data in Fig. 3 came from the GTEx project (41) and were
downloaded from the GTEx portal (https://gtexportal.org/home/datasets)
on October 12, 2017. We used samples labeled as “Cells–Transformed
Fibroblasts” and “Skin–Not Sun Exposed (Suprapubic)” as reference samples
for binarization. The PCA basis presented in Fig. 3 B and C was computed
using all GTEx samples. All nodes were included in this analysis. The TGB-
β–induced EMT data presented in Fig. 4A were downloaded from the Gene
Expression Omnibus (accession no. GSE17708) (42) on September 25, 2017.
We used T = 0.5, 1 h and T = 24, 72 h as reference samples for binarization.
A total of 29 nodes with a binarization P value below 0.05 were included
in the analysis. We used 107 steady states from the model, restricted to
such nodes, to compute the PCA basis in Fig. 4A. Dox-induced MET data
in Fig. 4B were downloaded from the Gene Expression Omnibus (accession
no. GSE21757) (30), on October 2, 2017. We used T = 0 d and T = 21 d as

reference samples for binarization. With one single sample per time point,
binarization P values could not be computed as explained above. As an alter-
native, we restricted the analysis to 47 nodes with a fold-change greater
than or equal to 0.5. We used 107 steady states from the model, restricted
to such nodes, to compute the PCA basis in Fig. 4B. Single-cell data of
embryonic-to-endoderm differentiation presented in Fig. 4C were down-
loaded from the Gene Expression Omnibus (accession no. GSE75748) (43),
on September 25, 2017. We used T = 0 h and T = 96 h as reference samples.
Given the large number of samples, the PCA basis presented in Fig. 4C was
computed using the experimental data. All nodes were included in the anal-
ysis. Head and neck cancer single-cell data presented in Fig. 4 D and E were
obtained from the Gene Expression Omnibus (accession no. GSE103322). We
used E and fibroblast samples as reference samples for binarization. The PCA
basis was fitted to the single-cell data using all nodes. The pEMT score was
computed as the average expression of the 100 genes that constitute the
pEMT program in ref. 45. Fibroblast-to-cardiomyocyte differentiation data
in SI Appendix, Fig. S6 were downloaded from the Gene Expression Omnibus
[accession nos. GSE98570 (bulk data) and GSE98567 (single-cell data)] (44),
on November 22, 2017. We used samples labeled as “control” and “repro-
gramming cells” as reference samples for single-cell data binarization and
samples labeled as “D0” and “D14” for bulk data binarization. Single-cell
data were used to fit the PCA basis presented in SI Appendix, Fig. S7.
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