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Physics of lumen growth
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We model the dynamics of formation of intercellular secretory
lumens. Using conservation laws, we quantitatively study the
balance between paracellular leaks and the build-up of osmotic
pressure in the lumen. Our model predicts a critical pumping
threshold to expand stable lumens. Consistently with experimen-
tal observations in bile canaliculi, the model also describes a
transition between a monotonous and oscillatory regime during
luminogenesis as a function of ion and water transport parame-
ters. We finally discuss the possible importance of regulation of
paracellular leaks in intercellular tubulogenesis.

lumenogenesis | osmotic pressure | morphogenesis

Epithelial lumens are ubiquitous in organs. They originate
from cavities or tubes surrounded by one (seamless lumen)

or multiple cells (1). Ions and other bioactive molecules are
secreted into the cavities and, if the lumen is open, flow with
the physiological medium. The creation of the lumens origi-
nates from several classes of morphogenetic events (1). In the
case of closed lumens (such as acini, blastocytes, and canali-
culi), ion secretion into the forming cavity creates an osmotic
pressure. This results in the passive transport of water into
the lumen (most often mediated by aquaporins), which con-
stitutes a major driving component for lumen expansion. This
osmotic pressure hypothesis was experimentally proposed in the
1960s (2–4). The expansion is mechanically restrained by peri-
luminal tension. In the case of multicellular lumens [e.g., cysts
(5–7)], tension results from the contraction of the cells sur-
rounding the lumen. In the case of the intercellular domain,
the tension arises from the cortical actin layer surrounding the
cavity (8).

Fig. 1A illustrates a lumen separating adjacent membranes
between two primary rat hepatocytes (liver cells). The con-
tact area between both cells presents an intercellular cleft of
around 30 to 50 nm (9) that accommodates transcellular pro-
teins, adhesion proteins, and peptidoglycans. The development
of the lumen occurs within 5 to 6 h. In vivo, closed lumens even-
tually merge into a network of tubules called canaliculi (2 µm
diameter and 500 µm long). We recently showed that the shape
of these lumens is controlled by the balance of osmotic pressure
and anisotropic cortical tension (10). Hepatocyte doublets can
be used as meaningful simplified surrogates to study lumen for-
mation (8, 11, 12). In this instance, functional canaliculi grow
as spherical caps spanning part of the intercellular space. The
simple geometry of the system constitutes an appealing case for
quantitative studies.

However, this process is rather generic for many kinds of
lumen such as Ciona Notochord lumen (1, 13, 14) or kidney
lumens (15). Fig. 1 B and C also shows that the steady shape
of the lumen depends on the secretory activity, which is boosted
by the addition of Ursodeoxycholic acid (UDCA). The growth of
the lumen can either be monotonous (Fig. 1C) or pulsatile (Fig.
1D) depending on the periluminal tension and secretory activity.
A steady secretion in a closed lumen implies the concomitant
existence of leakage. Its nature is likely paracellular (through
the nanometer cleft between cells). In the case of multicellular
lumen, a few models and experimental studies have considered

the role of leaks [originating either from the rupture of cell–cell
contacts (7) or permeation across the endothelial layer (16)] dur-
ing the growth of the lumen. For intercellular lumens, however,
the morphogenetic consequences of the leak modulation by the
paracellular cleft property have hardly been investigated, either
experimentally or theoretically.

Here, we provide a theoretical quantitative study on the
balance between secretory activity, leak, and mechanics that
determines canaliculi nucleation and growth. Our minimalis-
tic description of lumen expansion identifies the physiologically
relevant range of parameters required to establish a stable
intracellular cavity and dictate its dynamical properties.

Modeling Assumption
We consider the lumen as two symmetrical contractile spher-
ical caps (Fig. 2) with a radius of curvature R and a contact
angle θ at the lumen edge. The lumen elongates parallel to the
cell–cell contact over a distance rl and its apex height is h .
The remaining paracellular adhesive cleft has a thickness e. As
the lumen develops, the dimensions of the spherical caps vary,
but the cell contact remains fixed with a total size L. We estab-
lished the expressions of the conservation laws in the lumen and
in the cleft accounting for this geometry. All results are in the
scaled units of the model (see SI Appendix, Table S1) as well as
in “international units” based on the estimations derived in SI
Appendix, SI(2). We study the lumen growth dynamics resulting
from the balance between (i) the active and passive ion trans-
port across membranes both in the lumen and in the cleft, (ii)
the passive transport of water along transmembrane osmotic and
hydrostatic gradients, (iii) the paracellular leakage originating
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Fig. 1. Lumen morphology and dynamics. (A) Structured illumination
image of a typical bile canaliculi creating a lumen between two hepato-
cytes. (Scale bar, 2 µm.) (B) Increase of a projected area of canaliculi at
steady state upon continuous bile secretion stimulation by a different dose
of UDCA (n = 20 for each dose). Student test: ∗∗∗P < 0.0001; ns, nonsignifi-
cant. (C) Linear growth of the canaliculi (dotted line, individual cell; bold
line, average) under reduced contractility condition (1 µM blebbistatin).
(D) Sustained oscillatory dynamics under native contractility conditions. Bile
canaliculi in the projected area are normalized by their size at t = 0.

from osmotic gradients and hydrostatic gradients along the cleft,
and (iv) the mechanical balance controlled by actomyosin con-
tractility. For the sake of simplicity, we considered only one type
of anion/cation pair with identical transport properties. These
simplified assumptions lead us to consider only ion, water, and
momentum conservations (i.e., force balance).

Mechanical Balance. In the lumen the hydrostatic pressure δP is
uniform at the time scales considered here. Laplace’s law must be
satisfied everywhere across the lumen surface. The force balance
in the lumen then reads:

δP =
2σ

R
, [1]

where σ is the cortical tension resulting from the sum of the
plasma membrane tension and the active tension of the actin
cortex. In general, the effective tension could be inhomogeneous
and anisotropic (17). For example, in the late stages of Ciona
Notochord lumen growth or during the tubulation of canaliculi,
the departure from a hemispherical shape results in inhomo-
geneous curvature radii, which is indicative of heterogeneous
tension distributions (1, 13, 14). However, here we only consider
a homogeneous cortical tension, consistent with the assumption
that the lumen shape is a spherical cap.

In the cleft, Laplace’s law must be modified to account for
membrane adhesion [mediated by Cadherin, for example (18)]:

δP = k(e − e0)−σc∇2e, [2]

where e0 is the cleft thickness in the absence of a difference in
hydrostatic pressure. This is mainly controlled by the cadherin
surface density as well as the repulsive interaction between the
membranes. The parameter k is an effective elastic modulus that
accounts for any deviation of the cleft from e0, accounting for
tension in the cadherins and deformation of the membranes. In

SI Appendix, SI(2), we estimate that a few tens of a nanome-
ter away from the interfacial region, between the lumen and
the cleft, Eq. 2 results in a homogeneous cleft thickness that
hardly deviates from e0. In the rest of the paper, Eq. 2 will be
replaced by a homogeneous cleft thickness e . In the first-order
approximation, δP = k(e − e0).

The force balance at the intersection of the lumen with the
cleft is the generalized Young–Dupré equation:

σ cos θ=σ−E = σ̃, [3]

where θ is the contact angle (see Fig. 2), E is the adhesion energy
per unit area, and σ̃ corresponds to the “apparent tension” cor-
rected for the adhesion energy. The force balance is thus given
by the set of Eqs. 1 and 3.

Ion Conservation. In the lumen, ion transport occurs by trans-
membrane fluxes as well as by leakage at the lumen edges.

The number of ions flowing through the membrane per unit of
time and unit of area has two distinct origins. First, an “active”
flux per unit area Ji is generated by pumps and transporters.
We assume that the flux has a constant value due to a constant
surface density of the relevant pumps.

Ions are also passively transported across transmembrane
channels. In this case, the flux is proportional to the chemical
potential difference. It reads ΛikBT ln ρcell

ρ
, where ρcell , ρ are

the ion density in the cell cytoplasm and in the lumen, respec-
tively. The transport coefficient Λi is set by the surface density of
the relevant channels. By convention, all fluxes are positive when
ions are secreted into the lumen.
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Fig. 2. Schematic for lumen at the interface of two adjacent cells. (A) Def-
inition of the geometrical parameters of the problem. (B) Definition of the
active and passive fluxes of ion and water fluxes across and along the para-
cellular cleft. (C) Definition of the mechanical parameters of the problem.
Close-up on the intercellular cleft region containing adhesive molecules,
peptidoglycans, and other transmembrane proteins. (D) Definitions of the
transport parameters.
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The conservation of the total number of ions, N, in the lumen
then reads

dN

dt
=

surface term︷ ︸︸ ︷[
4πR2(1− cos θ)

]
(ΛikBT ln

ρcell
ρ

+ Ji)−

edge term︷ ︸︸ ︷
[2πrl ]j

l→c
i .

[4]
The edge term j l→c

i corresponds to the ion flux from the
lumen into the cleft. It is determined self-consistently by con-
tinuity conditions with the expression of the ion flux inside
the cleft.

In the cleft, the ion density equilibrates within less than a few
microseconds across the cleft thickness e (on the order of a few
tens of nanometers). Hence, only the ion flux component along
the cleft should be considered. The difference in ion concentra-
tion in the lumen, compared with the external medium, generates
a diffusive flux −eD∇ρ along the ion concentration gradient. D
is the diffusion coefficient of ions. We neglect all convective con-
tributions to the flux based on the small dimensions of the cleft.
Under these assumptions and after integration over the constant
thickness e , the local- and time-dependent conservation of ions
inside the cleft reads

negligible︷ ︸︸ ︷
∂(ρe)

∂t
−D∆(eρ) = 2(λikBT ln

ρcell
ρ

+ ji), [5]

where λi is the passive transport coefficient for ions through the
membrane into the cleft. ji is the active pumping of ions. The
factor of 2 in the source term accounts for the presence of mem-
branes from both cells. In SI Appendix, SI(2), we show that that
the term ∂(ρe)

∂t
is negligible on the time scale of lumen growth

and will further be neglected. j l→c
i in Eq. 4 is the solution of Eq.

5 at r = rl .

Volume Conservation. In view of the absence of an active biolog-
ical transport of water, the change in volume results solely from
passive fluxes. Due to water incompressibility, the rate of vol-
ume change is proportional to the flux of water. The passive
contribution from transmembrane water permeation is propor-
tional to the water chemical potential difference and reads
−ΛV (δP − δπ). δP (respectively, δπ) is the difference in hydro-
static (respectively, osmotic) pressure between the lumen and
the cytosol. The surface density of aquaporins determines the
transport coefficient ΛV . The osmotic pressure difference is
related to the ion density difference by δπ= 2kBT (ρ− ρcell). The
factor 2 in this expression reflects the equivalent treatment of
anions and cations. The conservation of volume in the lumen
then reads

dV

dt
=

surface term︷ ︸︸ ︷
−ΛV

[
4πR2(1− cos θ)

]
(δP − δπ)−

edge term︷ ︸︸ ︷
[2πl ]j l−>c

V . [6]

The volume leak j l−>c
V from the lumen into the cleft is deter-

mined by continuity of the expression of the volume flux in the
cleft at the lumen/cleft interface.

In the cleft, the rapid equilibration of the hydrostatic pressure
across the cleft justifies the lubrication approximation to estimate
the hydrodynamic contribution of volume change by −κV∇P .
Note that due to protein crowding at the paracellular cleft, κV is
necessarily smaller than the Poiseuille limit e3

12η
, where η is the

viscosity of the intercellular fluid. The local volume conservation
in the cleft then reads

negligible︷︸︸︷
∂e

∂t
−∇.(κV∇P) =−2λV (δP − δπ). [7]

The permeation coefficient λV can, in principle, differ in the cleft
compared to its value in the lumen. For the sake of simplicity, we
use the same value. From here on and for similar reasons as for
ion flux, the time derivative of the thickness can be neglected
based on the time scale we consider for lumen expansion [see SI
Appendix, SI(2)].

Strategy to Solve the Equations. The complete set of equations
that we solve is provided in SI Appendix, SI(4). To solve the equa-
tions, we assume that the parameters of the cytosol and of the
external media are constant and homogeneous. We also assume
that the variation in ion concentration δρ is small compared with
the concentrations themselves.

Separating the time scales between lumen dynamics (minutes
to hours) and the equilibrium of fluxes in the cleft (subseconds)
simplifies the problem. Cleft Eqs. 3, 5, and 7 are solved in the
quasistatic regime. The ion density in the cleft readily stems from
Eq. 5. We then use it as a source term in Eq. 7. The solution of
Eq. 7 leads to the value of j l→c

i , which in turn can be used in
Eqs. 4 and 6. We thus reduce the problem to three coupled equa-
tions that we formally solve using Mathematica. SI Appendix,
Table S1 summarizes the various parameters of the problem,
and we give their ranges in adimensional and real values in SI
Appendix, SI(1).

Existence of Steady States
At steady state, the dynamical equations above simplify as fol-
lows: We name Rs , rs , and θs the lumen dimensions at steady
state.

Steady State Mechanical Balance. The Young–Dupré relation
takes the simple form

cos θs =
σ̃

σ0
= 1− E

σ0
. [8]

In this expression, σ0 is the steady state tension, and θs is
thus a constant determined by the tension and adhesion energy
at steady state. We take it equal to π

6
following experimental

observations (10).

Steady State Ion Conservation. Assuming azimuthal symmetry, the
ion conservation in the cleft (Eq. 5) can be linearized at the first
order in the polar coordinates as

− ξ2i
1

r

∂

∂r

(
r
∂

∂r
δρ(r)

)
+ δρ(r) = δρi , [9]

with the continuity equations at the cleft edges being{
δρ(r)

∣∣
r=rl

= δρ at the lumen-cleft edge
δρ(r)

∣∣
r=L

= δρext at the cleft-external medium edge
.

δρi = ρcell ji
2kBTλi

acts as a source term and compares pumping
activity to passive ion transport. It corresponds to the ion con-
centration, which would be observed in the cleft if there was a
simple balance between pumps and channels. It characterizes
the “pumping efficiency.” Note that since δρi is a constant, Eq.
9 admits a simple although cumbersome solution in terms of
modified Bessel functions, which we give in SI Appendix, SI(3).

ξi =
√

Dρcell
2kBT .λi

is the typical length over which the ion concen-
tration is screened from the edge effects to reach the constant
value set by δρi . When L− rl� ξi (i.e., long cleft and small
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lumen), the leaks at both edges of the cleft are decoupled
from the central part of the cleft, the ion density of which
only depends on δρi . Additionally, if δρi >δρ, then the ion flux
j l→c
i corresponds to an ion source for the lumen. When the

lumen is large (i.e., L− rl ∼ ξi), the leaks at both edges of the
cleft couple to the lumen to create a paracellular concentra-
tion gradient. If δρ> δρext , the ion flux j l→c

i corresponds to a
sink for the lumen, which takes the simple expression in the
limit (L− rl <<ξi):

j l→c
i ≈ De(ρilum − ρiext)

L− rl
. [10]

In the lumen, the ion conservation (Eq. 4) then simplifies as

2Rs(1− cos θs)(δρ− δρi) = ξ2i

(
∂

∂r
δρ

)∣∣
r=rl

, [11]

where ( ∂
∂r
δρ)
∣∣
r=rl

takes the expression derived in SI Appendix,
SI(3). For the sake of simplicity, we assume here that the pump
activity in the cleft equals that of the lumen.

Steady State Volume Conservation. In the cleft, Eq. 7 can be
simplified in a similar way and writes

− ξ2V
1

r

∂

∂r

(
r
∂

∂r
δP(r)

)
+ δP(r) = δπ, [12]

with the continuity of the hydrostatic pressure at both edges
imposing

{
δP(r)

∣∣
r=rl

= δPlum at the lumen-cleft edge
δP(r)

∣∣
r=L

= δPext at the cleft-external medium edge
.

The solution is also tractable analytically [see SI Appendix, SI(3)].
δπ= 2kBTδρ is the source term from osmotic origin. ξV =√

κ
2λV

is another screening length, comparing the efficiency of

the hydrodynamic leak to aquaporin transport. When L− rl�
ξV , the lumen and the external medium are decoupled. In par-
ticular, when L− rl� ξV and ξi , then the hydrostatic pressure in
the cleft away from the edges is entirely imposed by the pumps
and equals 2kBTδρi .

Whenever the cleft length is longer than both screening
lengths, it acts as a volume source for the lumen. In the oppo-
site case (i.e., L− rl ∼ ξV ), provided that Pext <Plum , the cleft
contributes to a volume leak out of the lumen that simplifies to

j l→c
v ≈ λv (Plum −Pext)

L− rl
, [13]

when (L− rl <<ξV ).
In the lumen, Eq. 6 simplifies as

2Rs(1− cos θs)

(
2σ0

Rs
− 2kBTδρ

)
= ξ2V

(
∂

∂r
δP

)∣∣
r=rl

. [14]

The right-hand term is derived from Eq. 12 [see SI Appendix,
SI(3)] and taking its value for rl .

This rescaling of the equations reveals that the relevant param-
eters controlling the lumen are δρi , ξi , ξV , and θs . They compare
the strength of the various fluxes. They arise from a com-
bination of the more natural parameters ρcell , κV ,D , ji , λi ,
λV , and θs , introduced in the first sections to characterize the
fluxes themselves. For all parameter values, the solutions for
the steady state lumen radius are qualitatively similar to the
one described in Fig. 3. For a given leak (characterized by the
values of ξi and ξV ), there exists a critical value of the ion
pumping activity (characterized by δρi), below which no lumen
can exist.

Low enough pumping activity cannot compensate the leaks.
Independently of its original volume, the lumen shrinks and
disappears. When the pump activity is higher, the solution
displays two branches. The lower branch is unstable and the-
oretically corresponds to the creation of a lumen through the
nucleation of a small-sized cavity inside the cleft. The insta-
bility of this solution can be checked directly on dynamical
equations, but it can also be understood with the following
argument.

Steady state lumens described by lower branches are small
(L− rs >ξi and ξV ). A small increase in lumen size leads to a
rise in the incoming fluxes, which is due to an increase in lumen
surface. However, in this limit, the paracellular fluxes are hardly
affected by the change in size due to the screening of the leak.
Moreover, the osmotic pressure increases, whereas the Laplace
term decreases due to tension. Here, the chemical potential bal-
ance fails, which leads to further growth. All contributions lead
to further volume increase. Although predicted by the model,
this solution is likely to be obscured in reality by the more com-
plex biological and molecular organization needed to start lumen
formation.

The upper branches correspond to stable solutions for larger
lumens (L− rs ∼ ξi and ξV ). If the lumen grows, the incoming
fluxes also grow. However, Eqs. 10 and 13 show that in this limit,
the paracellular fluxes diverge as the lumen size approaches the
size of the junction. This nonlinear dependence of the para-
cellular leak in this limit enables the stability of the state. The
sensitivity to the edge distance is thus governed by the screen-
ing lengths ξi and ξV . Fig. 3B shows that small screening lengths

A B

Fig. 3. Lumens at steady state. (A) The steady state size of the lumen as
a function of pumping efficiency displays an unstable and a stable branch
represented in blue and red, respectively (ξV = ξi = 0.5). The dashed arrows
represent the direction of variation of lumen radius for any deviation from
its steady state value. There is no stable state lumen at low enough pump-
ing efficiency δρi . Any lumen of any size would shrink off. Above a critical
δρi , any small lumen above the unstable branch will grow to finally reach a
larger steady lumen size. (B) Variation of the steady lumen size as a function
of lumen efficiency for different screening lengths ξV and ξi .
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(curve 1) result in stable lumens spanning practically the whole
cell–cell contact for all pumping activities. Conversely, large
screening lengths (curve 3) confine lumens to smaller sizes above
a critical pumping activity. One could thus speculate that the abil-
ity of lumens from adjacent cell pairs to merge is determined by
their ability to reach the cell edges and is hence controlled by the
leak properties of the paracellular cleft.

Lumen Dynamics
The balance between different fluxes not only determines the
steady states of the lumen but also affects lumen dynamics. Fig.
1 C and D shows that lumen growth can be either monotonous
or pulsatile, depending on pumping efficiency. Our model sug-
gests that changing the balance between leaks and ion secretion
can induce a transition between both behaviors. The periodicity
of the experimental pulsations is of the order of tens of minutes.
Consequently, we assume a quasistatic mechanical equilibrium in
the cleft. We solve Eqs. 4 and 2 as described in SI Appendix, SI(5).
The time-dependent variables of the problem are the radius of
curvature R(t), the contact angle θ(t), and the difference of ion
concentration in the lumen with respect to the cytosol δρ(t). The
lumen shape and volumes can be deduced by simple geomet-
ric relations. The cortical tension σ must account for the lumen
expansion. In situations where the change per unit time of rel-
ative cortex area becomes “large,” then one must account for a
viscous term as a dominant contribution to the periluminal stress.
This results in an areal strain rate-dependent effective tension. A
characteristic time τc delineates these two behaviors. In an active
gel description of the cortex, the effective tension can be written
as follows (19):

σ(t) =σ0

[
1 + τc

(
dR(t)
dt

R(t)
+

dθ(t)
dt

sin θ(t)

2(1− cos θ(t))

)]
, [15]

where the quantity (
dR(t)
dt

R(t)
+

dθ(t)
dt

sin θ(t)

2(1−cos θ(t))
) is a measure of the

deformation rate, which we take to be equal to the relative time
variation of the lumen area. The static value of the tension σ0

is set by imposing a value of π
6

to θs . All other coefficients are
assumed constant. The dynamical equations are expressed in SI
Appendix, SI(4).

To exemplify the type of behavior predicted by the model, we
fixed the screening length to ξV = 0.49 and ξi = 0.50, and we
solved the dynamical equation at different values of the pump-
ing efficiency δρi . We set the initial conditions for the lumen
height R(t), θ(t), δρ(t), and σ(t) just above the unstable branch
of the lumen steady state. In our model, this would correspond
to a lumen growing from its nucleation size. However, the final
behavior of the dynamics does not depend on initial conditions.
Fig. 4 shows that at lower pumping efficiency, the steady state of
the lumen in reached monotonically with a mild overshoot in the
contact angle and lumen height. At larger pumping efficiency,
the steady state is reached after damped oscillations. At large
pumping efficiency, the oscillations are sustained. An animation
of lumen dynamics in each scenario can be found in Movies
S1–S3. The existence of the oscillations originates from the non-
linearity of the equations, in particular from the divergence of
the leak close to the contact edge. However, we could not trace
one specific parameter alone that was primarily responsible for
setting the behavior. In SI Appendix, SI(3), we derive an analyti-
cal solution in the transition regime in the limit for large enough
lumens (L− rl <<ξi and L− rl <<ξV ) and for small deviations
from steady state values of the variables. In the simplified equa-
tions, terms analogous to inertia, friction, and force could be
introduced [respectively, a, b, and c in SI Appendix, SI(3)]; their
expressions intricately involve all model parameters. However,
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B

C

Fig. 4. Dynamical behavior of lumen growth. Dynamical behavior of the
normalized lumen height h(t)/L, junctional extension rl(t)/L, and angle
θ(t)/π are shown as a function of normalized time t/τ (lower abscissa)
and time in hours (upper abscissa), where τ = 2× 10−8 n.u. is the cortex
time (assumed 1,000 s). Changing pump efficiency δρi shows three dif-
ferent characteristic behaviors: (A) Overdamped evolution toward steady
state at δρi = 1.0× 108 n.u., (B) underdamped evolution toward steady
state at δρi = 1.35× 108 n.u., and (C) sustained oscillations δρi = 1.38×
108 n.u. The numerics have been obtained for values of ξV = 0.49, ξi = 0.50,
Λv = 1 n.u., Λ = ΛikBTτ/ρcellL = 1.1× 108 n.u., σ0 = 107 n.u., δρext =−2×
106 n.u., and ρcell = 109 n.u.

the crossover limits between the different dynamic behaviors is
set by the parameter τc , which reflects the dependence of cortical
tension on strain rate. Using a constant tension, our numeri-
cal solutions do not show any oscillatory behavior within the
physiological range of the parameters we explored.

We then calculated the time variation of the lumen concen-
tration (Fig. 5). In all cases, the concentration of the lumen
decreases as the lumen grows. It oscillates in phase opposition
with the lumen radius in the oscillatory regime. Note, however,
that the total amount of ions δρ×V increases with the lumen
size. The cortical tension varies during the formation of the
lumen, increases during the growth phase, and equals σ0 for the
steady states. It oscillates in phase with the lumen radius in the
oscillatory case. The inner hydrostatic pressure of the lumen cal-
culated from Laplace’s law decreases as the lumen grows and
oscillates in phase opposition with the lumen radius in the oscil-
latory regime. Our model thus predicts that as the lumen grows
the effective periluminal tension grows due to an induced viscous
stress. It is qualitatively different from a mechanosensitive feed-
back that would lead to an active reinforcement of the cortex.
Additionally, as the lumen grows, the inner pressure decreases.
This is the opposite of the “Starling’s law”-like interpretation
of a lumen growing under an increasing inner pressure, lead-
ing to a final contraction that expels the inner fluid. Whereas
this later scenario is possible in fully sealed lumen, our model
demonstrates that the same dynamical behavior can also be
recapitulated in leaking lumens.

Discussion
The situation of a cavity with constant ion secretion and a
fixed cortical tension is intrinsically unstable. A steady state can
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only be achieved upon three nonexclusive conditions: size- or
time-dependent cortical tension, size- or time-dependent ion
secretion, and/or leaks. The two first conditions are likely to
involve specific biological feedback. The incidence of leaks is far
less intuitive to understand. The model we propose quantitatively
explores the effect of paracellular leakage in the case of intercel-
lular lumen formation. We account for the specific dependence
of the leak on the dimensions of the paracellular cleft, and we
show that, in the case of bicellular lumens, the leak can play a
critical role in controlling lumen size, dynamics, and composi-
tion. The model provides a good qualitative agreement with the
experimental phenotypes of canaliculi.

An important prediction of the model is the existence of
screening lengths ξi , ξV . The screening lengths compare lon-
gitudinal fluxes along the cleft that are mediated by osmotic
potential differences and hydrostatic pressure to the transmem-
brane fluxes that occur orthogonal to the cleft and are mediated
by channels. When transmembrane transport outweighs para-
cellular transport, the screening lengths are small. Curve 1 on
Fig. 3 shows that in this case the lumen can grow close to the
edges (rs ∼L). In contrast, in the case of a large screening length
(curve 3), the lumen hardly reaches the cell edge independently
of pump activity. The lumen composition (i.e., its ion concen-
tration) is also affected by the screening length values. Fig. 6A
shows that when the distance of the lumen to the cell edge is
larger than the screening length, the luminal ion concentration is
of the same order as δρi , the equilibrium value for a close lumen.
As the lumen grows toward the contact edges, paracellular leaks
increase, leading to a decrease in ion density and, hence, of the
osmotic pressure as well as hydrostatic pressure. However, Fig.
6B shows that the osmotic pressure decreases considerably less
than the hydrostatic pressure. This results in lumens with a much
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Fig. 5. Dynamical behavior of mechanoosmotic parameters. Dynamical
behavior of the normalized lumen ion-density δρ(t)/δρi , lumen tension
σ(t)/σ0, and hydrostatic pressure σ(t)/R(t)

σ0/L for different pump efficiency δρi

are shown as a function of time t/τ (lower abscissa) and time in hours
(upper abscissa), where τ = 2× 10−8 n.u. is the cortex time (assumed 1,000 s).
Changing pump activity shows three different characteristic behaviors: (A)
monotonous overdamped evolution toward steady state at δρi = 1.0×
108 n.u., (B) underdamped evolution toward steady state at δρi = 1.35×
108 n.u., and (C) sustained oscillations δρi = 1.38× 108 n.u. All parameters
used for obtaining the numerics are the same as those mentioned in Fig. 4.

A B

Fig. 6. Relative enrichment of ions mediated by the leaks. (A) Comparison
of steady state ion density in the lumens of various sizes with the expected
concentration (δρi). ξi = 0.1 for all curves. For curve 1, ξv = 0.1; curve 2, ξv =

0.2; and curve 3, ξv = 0.5. (B) Comparison of the lumen osmotic pressure
to the Laplace pressure as a function of lumen size for different screening
lengths.

higher ion concentration than what is needed to balance Laplace
pressure, should the lumen be closed. Our simplifying assump-
tions minimize the specific biological details that have yet to be
accounted for to perform a quantitative comparison with experi-
mental data. In particular, tight junctions act as diffusive barriers
for different classes of ions across claudin pores (20, 21). For the
sake of simplicity, we account for their activity as a steady factor
included in the hydrodynamic resistance of the paracellular cleft.
As the tight junctions mature, their contribution to the paracel-
lular leak might become dominant over the simple evaluation,
which is based on a hydrodynamic process. In particular, ion flux
selectivity, which enhanced junction stability and mechanosensi-
tivity of tight junctions, may then play a role in the homeostasis
of lumens.

We also show that a time-dependent cortical tension is neces-
sary to create an oscillatory behavior. In our model, the origin
of cortical tension reinforcement stems from cortex dynamics.
As previously mentioned, mechanosensitive mechanisms might
reinforce cortex contractility by increasing the actomyosin activ-
ity in a stress-dependent manner. However, as shown in Fig. 5,
the hydrostatic pressure decreases as the lumen grows, and it is
not clear where the mechanosensing reinforcement of the cor-
tex would come from within the frame of this model. Although
lipid trafficking by endo- and exocytosis (1) is important for
lumen growth, our model indirectly accounts for it as a nonlim-
iting factor of the lumen expansion. Assuming a nonlimiting rate
supply of lipids by vesicular transport, their contribution to cor-
tical tension and thus lumen morphology is negligible. We also
do not account for vesicular export of bile in cholestasis cases
corresponding to a liver-specific problem that would reduce the
generality of our description. We indeed propose that the leak-
dependent growth of lumens can be extended to understand, at
the tissue scale, the direction of growth of the cavities. In the case
described here, the lumen edge can only asymptotically reach
the contact edge due to the divergence of the paracellular leak
when rl approaches L. Consider now a single lumen with equal
pumping efficiency but embedded in a group of cells rather than
a cell doublet. One can qualitatively assume that the resistance
to paracellular flux will depend on the total length of paracel-
lular cleft between the lumen edge and the external medium. L
would then be much larger than the actual size of a single cell–
cell contact. In such a case, our model would predict that the
lumen radius can extend further than a single cell length and con-
sequently could bridge with other adjacent lumens. Maintaining
the same assumptions, the problem of lumen now depends on the
structure of the tissue. The work presented here sets the founda-
tion for future studies encompassing the effect of multicellular
cell–cell junctions.
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