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CTLA-4 is an immune checkpoint expressed on active anticancer
T cells. When it combines with its ligand B7 on dendritic cells, it
inhibits the activity of the T cells. The Bromo- and Extra-Terminal
(BET) protein family includes proteins that regulate the expression
of key oncogenes and antiapoptotic proteins. BET inhibitor (BETi)
has been shown to reduce the expression of MYC by suppress-
ing its transcription factors and to down-regulate the hypoxic
transcriptome response to VEGF-A. This paper develops a mathe-
matical model of the treatment of cancer by combination therapy
of BETi and CTLA-4 inhibitor. The model shows that the two
drugs are positively correlated in the sense that the tumor vol-
ume decreases as the dose of each of the drugs is increased. The
model also considers the effect of the combined therapy on levels
of myeloid-derived suppressor cells (MDSCs) and the overexpres-
sion of TNF-α, which may predict gastrointestinal side effects of
the combination.
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Lysine (lys) acetylation is a widespread regulatory posttrans-
lational modification of proteins. In particular, it is involved

in regulating transcription and cell signaling (1). Bromodomains
(BRDs) are protein–protein interaction modules that selectively
recognize and bind to acetylated lys residues on histones and
transcription factors and thereby have important roles in the
regulation of gene expression. BRD-containing proteins are fre-
quently dysregulated in cancer. Many of these proteins are
oncogenes, and mutations in BRD proteins have been shown to
be present in malignant cells (2).

The Bromo- and Extra-Terminal (BET) family proteins
include proteins that share the feature of containing two BRDs
and an extraterminal domain. The BET family proteins perform
transcriptional regulatory functions under normal conditions,
but in cancer they regulate transcription of several oncogenes,
including c-Myc and Bcl-2 (3). For this reason, targeting BET
proteins may be a promising strategy for cancer therapy. Indeed,
there are currently several clinical trials with BET inhibitors
(BETis) (4, 5). The mechanism underlying the therapeutic pro-
cess of BETi was explained in ref. 6 and, with emphasis on breast
cancer, in ref. 7. Recent experiments show that BETi (e.g., JQ1)
may also have a beneficial effect in treating T-cell–mediated
inflammatory diseases (8, 9).

In the context of cancer, BETi (e.g., JQ1) has been shown to
(i) reduce the expression of MYC by suppressing its transcrip-
tion factors (3, 10), (ii) significantly down-regulate the hypoxic
transcriptome response to VEGF-A (7, 11), and (iii) reduce
production of cytokine TNF-α, which impairs macrophage
inflammatory response (12).

BETi acts as an anticancer agent by blocking VEGF produc-
tion and by down-regulating MYC expression (and hence cancer
cell proliferation). Although BETi down-regulates production of
TNF-α by M1 macrophages, the total effect of BETi is anti-
cancer. It suppresses tumor growth in breast cancer cell lines (13,
14), in acute myeloid leukemia (15), in myeloma (16, 17), in pan-

creatic ductal adenocarcinoma (18), and in nuclear protein of the
testis (NUT) midline carcinoma (19).

Immune checkpoints are regulatory pathways in the immune
system that inhibit its active response against specific targets.
Under normal physiological conditions, immune checkpoints
are crucial for maintenance of self-tolerance (e.g., prevention
of autoimmune diseases) and for protecting tissue from dam-
age following immune system response to pathogenic infection
(20). Engagement of the immune checkpoint on antitumor
T cells leads to dampening of anticancer immune response
and results in the “exhausted” T-cell phenotype. CTLA-4 is
an immune inhibitor surface protein expressed on activated
T cells; when it combines with its receptor B7 on dendritic
cells, the complex CTLA-4–B7 acts as a checkpoint on anti-
tumor T cells (21, 22). There has been much progress in
recent years in developing checkpoint inhibitors, primarily
anti–CTLA-4 (23, 24), anti–PD-1, and anti–PD-L1 neutralizing
antibodies (25).

It was recently shown that BETi inhibits expression of the
immune checkpoint ligand PD-L1 and that combining anti–PD-1
with BETi (JQ1) leads to higher antitumor responses compared
with each drug given alone (2). In this paper, we use a mathe-
matical model to address the efficacy of combination of BETi
(e.g., JQ1) and checkpoint inhibitor. We focus on anti–CTLA-
4 (e.g., ipilimumab), but the same method, with some changes,
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can be applied to anti–PD-1 and anti–PD-L1 (see SI Text).
The model includes several types of T cells, macrophages and
dendritic cells, endothelial cells and cancer cells, as well as signal-
ing molecules involved in the cross-talk among these cells. The
interactions among these cells and molecules are schematically
described in Fig. 1, as explained below.

Dendritic cell-derived IL-12 activates effector T cells (CD4+

Th1 and CD8+ lymphocytes cells) (26, 27). Th1 produces IL-2,
which further promotes proliferation of effector T cells. Effec-
tor T cells kill cancer cells, while cancer cells suppress the
functions of effector T cells by producing immunosuppressive
cytokines TGF-β and IL-10 (28). IL-10 inhibits the activation
of CD4+ Th1 and CD8+ T cells (28). TGF-β activates T reg-
ulatory (Treg) cells, which inhibit Th1 and CD8+ T cells (29,
30), thus promoting tumor growth. Treg cells produce TGF-
β (29). Cancer cells also produce monocyte chemotactic pro-
tein 1 (MCP-1), macrophage colony-stimulating factor 1 (M-
CSF), and vascular endothelial growth factor (VEGF). VEGF
recruits endothelial cells to promote angiogenesis by forming
new blood vessels in the tumor microenvironment that pro-
vide oxygen to the cancer cells (31, 32). MCP-1 and M-CSF
recruit macrophages into the tumor (30, 33–36). Myeloid-derived
suppressor cells (MDSCs) are also attracted into the tumor
microenvironment (33, 37). Macrophages are polarized into two
phenotypes, M1 and M2 (38). M1 macrophages change to the
M2 phenotype under the influence of TGF-β and M-CSF, while
M2 macrophages change to M1 phenotypes under the influ-
ence of IL-12 and TNF-α (32, 34). We consider here only
the monocytic subsets of MDSCs (excluding the granulocytic
MDSCs, which have different immunosuppressive function).
Since the phenotype of these MDSCs is similar to that of M2
macrophages, we shall combine both types of cells and view
them as M2 cells. M1 macrophages as well as Th1 cells pro-
duce TNF-α (12, 39, 40). M2 macrophages produce TGF-β,
IL-10, nitric oxide (NO) and arginase 1, and VEGF (37, 41). NO
and arginase 1 suppress the function of Th1 and CD8+ T cells
(37, 41).

One of the checkpoints on T cells is the membrane protein
CTLA-4. Its receptor B7 is expressed on activated dendritic cells
(42). The complex CTLA-4–B7 inhibits the function of effector
T cells (43). CTLA-4 is also constitutionally expressed on Treg
cells, but it plays a different role than in Th1 cells and CD8+ T
cells (44, 45). CTLA-4 on Treg cells promotes cancer by form-
ing a complex with B7 on dendritic cells, thereby decreasing the
source of B7 available for modulation of Th1 cells and CD8+

T cells.
The mathematical model developed in the present paper is

based on Fig. 1. We simulate the model in the control case (no
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Fig. 1. Interaction of immune cells with cancer cells. Sharp arrows indi-
cate proliferation/activation, blocked arrows indicate killing/blocking, and
inverted sharp arrows indicate recruitment/chemoattraction. C, cancer cells;
D, dentritic cells; Endo, endothelial cells; M1, M1 macrophages; M2, M2
macrophages and MDSCs; NO, Nitric Oxide; Ox, oxygen from the blood; T1,
CD4+ Th1 cells; T8, CD8+ T cells; Treg, T regulatory cells. T1 and T8 T cells
express CTLA-4; dendritic cells express B7.

drugs) and in treatment with anti–CTLA-4 and BETi. It is shown
that the two drugs are positively correlated in the sense that
tumor volume decreases as each of the drugs is increased. We
use the model also to determine one negative side effect of the
combined therapy—namely, gastrointestinal disorder—which we
represent by the increase in the level of TNF-α. It is shown that
CTLA-4 inhibition increases the level of TNF-α at a larger rate
than BETi.

Mathematical models on cancer vaccine combined with
another agent were introduced in refs. 46–48 and, more recently,
with checkpoint inhibitor in ref. 49. These papers considered,
as a second drug in the combination, chemotherapy (47), anti–
TGF-β (48), anti–PD-1 (49), or a nonspecific immunotherapy
(46). Refs. 46–48 used ordinary differential equation models,
while ref. 49 used a partial differential equation model. In the
present paper, we consider the efficacy of combination therapy
with BETi and anti–CTLA-4 by a partial differential equation
model, focusing on the cross-talk among these anticancer agents,
cancer cells and the immune cells, and signaling molecules in the
tumor microenvironment.

Mathematical Model
The mathematical model is based on the network shown in Fig.
1 and includes also BET and CTLA-4 inhibitors. Since the only
function of NO and arginase in the mathematical model is in the
suppression of Th1 and CD8+ T cells, for simplicity we shall use
NO to represent both NO and arginase.

We assume that the total density of cells within the tumor
remains constant in space and time:

D +T1 +T8 +Tr +M1 +M2 +E +C = constant. [1]

Equation for DCs (D). The dynamics of DCs is given by

∂D

∂t
+∇· (uD)︸ ︷︷ ︸

velocity

− δD∇2D︸ ︷︷ ︸
diffusion

=λDCD0
C

KC +C︸ ︷︷ ︸
activation by HMGB-1

− dDD︸ ︷︷ ︸
death

,
[2]

where the first term on the right-hand side (RHS) of the equation
represents indirect activation by necrotic cancer cells (C ), and δD
is the diffusion coefficient (see SI Text for more details).

Equations for Th1 Cells (T1) and CD8+ T Cells (T8). Naive CD4+

T cells differentiate into active Th1 cells (T1) under the IL-
12 (I12) environment (26, 27), while IL-10 (I10) and Treg cells
(Tr ) inhibit the differentiation of naive CD4+ T cells into
Th1 cells (28, 29). The proliferation of activated Th1 cells is
enhanced by IL-2 (I2). Both processes of activation and prolif-
eration of Th1 cells are assumed to be inhibited by the com-
plex CTLA-4–B7 (Q) by a factor 1

1+Q/KTQ
and enhanced by

BETi (B) since BET inhibition promotes Th1 cell activation by
suppressing PD-L1 (2, 50). Hence, Th1 satisfies the following
equation:

∂T1

∂t
+∇· (uT1)− δT∇2T1

=

(
λT1I12T10

I12
KI12 + I12︸ ︷︷ ︸

activation by IL-12

1

1 + I10/KTI10︸ ︷︷ ︸
inhibition by IL-10

1

1 +Tr/KTTr︸ ︷︷ ︸
inhibition by Tregs

+ λT1I2T1
I2

KI2 + I2

)
︸ ︷︷ ︸
IL-2-induced proliferation

× 1 + εTBB

1 +Q/KTQ︸ ︷︷ ︸
inhibition by CTLA-4-B7

− dT1T1︸ ︷︷ ︸
death

,

[3]

where T10 is the density of the naive CD4+ T cells. Similarly,
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∂T8

∂t
+∇· (uT8)− δT∇2T8

=

(
λT8I12T80

I12
KI12 + I12︸ ︷︷ ︸

activation by IL-12

1

1 + I10/KTI10︸ ︷︷ ︸
inhibition by IL-10

1

1 +Tr/KTTr︸ ︷︷ ︸
inhibition by Tregs

+ λT8I2T8
I2

KI2 + I2

)
︸ ︷︷ ︸
IL-2-induced proliferation

× 1 + εTBB

1 +Q/KTQ︸ ︷︷ ︸
inhibition by CTLA-4-B7

− dT8T8︸ ︷︷ ︸
death

,

[4]

where T80 is the density of the inactive CD8+ T cells.

Equation for Activated Treg Cells (Tr ). The production of Tr is
induced by TGF-β (Tβ) (29, 30). BETi attenuates Treg cells’
suppressive function (51). Hence,

∂Tr

∂t
+∇· (uTr )− δT∇2Tr

= λTrTβT10
Tβ

KTβ +Tβ︸ ︷︷ ︸
TGF-β induced proliferation

× 1

1 +B/KTrB
− dTrTr︸ ︷︷ ︸

death

. [5]

Equations for M1 Macrophages (M1) and M2 Macrophages (M2). The
equation for M1 macrophages takes the following form:

∂M1

∂t
+∇· (uM1)− δM∇2M1

= λM1(M10−M1)+ · MP

KMP +MP
−∇ · (χMM1∇MP )︸ ︷︷ ︸

chemoattracted by MCP-1

+βM2M2

(
I12

KI12 + I12
+

Tα
KTα +Tα

)
︸ ︷︷ ︸

M2→M1 by IL-12 and TNF-α

−βM1M1

(
Tβ

KTβ +Tβ
+

MC

KMC +MC

)
︸ ︷︷ ︸

M1→M2 by TGF-β and M-CSF

− dM1M1︸ ︷︷ ︸
death

, [6]

where we used the notation X+ =X if X > 0, and X+ = 0 if X ≤
0; the first term on the RHS represents a source of macrophages
differentiated from monocytes that are activated by MPC-1 (MP )
(34); the third and fourth terms on the RHS represent phenotype
changes from M1 to M2 under the influence of TGF-β and M-
CSF (MC ), and M2 to M1 under the influence of IL-12 and TNF-
α (Tα) (32, 34). Similarly,

∂M2

∂t
+∇· (uM2)− δM∇2M2

=λM2(M20−M2)+ · MP

KMP +MP
−∇ · (χMM2∇MP )︸ ︷︷ ︸

chemoattracted by MCP-1

+βM1M1

(
Tβ

KTβ +Tβ
+

MC

KMC +MC

)
︸ ︷︷ ︸

M1→M2 by TGF-β and M-CSF

−βM2M2

(
I12

KI12 + I12
+

Tα
KTα +Tα

)
︸ ︷︷ ︸

M2→M1 by IL-12 and TNF-α

− dM2M2︸ ︷︷ ︸
death

. [7]

Equation for Endothelial Cells (E). Endothelial cells are chemoat-
tracted by VEGF, and their proliferation is increased by VEGF
(31, 32). Hence,

∂E

∂t
+∇· (uE)− δE∇2E

=λEE

(
1− E

EM

)
(G −G0)+︸ ︷︷ ︸

proliferation

−∇ · (χGE∇G)︸ ︷︷ ︸
recruited by VEGF

− dEE︸︷︷︸
death

, [8]

where G0 is a threshold below which the proliferation of E does
not occur (52).

Equation for Tumor Cells (C). We assume a logistic growth for can-
cer cells with carrying capacity (CM ) to account for competition
for space among these cells. The proliferation rate depends on
the density of oxygen (W ) (32). BETi suppresses MYC (10),
which reduces proliferation of tumor cells. Cancer cells are killed
by Th1 and CD8+ T cells, and the killing rate is resisted by NO
(and arginase 1) (37, 41). The equation for C takes the form:

∂C

∂t
+∇· (uC )− δC∇2C

=λC (W )C

(
1− C

CM

)
︸ ︷︷ ︸

proliferation

· 1

1 +B/KCB︸ ︷︷ ︸
inhibition by BETi

− (η1T1C + η8T8C )︸ ︷︷ ︸
killing by T cells

· 1

1 +N /KTN︸ ︷︷ ︸
inhibition by NO

− dCC︸ ︷︷ ︸
death

,

[9]

where λC (W ) = W
KW +W

and η1 and η8 are the killing rates of
cancer cells by Th1 and CD8+ T cells, dC is the natural death
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Fig. 2. Average densities/concentrations of all of the variables in the model in the control case (no drugs). All parameter values are the same as in
Tables S2–S4.
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rate of cancer cells, and 1
1+B/KCB

and 1
1+N/KTN

represent the
resistance by BETi and NO, respectively.

The equations for all cytokines are given in SI Text.

Equation for Anti–CTLA-4 (A). Anti–CTLA-4 (A) is injected
intraperitoneally twice weekly for 20 d in mouse experiments (see
SI Text). For simplicity, we assume that the level of the drug is
constant, so that it provides a constant source of anti–CTLA-4,
and we denote by γA the effective level of the source. The drug is
degraded at a rate dA and is depleted in the process of blocking
CTLA-4 (CL). Hence,

∂A

∂t
− δA∇2A= γA− µLALA︸ ︷︷ ︸

depletion via blocking CTLA-4

− dAA︸︷︷︸
degradation

. [10]

Equation for BETi (B). BETi is administered by oral gavage once
daily for 20 d as in mouse experiments (see SI Text), provid-
ing a constant source of BETi. We denote by γB the effective
level of the source, BETi, absorbed by the cancer cells and
M1 macrophages (12). We represent these absorption rates by
µBCC B

KB+B
and µBM1M1

B
KB+B

and hence obtain the following
equation for B :

∂B

∂t
− δB∇2B = γB − (µBCC +µBM1M1)

B

KB +B︸ ︷︷ ︸
absorption by cancer cells and M1

− dBB︸︷︷︸
degradation

.

[11]

To simplify the computations, we assume that the tumor is spher-
ical and denote its radius by r =R(t). We also assume that
all of the densities and concentrations are radially symmetric—
that is, functions of (r , t), where 0≤ r ≤R(t). In particular,
u = u(r , t)er , where er is the unit radial vector.

Equation for Free Boundary. We assume that the free boundary
r =R(t) moves with the velocity of cells, so that

dR(t)

dt
= u(R(t), t), [12]

where u is determined indirectly by Eq. 1 (see SI Text).

Results
The simulations of the model were performed by Matlab based
on the moving mesh method for solving partial differential
equations with free boundary (53). The computational method,
parameter estimation, and sensitivity analysis are given in SI Text.

Fig. 2 is a simulation of the model with no drugs (the control
case) for the first 30 d; the average densities and concentrations
of all species are their total mass in the tumor divided by the
tumor volume. The simulations show consistency in the choice
of the model parameters. Indeed, as can be quickly checked,
the steady states of all of the cytokines and cells are approxi-
mately equal to the values that were assumed in estimating the
parameters of the model in SI Text.

Fig. 3A shows the tumor volume growth in mice experiments,
where BETi is administered by oral gavage at 20 mg/kg once
daily and CTLA-4 antibody is injected at 100 µg twice weekly; the
details of the experiment are given in SI Text. The mouse exper-
iment was approved by the Institutional Review Board of Ohio
State University. In the mathematical model, the administration
of BETi (γB ) and anti–CTLA-4 (γA) should be proportional
to the amount of drugs in the mice experiments; however, the
proportionality coefficients are not known. We determined the
order of magnitude of γB and γA so that the growth or decrease
of the tumor volume in the simulations will be in qualitative
agreement with the mice experiments. Fig. 3B, with γB = 0.15×

A
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Fig. 3. The growth of tumor volume during the administration of anti–
CTLA-4 antibody and BETi. (A) Mouse experiment results (see SI Text for
details). (B) Numerical simulation result. Anti–CTLA-4 is administered at
the rate γA = 1.5× 10−9 g/cm3 d−1, and BETi is administered at the rate
γB = 0.15× 10−9 g/cm3 d−1. All other parameter values are the same as in
Tables S2–S4.

10−9 g/cm3 d−1 and γA = 1.5× 10−9 g/cm3 d−1, shows that
BETi and anti–CTLA-4 as single agents reduce tumor volume,
and in combination, the reduction increases to more than 75%
at day 30, in agreement with our experimental results in Fig. 3A.

We next consider the efficacy of the combination therapy for a
range of values of BETi and anti–CTLA-4. We define the efficacy
of a combination therapy, with (γB , γA), by the formula

E(γB , γA) =
V30(0, 0)−V30(γB , γA)

V30(0, 0)
,

where the tumor volume V30 =V30(γB , γA) is computed at day
30; V30(0, 0) is the tumor volume at day 30 in the control case.
The efficacy values lie between 0 and 1 (or between 0% and
100%). Fig. 4 is the efficacy map of the combined therapy, with
γB in the range of 0− 0.2× 10−9 g/cm3 d−1 and γA in the
range of 0− 1.8× 10−9 g/cm3 d−1. The color column shows the
efficacy for any pair of (γB , γA); the maximum efficacy is 0.98
(98%). We see that the two drugs are positively correlated in
the sense that tumor volume decreases as each of the drugs is
increased.

From Fig. 4 we can draw, for any given level E of efficacy, a
curve ΓE in the (γB , γA) plane consisting of the pairs (γB , γA),
which yield the same efficacy level E . We consider the following
question: Which is the best choice of (γB , γA), on the curve ΓE ,
given a specific additional aim of the treatment. One such aim
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could be the reduction in the inflammation associated with TNF-
α. Proceeding with this example, we denote by Tα30(γB , γA) the
average concentration of TNF-α at day 30 under combined ther-
apy with anti–CTLA-4 (γA) and BETi (γB ) and introduce the
function

AE(γB , γA) =
Tα30(γB , γA)−Tα30(0, 0)

Tα30(0, 0)
.

AE(γB , γA) measures the relative overexpression of the TNF-
α at day 30: the color column in Fig. 5 shows the relative
overexpression of TNF-α for any pair (γB , γA). We see that
AE(γB , γA) is a decreasing function of γB . Hence, given the
aim of minimizing TNF-α, the best choice of (γB , γA) for a given
efficacy E is the pair (γB , γA) with the smallest γB .

Few potential negative side effects of BETi have been iden-
tified: memory lost in mice (54), and suppression of chondro-
cyte differentiation and restrained bone growth (55). However,
because of the multitude of the BRD proteins, many more
adverse effects may turn out in clinical trials (5, 56).

Checkpoint inhibitors cause a whole range of autoimmune
effects, including pneumonitis, rashes, vitiligo, hepatitis, and
adrenal insufficiency (57). They also cause gastrointestinal disor-
der. For instance, among patients receiving anti–CTLA-4, 30%
of patients develop diarrhea (54, 57), and 10% develop severe
diarrhea due to autoimmune colitis. High level of TNF-α is asso-
ciated with colitis, and anti–TNF-α blockade is a strategy used to
suppress the disease (58). We may view a high level of TNF-α as
representing the adverse gastrointestinal reaction to treatment
with checkpoint inhibitors.

Conclusion
Under normal healthy conditions, the BET family proteins per-
form transcriptional regulatory functions, but in cancer they
regulate transcription of several oncogenes, including c-Myc (3).
BETi has been shown to reduce the expression of MYC by
suppressing its transcription factors (3, 10). BETi acts as an
anticancer agent also by down-regulating the hypoxic transcrip-
tome response of VEGF-A (7, 11) and by suppressing PD-L1
expression (2, 50). BET also participates in transcription of NF-
κB target genes, which often encode inhibitory cytokines, and
BETi could decrease expression of these genes as well (59, 60).
For these reasons, it was suggested that targeting BET proteins
may be a promising strategy for cancer therapy. Indeed, several
BETis are currently in clinical development for several cancer
types (61). We have recently shown in preclinical in vivo exper-
iments using immunocompetent tumor-bearing mouse models

Fig. 4. Drug efficacy map. The color column shows the efficacy E(γB, γA)
when γB varies 0− 0.32× 10−9 g/cm3 d−1 and γA varies 0− 1.2×
10−9 g/cm3 d−1. All other parameter values are the same as in Tables S2–S4.

Fig. 5. Average density of TNF-α. The color column shows the adverse
effect function AE(γB, γA) when γB varies 0− 0.32× 10−9 g/cm3 d−1 and
γA varies 0− 1.2× 10−9 g/cm3 d−1. All other parameter values are the
same as in Tables S2–S4.

that combining anti–CTLA-4 with BETi increases the anticancer
responses greater than either drug alone (see Fig. 3A). We have
also shown theoretically that BETi as a single agent decreased
the ratio of MDSC to CD45+ cells and experimentally that anti–
CTLA-4 as a single agent also decreased the ratio of MDSC to
CD45+ (see Figs. S1 and S2). The last result is in agreement with
mice experiments (62) that show that anti-CTLA decreased the
ratio of MDSC to CD8+ T cells.

In the present paper, we developed a mathematical model to
compute the efficacy of combination of BETi (e.g., JQ1) and
anti–CTLA-4 (e.g., ipilimumab). The model is represented by
a system of partial differential equations within the tumor tis-
sue. The model includes immune cells [Th1 and CD8+ T cells,
Treg cells, M1 and M2 macrophages (or monocytic MDSCs),
and dendritic cells] and endothelial cells, cytokines (IL-12, IL-
2, IL-10, TGF-β, and TNF-α), NO, oxygen, VEGF, M-CSF,
MCP-1, CTLA-4, B7, and the complex CTLA-4–B7. We simu-
lated the model with a combination of drugs, BETi at the “level”
γB and anti–CTLA-4 antibody at the level γA, and computed
the tumor volume V30(γB , γA) at day 30. We showed that the
model simulations are in agreement with our mice experiments,
both in terms of the tumor volume (see Fig. 3) and the ratio of
MDSC to CD45+ cells (see SI Text). We introduced the efficacy
function, E(γB , γA), an expression that quantifies the relative
reduction in tumor volume compared with the control case
(no drugs).

The efficacy map in Fig. 4 shows that for any levels of γB and
γA, the two drugs are positively correlated in the sense that the
tumor volume decreases as each of the drugs is increased.

Given any efficacy value E , one can mark a curve ΓE in the
(γB , γA) plane of Fig. 5 such that each pair (γB , γA) on ΓE yields
the same efficacy E . We can therefore try to choose a specific
pair on ΓE that satisfies an additional aim of the treatment. If one
could quantify all of the negative side effects collectively by a sin-
gle function f = f (γB , γA), then the aim of achieving efficacy E
with the least negative side effects would be to choose (γB , γA),
on the equi-efficacy curve ΓE , for which f (γB , γA) attains its min-
imum. The construction of such a function is beyond the scope of
present paper, but this concept was illustrated by considering the
function AE(γB , γA) as representing one of the adverse effects
that one could aim to minimize. The adverse effect map in Fig.
5 shows that the pair (γB , γA) on ΓE with the smallest γB is the
optimal choice.

In this paper, we did not consider the imperfect speci-
ficity/selectivity of small-molecule inhibitors and how this may
affect signaling of and the interaction between the two therapies
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in the combination. These issues may limit the validity of the
results. Furthermore, since the model verification is based on
experiments in the murine tumor model, its application to human
cancer therapy will need further explanation, both preclinically
and clinically.
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