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The Fbw7 (F-box/WD repeat-containing protein 7) ubiquitin ligase
targetsmultiple oncoproteins for degradation and is commonlymutated
in cancers. Like other pleiotropic tumor suppressors, Fbw7’s complex
biology has impeded our understanding of how Fbw7 mutations pro-
mote tumorigenesis and hindered the development of targeted thera-
pies. To address these needs, we employed a transfer learning approach
to derive gene-expression signatures from The Cancer Gene Atlas data-
sets that predict Fbw7 mutational status across tumor types and identi-
fied the pathways enriched within these signatures. Genes involved in
mitochondrial function were highly enriched in pan-cancer signatures
that predict Fbw7 mutations. Studies in isogenic colorectal cancer cell
lines that differed in Fbw7 mutational status confirmed that Fbw7
mutations increase mitochondrial gene expression. Surprisingly,
Fbw7 mutations shifted cellular metabolism toward oxidative phos-
phorylation and caused context-specific metabolic vulnerabilities. Our
approach revealed unexpected metabolic reprogramming and possi-
ble therapeutic targets in Fbw7-mutant cancers and provides a frame-
work to study other complex, oncogenic mutations.
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Current technologies afford genome-scale characterization of
the mutational and transcriptional landscape of thousands of

human tumors, enabling a shift toward a taxonomy of cancer and
targeted therapies based upon molecular criteria. The ability to
reclassify tumors across organ sites based on shared mutations implies
that driver mutations deregulate common oncogenic pathways across
tissue types. However, many commonly mutated cancer genes (e.g.,
c-Myc, p53) regulate diverse processes, and their complex biology
has confounded mechanistic studies of carcinogenesis and targeted
therapy development. We thus explored the hypothesis that gene-
expression signatures that predict a tumor’s mutational status for a
specific gene across organ sites may reveal insights into these types of
oncogenic mutations. Toward this goal, we employed a machine-
learning technique, kernelized Bayesian transfer learning
(KBTL), to infer transcriptional signatures predictive of mutation
status across multiple tumor types profiled in The Cancer Genome
Atlas (TCGA) datasets (1).
Fbw7 is the substrate receptor of a Skp1–F-box–Cullin ubiquitin

ligase that targets a network of substrates for proteasomal degrada-
tion after they become phosphorylated (2–5). Many Fbw7 substrates
are oncoproteins, and Fbw7 is one of the most commonly mutated
human tumor suppressors (3, 4, 6, 7). Heterozygous missense
mutations that target one of three key Fbw7 arginine residues
that interact with substrate phosphates (R465, R479, or R505;
hereafter referred to as “Fbw7ARG

”) are the most common
Fbw7 mutations. Fbw7ARG are thought to be dominant-negative
alleles, but the mechanisms driving their selection are poorly
understood (3, 8). Because many Fbw7 substrates are master

transcription factors (TFs), Fbw7 mutations may broadly impact
gene expression. Moreover, Fbw7-associated tumorigenesis likely
involves the combinatorial activities of multiple stabilized onco-
proteins rather than a single oncogenic driver. We thus chose Fbw7
as a test case of a complex and poorly understood cancer gene to
study through the use of KBTL. We developed gene-expression
signatures that predict Fbw7 mutational status and identified the
biologic pathways enriched within Fbw7 predictive signatures, with
the goal of developing insights into these mutations. Our approach
revealed unexpected metabolic reprogramming and possible ther-
apeutic targets in Fbw7-mutant cancer cells and provides a frame-
work to study other complex oncogenic mutations.

Results
Inferring Cross-Tissue Transcriptional Signatures Associated with
Cancer Gene Mutations. We adapted the KBTL methodology that
we recently developed (1) to discriminate mutation-associated
transcriptional processes shared across tumor types (Fig. 1 A and B).
KBTL allows multiple related prediction tasks to be solved jointly by
projecting feature matrices from each task onto a shared low-
dimensional subspace inferred to yield high predictive accuracy
across tasks. In the current application, we treat each tumor type as a
separate task and infer gene-expression–based predictors of the mu-
tation status of a given gene in each tumor type, using KBTL to identify
gene-expression patterns (i.e., low-dimensional projections of the gene
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expression matrices) that are associated with mutation status across all
tumor types.
We analyzed 10 different tumor types and inferred predictive

models of the mutational status of all genes with mutation
rates >4% in at least 2 of the 10 tumor types (123 genes), as de-
termined from the Cancer Gene Census (https://cancer.sanger.ac.
uk/census/) (9). We assessed whether using KBTL to share in-
formation across tumor types yielded signatures with increased ac-
curacy in predicting mutation status compared with analyzing each
tumor type independently. KBTL has two potential advantages over
traditional learning approaches: (i) increased statistical robustness,
due to the larger sample size resulting from combining multiple
datasets during learning, and (ii) the ability to extract signals that are
common across datasets, which may reveal shared biological pro-
cesses across organ sites. For each gene mutation/tumor type
combination, we compared the pan-cancer KBTL-derived signa-
tures (multitask learning; see SI Materials and Methods) with those
obtained using the relevance vector machine (RVM), which is
analogous to KBTL applied to each tumor type in isolation (single-
task learning; see SI Materials and Methods) (10). KBTL improved
prediction accuracy compared with RVMs for 9 of 10 (90%) tumor
types averaged over all genes and for 93 of 123 (76%) genes aver-
aged over tumor types (Fig. 1 C and D and Dataset S1). Overall,
KBTL yielded improvements for 291 of 430 (68%) gene mutation/
tumor type pairs. KBTL yielded improved performance for 27 of 30
(90%) of gene mutation/tumor type pairs with greater than 20%
mutation frequency and for 66 of 81 (81%) gene mutation/tumor
type pairs with greater than 10% mutation frequency (Fig. 1E).
Most gene mutation/tumor type pairs for which KBTL did not yield
improved performance demonstrated low mutational frequencies,
suggesting insufficient positive samples for inference of classifiers.
Conjoint modeling was especially useful in predicting the status of
commonly mutated genes with known importance in carcinogenesis
(e.g., TP53, KRAS, and PIK3CA) (Dataset S1).

Fbw7 Predictive Signatures Are Enriched for Genes Associated with
Mitochondria. Five TCGA organ sites had sufficient FBXW7-mutant
samples (>4%) for KBTL analyses: bladder urothelial carcinoma
(BLCA), colon and rectum adenocarcinomas (COADREAD), head
and neck squamous cell carcinoma (HNSC), lung squamous cell
carcinoma (LUSC), and uterine corpus endometrial carcinoma
(UCEC). We modeled all five tumor types individually or con-
jointly using KBTL to derive transcriptional signatures inferred to
predict Fbw7 mutational status. To identify biological pathways
enriched within these signatures, we performed gene set enrich-
ment analysis (GSEA) of the 500 most predictive genes (of
20,530 total transcripts) using the DAVID 6.8 platform (https://
david.ncifcrf.gov). Surprisingly, KBTL revealed that genes asso-
ciated with mitochondrial function (hereafter termed “mitochon-
drial signature genes” or “MSGs”) were the dominant biologic
processes enriched within Fbw7 predictive gene signatures across
tumor types (Fig. 1F). Dataset S2 shows the complete DAVID
6.8 analysis for COADREAD. In contrast, when analyzed by
single-task learning, MSGs ranked as the 56th most enriched gene
set associated with Fbw7 mutations averaged across tumor types.
Some tumor types, including glioblastomas, breast cancers, and

ovarian cancers, exhibit Fbw7 mRNA repression rather than
Fbw7 mutations (11–13). To determine if MSGs were similarly as-
sociated with Fbw7 loss via mRNA repression, we developed single-
task transcriptional signatures predictive of the 10% of tumors with
the lowest amount of Fbw7 expression in each organ site (Dataset
S3). Remarkably, MSGs were the most highly enriched feature in
each of these signatures, suggesting that Fbw7 loss caused by either
mutations or reduced mRNA expression is widely associated with
metabolic dysregulation in primary tumors.

Fbw7 Mutations Increase Mitochondrial Gene Expression in Colorectal
Cancer Cell Lines. Due to the robust predictive power of the MSG
module, we sought to validate a direct relationship between
Fbw7 mutations and increased MSG expression. We focused on
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Fig. 1. KBTL improves predictive power for commonly mutated cancer genes and reveals enriched mitochondrial-associated gene expression in pan-cancer
Fbw7 predictive signatures. (A and B) Depiction of single-task kernel-based learning (A) and KBTL (B) approaches used to develop gene-expression signatures that
predict the mutational status of a specific gene from single tumor types, versus conjoint Pan-cancer analyses, respectively (see text and SI Materials and Methods).
(C) Classification accuracy [area under the receiver operator characteristic curve (AUROC)] for separate analysis (RVM, x axis) vs. joint analysis (KBTL, y axis). Results are
averaged across all genes for each tumor type. (D) Average mutation frequency of each gene (x axis) vs. percent improvement in classification accuracy (AUROC) for
KBTL vs. RVM. Results are averaged across all tumor types for each gene weighted with cohort sizes. (E) Average mutation frequency of each gene (x axis) vs. percent
improvement in classification accuracy (AUROC) for KBTL vs. RVM. Results are displayed for each gene type/tumor type pair. (F) Ranking of the mitochondrial module
for each tumor type and consensus ranking across tumor types based on RVM (separate analysis) and KBTL (joint analysis). NA, not available.
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colorectal cancer (CRC), which is the most prevalent Fbw7-
associated cancer for which KBTL identified MSGs as the top-
ranked enriched process (Fig. 1F). To establish a causal re-
lationship between Fbw7 mutations and MSG expression, we
generated isogenic CRC cell line panels that differed in Fbw7
status by mutating the endogenous FBXW7 locus through adeno-
associated virus (AAV) gene targeting (Fig. S1) (14). We engi-
neered Hct116 cells, which are normally Fbw7+/+, to contain
either a heterozygous Fbw7ARG mutation (Fbw7+/R505C) or a
homozygous null mutation (Fbw7−/−) (Fig. 2A) (14). Conversely,
we engineered LoVo, a CRC cell line with a natural Fbw7R505C/+

mutation, to correct the mutant allele and revert these cells to
Fbw7+/+ (two independent clones, A and B, were derived to
reduce clonal selection artifacts) (Fig. 2A). Finally, we made
Fbw7+/R505C and Fbw7−/− mutations in DLD1, another Fbw7+/+
CRC cell line. Together, these cell panels provided comple-
mentary systems in which Fbw7 function was either impaired
(Hct116 and DLD1) or restored (LoVo).
We previously characterized Fbw7 substrates in Fbw7-mutant

Hct116 cells and extended these analyses to include these cell
lines (14, 15). Cyclin E and Myc exhibit the largest Fbw7-dependent
changes in CRC cell lines. Cyclin E abundance and its associated
kinase activity (which specifically measures the pool of active cyclin
E targeted by SCFFbw7) were greatly increased in Fbw7−/− cells (Fig.
2B). In contrast, Fbw7R505/+ mutations caused small increases in
cyclin E abundance and activity in Hct116 and DLD1 cells, and the
LoVo revertants exhibited slightly reduced cyclin E activity com-
pared with parental LoVo cells. Because c-Myc represses its own
transcription, Fbw7 mutations that prolong Myc turnover may not
increase c-Myc steady-state abundance, and c-Myc turnover is the
most sensitive assay for its degradation by Fbw7 (14, 15). Fbw7−/−
cells exhibited substantial c-Myc stabilization, whereas Fbw7R505C/+
cells exhibited intermediate Myc stability (Fig. 2C). These findings
are consistent with the modest Myc stabilization seen when
Fbw7 dimerization is prevented, because Fbw7ARG/+ mutations

reduce the amount of dimericWT-Fbw7 (15). Other substrates were
not appreciably changed by Fbw7ARG/+ mutations. We were unable
to detect PGC-1α protein in any of these cell lines (Fig. S1C).
To determine the role of Fbw7 in regulating MSGs, we measured

the expression of a panel of MSGs in the isogenic Hct116 and LoVo
series. Compared with parental Hct116 cells, both the Fbw7ARG/+

and Fbw7−/− Hct116 cell lines exhibited increased MSG expression
(Fig. 2). Conversely, the restoration of normal Fbw7 function in
LoVo cells reduced MSG expression in both gene-targeted clones
(Fig. 2E). These studies validated the KBTL prediction that
Fbw7 mutations directly increase MSG expression, which is con-
served from primary tumors to cell lines.

Fbw7 Regulates Mitochondrial Function in CRC Cells. Having dem-
onstrated deregulated MSG expression in Fbw7-mutant cells, we
next determined if Fbw7 mutations alter cellular metabolism. We
measured oxygen-consumption rates (OCR) and extracellular
acidification rates (ECARs), which reflect oxidative and glycolytic
metabolism, respectively. In both the Hct116 and LoVo panels,
basal and maximal OCR, as revealed by the addition of the
uncoupling agent carbonyl cyanide-4-(trifluoromethoxy) phenyl-
hydrazone (FCCP), were significantly higher in Fbw7ARG/+ and
Fbw7−/− cells than in Fbw7+/+ cells (Fig. 3 A and B). We also ob-
served Fbw7-dependent OCR changes in DLD1 cells (Fig. 3C).
Basal ECARs were lower in LoVo cells than in Fbw7+/+-reverted
LoVo cells but were higher in Fbw7ARG/+ and Fbw7−/− Hct116 cell
lines than in parental Fbw7+/+ Hct116 cells (Fig. S2 A and B). To
investigate these differences, we compared OCR responses to the
addition of glutamine, an alternative respiratory substrate in cancer
cells via glutaminolysis (Fig. 3 G and H). Glutamine addition
stimulated the OCR to a greater extent in Fbw7ARG and Fbw7−/−

Hct116 cells than in parental cells but failed to stimulate the OCR
in Fbw7+/ARG LoVo cells compared with reverted Fbw7+/+ cells.
Together, these results suggest that increased respiration in Fbw7-
deficient cancer cells is associated with different fuel choices in
Hct116 cells (glutamine) and LoVo cells (glucose).
Increased OCR/ECAR ratios indicate a shift from glycolytic to

oxidative metabolism. Accordingly, Fbw7-mutant LoVo, Hct116,
and DLD1 cell lines all had higher OCR/ECAR ratios than did
wild-type controls (Fig. 3 D–F). To reduce the chance of clonal
artifacts during AAV targeting, we also impaired Fbw7 function by
using shRNA to reduce Fbw7 expression in DLD1 cells and HT-
29 cells (another Fbw7+/+ CRC cell line) and by CRISPR/Cas9 to
genetically ablate Fbw7 in Hct116 cells (SI Materials and Methods
and Fig. S2 C–F). Finally, we extended these studies beyond CRC
and used shRNA to knock down Fbw7 expression in G14 cells, a
glioblastoma (GBM) stem cell line (Fig. S2 G–I) (16). In each case,
reduced Fbw7 function increased the OCR/ECAR ratio. Thus,
Fbw7 mutations are not associated with the Warburg effect (aerobic
glycolysis) common to many cancers but instead cause a shift toward
mitochondrial respiration.

Metabolic Consequences of Fbw7 Mutations in CRC Cells. Global
metabolite profiles revealed Fbw7-dependent metabolic changes in
greater detail. Principal component analyses separated Hct116 and
LoVo cells according to Fbw7 status, indicating that metabolite
profiles track with Fbw7 function (Fig. S3 A and C). Univariate
analyses of the Hct116 metabolome revealed increased abundance
of serine, glycine, creatine, and the serine metabolite glycerate and
decreased abundance of lactate and glutamine in both Fbw7ARG/+

and Fbw7−/− cells (Fig. 4A and Dataset S4). These changes are
consistent with increased glutaminolysis and possibly serine bio-
synthesis, a glycolysis-diverting pathway. In contrast, Fbw7-mutant
LoVo cells displayed a strong signature of increased glycolytic in-
termediates: metabolite set enrichment analysis identified glycolysis
(up), purine metabolism (up), and glycine, serine, and threonine
metabolism (down) as metabolic pathways with significant differ-
ences [false-discovery rate (FDR) = 0.037, 0.039, and 0.0498, re-
spectively] (Fig. 4B, Fig. S3D, and Dataset S4). The tricarboxylic
acid (TCA) cycle intermediate aconitate was highly elevated in
parental Fbw7-mutant LoVo cells compared with wild-type
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Fbw7 revertants. As LoVo Fbw7R505C/+ cells have low ECARs and
high OCRs, this supports the hypothesis that the Fbw7 mutation
increases glucose delivery to mitochondrial oxidative metabolism.
U-13C-glucose labeling was used to study Fbw7-dependent

changes in glucose flux in Fbw7−/− and Fbw7+/+ cells. Hct116
Fbw7-null cells showed an increased enrichment ratio for serine/
lactate compared with Fbw7+/+ cells, consistent with glycolytic di-
version to serine biosynthesis (Fig. 4C). There was uniformly re-
duced labeling of TCA cycle metabolites, indicating that a
mitochondrial fuel other than glucose sustained the higher OCR in
Fbw7−/− Hct116 cells. In contrast, LoVo cells revealed a striking
increase in glucose-derived carbon incorporation into TCA cycle
metabolites in Fbw7-mutant compared with Fbw7-revertant cells,
consistent with increased glucose oxidation (Fig. 4E). Total me-
tabolite levels from the glucose-tracing experiments demonstrated
higher citrate levels in parental LoVo cells and confirmed elevated
serine levels in Fbw7−/−Hct116 cells (Fig. 4D and F). The increased
mitochondrial metabolism associated with Fbw7 loss can thus be
sustained by oxidation of different carbon substrates, yielding dis-
tinct metabolic signatures in different cell types (Fig. 5).
Metabolic reprogramming in cancer cells may create therapeutic

vulnerabilities. We therefore studied whether Fbw7 mutations
sensitized CRC cell lines to metabolic inhibitors of the pathways
implicated above. Serine is the metabolite that exhibits the greatest
increase in Fbw7-mutant Hct116 cells but not in LoVo cells. Ac-
cordingly, Fbw7−/− Hct116 cells (but not LoVo cells) were highly
sensitized to two inhibitors (NCT-503 and CBR-5886) of phos-
phoglycerate dehydrogenase (PHGDH), a critical enzyme in serine
biosynthesis (Fig. 4G and Fig. S4C). The glycolytic diversion to
serine in Hct116 cells lacking Fbw7 is thus required for cellular
survival. Citrate is a donor of acetyl-CoA units for de novo fatty acid
synthesis after export from mitochondria and is an allosteric acti-
vator of acetyl-CoA carboxylase. The Fbw7-dependent 10-fold in-
crease in the citrate/α-ketoglutarate ratio in LoVo cells thus
suggested a possible diversion of mitochondrial citrate for lipid
biosynthesis. Indeed, Fbw7 regulates cholesterol and lipid metabo-
lism via degradation of SREBP1 and C/EBPα (17, 18), and parental
LoVo cells exhibited increased size and number of cytoplasmic lipid

droplets compared with revertants (Fig. S4 A and B). Accordingly,
inhibition of fatty acid synthesis with 5-(tetradecyloxy)-2-furoic acid
(TOFA), an acetyl-CoA carboxylase-1 (ACC1) inhibitor, was more
cytotoxic to LoVo Fbw7+/R505C cells than to either Fbw7-deficient
Hct116 cells or corresponding Fbw7+/+ cell lines (Fig. 4H and Fig.
S4F). DLD1 cells also displayed Fbw7-dependent TOFA sensitivity,
albeit to a lesser extent than seen in LoVo cells (Fig. S4 C and D).
Fbw7 mutations may thus lead to context-specific metabolic vul-
nerabilities in cancer cells.

Discussion
We describe an approach to infer the physiologic consequences of
oncogenic mutations in which we (i) derived gene-expression sig-
natures from TCGA datasets that predict a gene’s mutational status
across different tumor types and (ii) identified the shared biologic
pathways enriched within predictive signatures. The primary goal of
using transfer learning to conjointly study multiple organ sites was
to reveal the core consequences of mutations. Here, we validate this
approach by demonstrating a previously unknown role of Fbw7 in
the control of cellular metabolism. Given the increased predictive
power of conjoint modeling for most common oncogenic mutations,
this approach may be useful to study other pleiotropic cancer genes.
Several Fbw7 substrates regulate metabolism (e.g., PGC-1α,

Myc, Notch, and SREBP), and it was not unexpected to find
metabolic consequences of Fbw7 mutations. However, given
Fbw7’s prominent roles in processes such as proliferation and
differentiation, it was surprising to discover that metabolism was
the most highly conserved feature in Fbw7 predictive signatures.
Perhaps most striking is the similar metabolic dysregulation
caused by Fbw7ARG/+ and Fbw7−/− mutations. Fbw7ARG/+ mu-
tations do not stabilize substrates to the same extent as Fbw7-null
mutations (Fig. 2E and Fig. S1C), and with the possible exception
of Myc in T-lineage acute lymphoblastic leukemia (19), the
mechanisms driving Fbw7ARG/+ selection remain unknown (3, 8).
The similar bioenergetic consequences of Fbw7ARG/+ and Fbw7−/−

mutations thus suggest that metabolic reprogramming may, in
part, underlie the Fbw7 mutational spectrum in cancers. This
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idea is further supported by the finding that MSGs are the most
enriched feature of predictive signatures associated with low
Fbw7 mRNA expression in solid tumors (Dataset S3). TF-bind-
ing site analyses did not implicate any single Fbw7 substrate as
likely to be responsible for MSG deregulation in Fbw7-mutant
cancers, and the metabolic phenotypes likely reflect the com-
bined activities of multiple Fbw7 substrates. However, the spe-
cific contributions of individual substrates require further study.
Increased OCR is a common finding in Fbw7-deficient cells.

However, rather than increasing the mitochondrial metabolism
of a specific fuel, Fbw7 loss affords flexibility in fuel selection.
Thus, while Fbw7R505C/+ LoVo cells exhibit increased glucose
oxidation, Hct116 cells with either Fbw7R505C/+ or Fbw7−/−

genotypes exhibit increased glutamine-stimulated respiration.
These cell-type–specific effects argue against Fbw7 deficiency
having direct effects on oxidation pathways for specific nutrients
but instead that it increases mitochondrial activity (Fig. 5).
Metabolic deregulation caused by oncogenes is influenced by

contexts such as cell lineage and other mutations. Both Hct116 and
LoVo cells contain Kras mutations and activated β-catenin. How-
ever, Hct116 cells have a PIK3CA mutation and MYC amplifi-
cation that increase glutaminolysis via glutamate pyruvate
transaminase 2 expression and glutaminase expression, respec-
tively, leading to glutamine dependence with enhanced alanine and
oxoglutarate production and TCA-cycle anaplerosis (20). Further-
more, glutaminolysis provides a key intermediate for the serine
biosynthetic pathway through the production of glutamate (21). The
addition of an Fbw7 mutation to this genetic background augments
glutamine oxidation and serine synthesis and creates a new vul-
nerability as cells become sensitive to PHGDH inhibition. The
serine synthesis pathway is also essential in other oncogenic con-
texts, such as subsets of breast cancers and melanomas (22–24).
LoVo cell bioenergetics and central carbon metabolism have

not been previously reported. Our data demonstrate an oxidative

phenotype with increased glucose metabolism and citrate synthesis
in Fbw7ARG/+ LoVo parental cells. Correction of the Fbw7 muta-
tion leads to dramatically reduced glucose oxidation and increased
glutamine dependency. Metabolomics, 13C-glucose tracer analysis,
and lipid staining all point toward Fbw7-mediated channeling of
glucose into lipid synthesis in LoVo cells, which may lead to their
increased sensitivity to acetyl-CoA carboxylase inhibition. The
metabolic dysregulation caused by Fbw7 mutations in different
cellular contexts may thus allow new, targeted therapies.
The selective advantage of increased oxidative metabolism

in Fbw7-deficient cells may depend on unique mitochondrial

Fig. 5. Mitochondrial fuel utilization in Fbw7-deficient CRC cell lines. Thick arrows
indicate increased fluxes caused by Fbw7 loss as implicated by bioenergetic, meta-
bolomics, and tracer studies. Red inhibition symbols indicatemetabolic vulnerabilities.
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functions in anabolic metabolism. For example, citrate generated
from glucose (via pyruvate dehydrogenase/pyruvate carboxylase)
and glutamine (via reductive carboxylation) can be converted to
cytosolic acetyl-CoA for fatty acid biosynthesis by ATP citrate lyase
following mitochondrial export. The electron transport chain is also
essential for the synthesis of aspartate, a precursor for pyrimidine
nucleotide biosynthesis (25). Increased oxidative, rather than War-
burg, metabolism has been reported in melanomas with MITF-
induced PGC-1α expression and in B-cell lymphomas with
dependencies on fatty acid oxidation (26, 27). Increased mito-
chondrial biogenesis and oxidative phosphorylation in cancer
cells may also promote metastasis and is an important feature of
circulating mammary epithelial cancer cells (28). Increased oxidative
metabolism in Fbw7-deficient cells might thus impact cellular adap-
tation to the microenvironment, invasion, and differentiation.

Materials and Methods
Computational Methods. Ten TCGA datasets were analyzed: BLCA, BRCA,
COADREAD, GBM, HNSC, kidney renal clear cell carcinoma, lung adenocar-
cinoma, LUSC, ovarian serous cystadenocarcinoma (OVCA), and UCEC (https://
www.synapse.org/#!Synapse:syn300013). One hundred twenty-three cancer
genes with mutation rates >4% in at least two tumor types were identified
(https://cancer.sanger.ac.uk/census/) (9). For each gene mutation/tumor type
pair, we inferred predictive models of mutation status based on gene ex-
pression by (i) modeling each cancer individually with the RVM and (ii)
modeling all cancers conjointly with KBTL. GSEA analyses were performed
using DAVID Bioinformatics 6.8 (https://david.ncifcrf.gov). See SI Materials
and Methods and ref. 1 for KBTL/GSEA methodology.

Cell Culture, Antibodies, Western Blotting, Immunoprecipitation, and Kinase
Assays. All cells were maintained in DMEM high-glucose medium (+10%
FBS and penicillin/streptomycin) except for DLD1 cells (which were main-
tained in RPMI medium) and G14 cells (which were maintained as described
in ref. 29). Antibodies are described in SI Materials and Methods. Immuno-
blotting and kinase assays were performed as previously described (30).

Cell Growth/Survival Assays. Cells were seeded in 96-well plates at 3,000 cells
per well. The effects of the phosphoglycerate dehydrogenase inhibitors NCT-
503 and CBR5884 (Sigma) and the acetyl-CoA carboxylase inhibitor TOFA

(Sigma) on cell growth were determined via CellTiter-Glo (Promega) at 3–6 d
after treatment.

Quantitative RT-PCR and Gene-Expression Analyses. Total RNA was extracted
with TRIzol (Life Technologies) and purified using RNA Miniprep Kits (Zymo
Research). Quantitative RT-PCR reactions were performed as described in SI
Materials and Methods.

Seahorse Extracellular Flux Assays. Bioenergetic assays to measure OCRs and
ECARs were performed using a Seahorse XF24 Bioanalyzer (Agilent). See SI
Materials and Methods for experimental details.

Gene Targeting. Hct116 Fbw7−/− gene targeting has been previously de-
scribed, and DLD1 Fbw7-null cells were made using the same methods (14).
All clones were verified by Southern blotting, PCR, and genomic sequencing.
Hct116 Fbw7+/R505C cells and LoVo Fbw7+/+ cells were generated using
analogous methods (SI Materials and Methods and Fig. S1). For CRISPR-Cas9–
mediated knockout of FBXW7, single-guide RNAS (sgRNAs) were cloned into
pLentiCRISPR_v2 (sgFBXW7: 5′-AAGAGCGGACCTCAGAACCA-3′; sgCtl: 5′-
GTAGCGAACGTGTCCGGCGT-3′). Cells were transduced with lentiviruses and
were selected with puromycin, and clones were isolated by limiting dilution.
Fbw7 protein loss was examined by immunoprecipitation/Western blotting
(Fig. S3).

Metabolite Profiling and Flux Experiments. Metabolites were extracted and
analyzed in the Northwest Metabolomics Research Center as described in
SI Materials and Methods and refs. 31 and 32. See SI Materials and
Methods for U-13C-glucose flux experiments. Metabolite profiling was
analyzed with MetaboAnalyst 3.0 (www.metaboanalyst.ca) after nor-
malization by protein and total intensity current.

Statistical Analysis. Statistical significance was determined using unpaired
two-tailed Student’s t test for two-group comparisons and one-way ANOVA
followed by Dunnett’s multiple comparison test to compare data from
multiple groups.
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