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Contributing to cooperation is typically costly, while its rewards are
often available to all members of a social group. So why should
individuals be willing to pay these costs, especially if they could
cheat by exploiting the investments of others? Kin selection theory
broadly predicts that individuals should invest more into cooperation
if their relatedness to group members is high (assuming they can
discriminate kin from nonkin). To better understand how relatedness
affects cooperation, we derived the ‟Collective Investment” game,
which provides quantitative predictions for patterns of strategic in-
vestment depending on the level of relatedness. We then tested
these predictions by experimentally manipulating relatedness (geno-
type frequencies) in mixed cooperative aggregations of the social
amoeba Dictyostelium discoideum, which builds a stalk to facilitate
spore dispersal. Measurements of stalk investment by natural strains
correspond to the predicted patterns of relatedness-dependent stra-
tegic investment, wherein investment by a strain increases with its
relatedness to the group. Furthermore, if overall group relatedness is
relatively low (i.e., no strain is at high frequency in a group) strains
face a scenario akin to the “Prisoner’s Dilemma” and suffer from
insufficient collective investment. We find that strains employ
relatedness-dependent segregation to avoid these pernicious
conditions. These findings demonstrate that simple organ-
isms like D. discoideum are not restricted to being ‟cheaters” or
‟cooperators” but instead measure their relatedness to their group
and strategically modulate their investment into cooperation ac-
cordingly. Consequently, all individuals will sometimes appear to
cooperate and sometimes cheat due to the dynamics of strategic
investing.
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Cooperation is widespread in nature (1–3), often being man-
ifested as individuals investing in the production of public

goods that benefit all members of a group (4–6). However, these
goods are vulnerable to exploitation by “cheaters” (or “free rid-
ers”) that reap the benefits of cooperation without commensurate
investment (7, 8). Because such behavior has the potential to un-
dermine the evolutionary stability of cooperation through public
good production, successful cooperation is typically thought to
require mechanisms of cheater avoidance or control (1, 9–11). This
logic implies a simple evolutionary scenario where there is com-
petition between alternative “cooperator” and cheater strategies.
However, it is logical to assume that such discrete strategies would
lose out to individuals that can strategically modify their contri-
bution to public goods. This is because strategic investment could
allow individuals to balance the costs and benefits of “investing”
while realizing potential opportunities to exploit the investments
made by others (12, 13). Because these costs and benefits can vary
across social settings, individuals face a strategic dilemma over how
much to invest, with the realized success of a strategy depending
not only on the level of cooperative investments made by the in-
dividual but also on that made by others in the group.
Kin selection theory provides an appealing framework for

understanding how evolution shapes investment in cooperation.
In this framework, the competing “individuals” are different

genetic variants (14–16), with strategies evolving to maximize
“inclusive fitness” (17, 18). The inclusive fitness accounting
considers the total impact of a behavior on the success of the
causal genes in terms of the direct costs to the actor and indirect
benefits to relatives (i.e., others carrying that same genetic
variant). For cooperation through production of public goods,
where all benefits go to the entire group, relatedness to the
group should be a critical determinant of inclusive fitness be-
cause it governs the share of rewards that go to the individual,
and hence determines the expected net return on investment.
Consequently, we would logically expect that individuals should
optimize their inclusive fitness by facultatively modulating their
willingness to invest into public goods as a function of their re-
latedness to the members of the group (4, 19–21).
A number of theoretical studies have analyzed facultative

cooperative strategies, where individuals modulate their behav-
ior in response to social context (such as the behaviors shown by
rivals) (22, 23). While most of these studies have focused on
discrete alternative strategies (cooperate or cheat) (12, 22), there
is also a growing literature that considers continuously variable
strategic cooperative behavior in response to social contexts,
including relatedness (4, 23). However, experimental tests of
theoretical predictions often either rely on simpler models that
do not include such potential complexity (24–28) or do not
evaluate whether the observed facultative patterns are strategic
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(i.e., match adaptive quantitative predictions from evolutionary
models) (29–34). For example, the opportunistic pathogen
Pseudomonas aeruginosa facultatively produces iron-scavenging
siderophores, which represent a cooperative public good (35–
37). Cells produce quorum-sensing molecules that allow them to
modulate their production of siderophores. There is evidence
that investment into siderophore production is flexible (35, 36)
and varies between broad-scale differences of “high” versus
“low” relatedness (37). However, it is unclear as to whether the
level of production can be varied quantitatively as a strategic
response to fine-grained variation in relatedness.
To understand how selection shapes patterns of investment

into public goods in response to variation in relatedness, we first
developed a dynamic game-theoretical framework that views
competing genetic variants as players who can modulate their
contributions to public goods based on their relatedness to their
group. The resulting “Collective Investment” game offers an
intuitive economic logic for why and how organisms should
modulate their contributions to public goods and provides a set
of simple and unambiguous predictions that can be tested em-
pirically. To directly test these predictions, we next examined the
consequences of experimental manipulation of social group
composition in the social amoeba Dictyostelium discoideum for
patterns of individual and collective investment in cooperation.
These studies revealed a remarkable agreement between pat-
terns of individual and collective investment with fine-scale
model predictions, where patterns of cooperation are explained
by savvy investment strategies that maximize the fitness return
on investment.

Results and Discussion
The Collective Investment Game.When individuals engage in social
interactions, their success typically depends on both their own
behavior and the behavior of their social partner(s). Under these
conditions, game theory provides a powerful framework for
identifying how individuals should behave to maximize their
expected social success across encounters (16, 38–40). Game-
theoretical models predict that individuals will display the evo-
lutionarily stable strategy (ESS), which cannot be invaded by any
competing strategy (16, 39). In most economic and biological
scenarios that involve cooperation, we might logically expect that
individuals could do better by playing dynamic strategies in which
they change their behavior quantitatively across different social
contexts (3, 13). While games with fixed alternative strategies
(e.g., the Prisoner’s Dilemma) have been widely used as the basis
for analyses of strategic modulation of cooperative behavior (4, 23),
they do not yield any quantitative predictions about continuously
variable behavior. Instead, models that consider cooperation via
public goods (4, 23, 41, 42), typically based on the inclusive fit-
ness framework (20, 43, 44), have proven more informative. We
extent this work by developing a model based on an equivalent
“direct fitness” accounting, where different genetic variants are
the players in a dynamic game, to provide an intuitive logic for
the costs and benefits of investing in public goods. The game is
described with two players but logically extends to include more.
The Collective Investment game is based on a scenario in

which the payoff to a player is determined by two opposing
factors: the costs suffered from investing in the public good and
the resulting benefits from public good availability (Fig. 1A).
From the perspective of the group, this antagonistic relationship
between costs and benefits results in a scenario where group
success is maximized at some intermediate level of collective
investment whenever public good production is favored by natural
selection (Fig. 1B). Examples of this sort of scenario, where overall
success is maximized at an intermediate level of investment, are
well-documented, ranging from economics to biology (23, 45–47).
However, the level of collective investment that maximizes group
success (denoted ΘG in the model) will typically differ from the
level of personal investment that maximizes individual fitness
(10). This is because individuals suffer the cost of investment, yet
their payoffs are divided among the collective. Therefore, we

expect individuals to implement selfish strategies that maximize
their return on investment in terms of fitness, which must bal-
ance their personal costs with the return they receive through
their influence on collective success (7, 13). The relative mag-
nitude of the costs and benefits together define the strength of
selection (denoted Γ in the model), which reflects the rate at
which group success declines as investment deviates from the
level that maximizes group success (i.e., deviates from ΘG).
To implement our direct fitness accounting, we consider a

player to represent some proportion of the group, which is
equivalent to the frequency of that genetic variant within the
group (and therefore can vary between 0 and 1) and represents
their “whole-group relatedness” (20, 21) (in economic terms, this
might be described as a player’s “stake” in the group). This
measure of relatedness is relevant because, as the benefits of
public goods are accessible to all group members, the whole
group is the beneficiary of investment made by an individual, and
hence whole-group relatedness accounts for direct fitness return
from investing in public goods. Despite differing from the more
typical “kinship” coefficient of inclusive fitness models, the two
approaches produce exactly equivalent results (20, 21, 43). To
identify the strategy that maximizes expected individual fitness,
which represents the ESS for the game, we solved the Collective
Investment game across the full range of relatedness over a
broad array of relative costs and benefits of investment in public
goods. These analyses revealed a general qualitative prediction
for patterns of investment under the ESS: Individuals should
modulate their investment into public goods as a continuous
function of their relatedness to the group. By evaluating the
patterns predicted by the model across an enormous range of
values for the optimal level of collective investment (i.e., the
value that maximizes group success, ΘG) and the strength of
selection on investment (Γ), it is clear that the qualitative results
are robust across a wide array of conditions (Fig. 2 A and D; see
also SI Appendix, Fig. S1 A, D, G, and J). When there is a rel-
atively large asymmetry in the degree to which players are re-
lated to the group, each player should behave differently. The
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Fig. 1. The costs and benefits of cooperation through production of public
goods. (A) The benefit (relative payoff) from public good production is an in-
creasing function of the resources invested into the public good (blue line).
Because investment is costly it results in a decreasing payoff through other
components (red line). In the case of the D. discoideum system, the benefits of
stalk investment come through spore dispersal and come at a cost in terms of
reduced spore production. (B) The costs and benefits of investment in the public
good result in a quadratic relationship between total investment ðIGÞ and
overall group success (ωG). Groups have their highest success at some in-
termediate level of investment (ΘG) that balances costs and benefits. In both A
and B, investment in public good is given as the proportion of the total budget
available, with 0 being no investment and 1 corresponding to investment of all
available budget into the public good. In the case of the D. discoideum system,
this represents the proportion of cells that a strain invests into stalk production.
For illustration, the optimal level of investment (ΘG) resulting from the relative
costs and benefits is 0.3. To capture different strengths of selection on in-
vestment (Γ; see Eq. 5), the bold lines were plotted for a strength of selection
where Γ = 2, with the shaded region indicating the range from Γ = 1 to 4.

E4824 | www.pnas.org/cgi/doi/10.1073/pnas.1716087115 Madgwick et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1716087115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1716087115


player with higher relatedness to the group has the incentive to
invest because their interests are more closely aligned with those
of the group (and hence investing maximizes their fitness; see SI
Appendix, Fig. S2), while the player(s) that is less related to the
group does best by withholding investment (or underinvesting)
and exploiting the investment of their partner(s) (SI Appendix,
Fig. S2). Consequently, under these conditions, the player with
the lower relatedness will have higher relative fitness than the
player with higher relatedness because of this exploitative be-
havior (Fig. 2 B and E; see also SI Appendix, Fig. S1 B, E, H, and
K). In contrast, when the players have similar levels of re-
latedness to the group, neither is expected to be willing to invest
heavily, leading to a pattern of underinvestment in the public
good (Fig. 2 C and F; see also SI Appendix, Fig. S1 C, F, I,
and L).
Because organisms in nature presumably rely on some cue(s) to

measure their level of relatedness to the group (which would
represent a mechanism of kin discrimination), we also evaluated
how the patterns would be affected if individuals make errors
when measuring relatedness (with the patterns in Fig. 2 and SI
Appendix, Fig. S1 illustrating the scenario of no measurement
error). We included measurement error in the model by in-
tegrating over a Gaussian distribution centered on the true re-
latedness (allowing us to vary the degree of error by modulating
the SD of the error distribution; SI Appendix, Fig. S3). We further
assumed that measurement error depends on group complexity
and so is high at intermediate levels of relatedness (where group
composition is the most complex) and low when one player has
very high relatedness to the group. This extension of the model
provides us with a robust and clear set of predictions for what to
expect in nature (see Fig. 3 for an example and SI Appendix, Fig.
S4 for illustrations across parameter space). Together, the Col-
lective Investment game reveals that although the exact patterns
will depend on the relative costs and benefits of public good
production (which will determine the optimal level of investment
and the relative strength of selection on investment patterns) and
the degree of error in measurement of relatedness, the qualitative
patterns of individual investment, relative fitness, and collective
investment are consistent across parameter space (see also SI
Appendix, Fig. S2B for an illustration of absolute fitness).

Individual and Collective Investment in D. discoideum. To test whether
organisms are able to deploy the relatedness-dependent (and hence
frequency-dependent) strategies predicted by the Collective In-
vestment game, we measured patterns of investment into a public
good in the social amoeba D. discoideum. Free-living D. discoideum
amoebae initiate a social cycle in response to starvation (48, 49).
Thousands of amoebae aggregate to form a multicellular fruiting
body with a supporting stalk composed of dead cells that holds aloft
a sporehead. The stalk structure is thought to have evolved to
aid spore dispersal, and it has been shown experimentally that
an intact fruiting body does indeed increase dispersal (al-
though dispersal is not eliminated by stalk removal) (50).
Stalk-cell differentiation has typically been viewed as altru-
istic self-sacrifice for the benefit of the cells in the sporehead
(49, 51–53). However, this perspective ignores the implica-
tions of collective investment on the group’s success: If a
genotype only produced altruists then there would be no
spores to reap the benefits of stalk investment, and likewise if
a genotype only produced spores then they would be unable
to reap group benefits of producing a stalk (Fig. 1A). Con-
sequently, there must be some intermediate level of stalk
investment that is favored by natural selection that balances
these costs and benefits (Fig. 1B). Indeed, laboratory measure-
ments reveal that typically 25–35% of cells are allocated to the
stalk-cell fate (54, 55).
Multicellular aggregations can also be composed of multiple

strains (i.e., can be chimeric), providing the opportunity for
conflict over stalk investment (49, 56). Conflict arises because
the different strains within an aggregation each contribute to the
costs for building the stalk, while all members of the aggregation
benefit equally. Thus, stalk investment in D. discoideum fits the
scenario modeled by the Collective Investment game. In our
direct fitness accounting, different strains are the relevant
fitness-maximizing strategists, with the proportion of cells killed
by the strain to build the stalk representing their investment into
the public good, and their relative frequency within the aggre-
gation determining their relatedness to the group (Fig. 1). Fur-
thermore, D. discoideum provides an ideal model social system to
experimentally test the predictions made by the Collective In-
vestment game because group composition can be manipulated
and corresponding patterns of investment can be measured
quantitatively (49). Specifically, the ESS of the Collective In-
vestment game predicts that D. discoideum strains should show
relatedness-dependent patterns of investment, meaning that their
investment should change as a function of their frequency in a
group. When a strain is at low frequency in the aggregation they
would be predicted to invest little or nothing into the stalk (hence
produce mostly spores), while a strain that is at a high frequency in
an aggregation should invest at a level that is close to their clonal
investment (Fig. 2 A and D). This pattern of investment results in a
return on investment, and hence relative fitness, that is highest
when a strain is at low frequency in an aggregation and hence has

A B C

D E F

Fig. 2. Examples of the predictions of the Collective Investment game (and
specific application to the D. discoideum system). Predictions are plotted as a
function of a focal player’s relatedness to the group (i.e., a strain’s frequency in
the group). For A–C the optimal investment (ΘG) was fixed at 0.3 and the
strength of selection (Γ) was varied, while for D–F the strength of selection was
fixed at 2 and the optimumwas varied. (A and D) Predicted Investment ðIijpi

Þ in
the public good (stalk investment) as a function of relatedness (frequency). (B
and E) Predicted relative payoff (fitness) (ρi) as a function of relatedness
(frequency). (C and F) Predicted collective investment ðIGÞ for a pair of players
as a function of the relatedness (frequency) of the focal player to the group
(see SI Appendix, Fig. S1 for illustrations across other parameter values).
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Fig. 3. Illustration of the predictions of the Collective Investment game for the
case where players make errors when measuring their relatedness. This corre-
sponds to the scenario where players have imperfect information about their
relatedness and are estimating their relatedness from some cues. The structure
of the figurematches that of Fig. 2. InA–C the optimal level of investment (ΘG) is
0.3 and the strength of selection (Γ) is 2. Lines withinA–C correspond to different
values of error (σ) in measurement of relatedness (frequency in the group) (see SI
Appendix, Fig. S4 for illustrations across other parameter values).
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low relatedness (because it exploits its partner as a free rider) and is
lowest when it is at high frequency and hence has high relatedness
(because it pays the cost of being exploited). Consequently, the
expected relative fitness of the lower-frequency player is always
higher than that of the higher-frequency player (Fig. 2 B and E).
To test these predictions, we measured the behavior of cooc-

curring natural D. discoideum strains in clonal and chimeric
development. We examined the fit to theoretical predictions
using data from 10 naturally cooccurring strains, which represent
the spectrum of genetic diversity within a natural population
(57), interacting in 34 different chimeric pairings. To vary levels
of relatedness we combined pairs of strains across a range of
frequencies (at least five different frequencies per replicate, for a
total of 944 chimeric combinations). On average, strains show
patterns of frequency-dependent investment in the stalk in
pairwise mixes that match the qualitative predictions of the ESS
in the Collective Investment game (compare Fig. 4A with Fig.
4D; see also expected values in Figs. 2 A and D and 3A). Strains
invest little into the stalk when their relative frequency in a group
is low and much more when their relative frequency is high [χ2(3) =
181.5, P < 10−38; see also SI Appendix, Fig. S5 A and B for high-
resolution illustrations of patterns from two pairings]. Overall, the
pattern very closely corresponds to the quantitative predictions of
the model (Fig. 4 A and D). Strains approach zero investment

when they are at a very low frequency in a group, whereas their
investment is close to the optimal level of investment (assumed to
be about 30% of their cells into stalk) when their frequency in a
group approaches 100%. This pattern of investment leads to the
pattern of frequency-dependent relative fitness predicted by the
Collective Investment game (Figs. 2 B and E and 3B) in which
strains have a high relative fitness when they are at a low fre-
quency in a group and low relative fitness when they are at high
frequency [χ2(3) = 348, P < 10−75; compare the illustration of
expected values in Fig. 4B with the experimental results in Fig. 4E
and see also SI Appendix, Fig. S5 C and D]. Importantly, these
results imply that all strains will appear to behave as cheaters when
at low frequency in groups and as cooperators when at high
frequency.
The predictions of the Collective Investment game can also be

viewed from the perspective of the aggregate behavior of the
strains in terms of total collective investment. Experimental
measurements of total collective investment as a function of the
relative frequencies of strains shows the predicted pattern of
relative investment in stalk across frequencies in a group (Figs. 2
C and F and 3C), where investment is lowest when strains are at
the same frequency and increases exponentially as the difference
in their frequencies increases (i.e., as frequency of the focal
strain approaches zero or one) [χ2(2) = 144.3, P < 10−32; compare

A B C

D E F

Fig. 4. Patterns of stalk investment, relative fitness, and collective investment as a function of strain frequencies in chimeric aggregations. A–C illustrate expected
patterns under parameter values that resemble the empirical results [using the same equations (Eqs. 11–13) to calculate model expectations as those used for
empirical estimation], with the bold line corresponding to the case where ΘG = 0.3, Γ = 2, and σ = 0.50, with the shading spanning a range of error in mea-
surement of frequency (relatedness) (σ = 0.25 to σ = 0.75). D–F show empirical results from the set of 34 chimeric pairs (n = 944 total chimeric mixes), with the
points representing the means and the bars their SEs, estimated from amixed model (following the model structure inMaterials andMethods, but with frequency
as a categorical factor). (D) Individual stalk investment by a focal strain as a function of its frequency in a chimeric aggregation. (E) Relative fitness for a focal strain
as a function of its frequency in a chimeric aggregation. (F) Collective investment by chimeras as a function of the frequency of a randomly assigned focal strain to
the chimeric aggregation. In D and E the bold curve represents the best-fit estimate from the cubic regression model (here fitted to the estimated means). For F,
the curve represents the best-fit estimated from a quadratic regression model (fitted to the estimated means). For all three figures (D–F) the shaded region
indicates a one SE interval on either side of the best-fit line. Individual (A and D) and collective (C and F) investment values were rescaled by subtracting 1−ΘG

from the raw measures, under the assumption that ΘG = 0.3 (therefore, the value labeled as ΘG corresponds to a value of 0.3 in the figure).
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the illustration of expected patterns in Fig. 4C with empirical
results in Fig. 4F and see also SI Appendix, Fig. S5 E and F].

The Prisoner’s Dilemma and How to Avoid It. Although the ESS is
characterized by continuously variable relatedness-dependent
(or frequency-dependent) behavior (Fig. 2), to achieve a more
intuitive understanding we can link the payoff structure at any
particular group composition to canonical games. To do so, at a
given group composition we can compare the relative payoffs to
a player that defects by making no contribution and the relative
payoffs to a player that cooperates by making a contribution
(Materials and Methods). We consider a scenario to be akin to the
Prisoner’s Dilemma when defection is the best strategy for both
players, regardless of the opponent’s strategy. In the Snowdrift
game, we expect players to adopt opposite roles, with one
cooperating and the other defecting. Therefore, we consider two
different scenarios to be akin to the Snowdrift game. The first
scenario follows the structure of the classic symmetrical game,
where players are better off defecting against a cooperator and
cooperating against a defector. The second scenario occurs when
there is an asymmetry between players that dictates their roles in
the Snowdrift game, with one player doing best by cooperating
while the other does best by defecting.
The exact nature of payoffs depend on the model parameters,

but in general, when the players’ differ widely in their relatedness
to the group, we find that the pattern of joint payoffs are akin to
the Snowdrift game and when they have similar levels of re-
latedness to the group it is akin to the Prisoner’s Dilemma (12,
23) (Fig. 5). Under the Snowdrift game, one player adopts the
role as the cooperator and the other as the defector, which re-
sults in relatively high fitness for the group. By adopting different
roles, the defector receives a higher payoff than the cooperator,
but the cooperator is willing to adopt that role because it is better
off cooperating than defecting when its opponent defects (23). In
the context of the Collective Investment game, it is the asym-
metry in relatedness to the group that drives the players to adopt
the two roles (Fig. 5), with the player that is more related to the
group acting as the cooperator while its opponent is able to
defect (Figs. 2 A and D and 3A), leading to a higher relative
payoff to the defector (Figs. 2 B and E and 3B). In contrast,
under the Prisoner’s Dilemma conditions (Fig. 5), both players
do best by defecting, which leads to low collective investment
(Figs. 2 C and F and 3C). These game scenarios help explain the
pattern of collective investment in stalk that we observe in the
D. discoideum system (Fig. 4F): Under the Snowdrift game
conditions we see collective investment approach the level seen
in clonal development (which presumably evolved to maximize
group fitness), whereas under the Prisoner’s Dilemma conditions
we see underinvestment.
We expect the predicted collective underinvestment under the

Prisoner’s Dilemma conditions to be detrimental compared with
the higher investment under Snowdrift conditions. We tested this
by measuring the proportion of fruiting bodies that collapsed due
to inadequate investment in the stalk. Fruiting bodies made by
chimeric mixtures (using all pairwise 50:50 mixes of 10 natural
strains) were found to have spontaneously collapsed more often
than those made by clonal groups [12% versus 1.1%, F(1,52.3) =
10.4, P = 0.002]. Furthermore, we expect the stability of fruiting
bodies to reflect the overall level of collective investment in stalk,
which should be manifested as an inverse relationship between
the level of collective investment (Fig. 4F) and the probability of
fruiting-body collapse. We tested this prediction using data from
four pairs of strains measured at seven frequencies and find the
expected negative correlation between collective investment for
a given pair and probability of their fruiting bodies collapsing
(r = −0.94, P = 0.0009). This relationship between investment
and fruiting-body stability underlies a strongly frequency- (and
hence relatedness-) dependent risk of fruiting-body collapse,
with risk of collapse peaking when is there is no asymmetry in the
frequency of the strains (i.e., both strains at a frequency of 0.5)
and declining exponentially as the difference in frequencies

increases (i.e., on either size of a frequency of 0.5) [χ2(4) = 403,
P < 10−86; Fig. 6A and SI Appendix, Figs. S6 and S7]. If we use
fruiting-body stability (which is simply 1 minus the probability of
fruiting-body collapse) as a proxy for the dispersal success of a
group [ϕdispersalðGÞ] and the estimates for individual stalk in-
vestment (Fig. 4D) to estimate fitness through spores (as simply
1 minus the proportion of cells invested in stalk; see Eq. 1), we
can generate an approximate pattern of individual fitness (Eq.
3). Despite the fact that our laboratory-based measure of
fruiting-body stability provides only a rough approximation for
group fitness through dispersal, we find that the pattern of in-
dividual fitness closely matches the pattern expected under
the Collective Investment game (SI Appendix, Fig. S2 C and D).
The resulting fitness pattern illustrates that individuals will
have the lowest possible fitness when at intermediate frequencies
and, while individuals always do best at very low frequency in a
group, individual fitness increases toward both frequency extremes.
The finding that individuals suffer a much larger cost from

conflict when trapped in the Prisoner’s Dilemma-like conditions
at intermediate levels of relatedness (Figs. 5 and 6A) raises the
question of why strains would engage in cooperative fruiting-
body formation under these conditions. Indeed, widespread
(imperfect) strain segregation is a known mechanism in D. dis-
coideum for avoiding chimerism when strains are mixed at equal
frequencies and developed on a natural soil substrate (58, 59),
with two rapidly evolving genes being thought to be principally
responsible (57, 58). Although the mechanism by which these
genes regulate segregation remains to be fully elucidated, there
is evidence to suggest that a critical mass of self–self interactions

Defect

Invest
Prisoner’s 
Dilemma

Snowdrift Snowdrift

Focal player’s relatedness to group
(Focal strain’s frequency in group)

Conflict

Fig. 5. Payoff structure of the Collective Investment game and relationship to
classic games. Payoffs are characterized in terms of whether defection or in-
vestment is favored, or whether the best strategy depends on the investment by
the opponent (labeled as Conflict). The best strategy for the focal player is
shown in red and that of their opponent in blue. When both players do best by
defecting the overall payoff structure is akin to the Prisoner’s Dilemma, and we
see low levels of total investment (Fig. 2). When one player does best by
investing while its opponent does best by defecting the overall payoff structure
is akin to an asymmetric Snowdrift game, where the difference in relatedness
determines which player takes the role as the cooperator (with the player with
higher relatedness making the investment in cooperation). Bridging these two
regions is a zone of conflict. The bold lines correspond to a level of investment
of 1=2ΘG, with the shaded region spanning the range from 1=4ΘG to 3=4ΘG.
The shaded region illustrates that the zones corresponding to the different
games will depend on how much an individual invests when cooperating.
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is required for the coordinated directional motility that is nec-
essary to form independent cooperating groups (60). We might,
therefore, expect strains to only show segregation when faced
with Prisoner’s Dilemma-like conditions (i.e., low asymmetry in
relatedness), while remaining in aggregations when in Snowdrift-
like conditions of high asymmetry in levels of relatedness. In-
deed, as predicted, we find that segregation is highest when there
is little asymmetry in frequencies (relatedness) and declines ex-
ponentially as the difference in frequencies increases [χ2(2) = 19,
P < 10−4; Fig. 6B]. The frequency-dependent nature of segre-
gation suggests that it may not have evolved as a mechanism of
“cheater avoidance,” as has previously been suggested (57–59),
but rather as a mechanism for reshaping group composition to
generate asymmetry in relative frequencies (resulting in a sce-
nario where there will typically be a strain with high relatedness to
the group), thereby avoiding the pernicious Prisoner’s Dilemma-
like conditions and entering into the more favorable Snowdrift-
like conditions.

The Logic of Collective Investment. The Collective Investment
game and the supporting empirical data from the D. discoideum
system have broad implications for our understanding of co-
operative behavior. From the perspective of kin selection theory,
an individual’s relatedness to the group governs whether the
personal cost of contributing to public goods is outweighed by
the benefit. Consequently, if individuals can measure their re-
latedness to groupmates, we would expect to see them invest in a
way that maximizes inclusive fitness in terms of the balance be-
tween the benefit to kin in relation to the costs to self (following
Hamilton’s rule in the context of the ESS, which means that the
optimal strategy depends on the behavior of opponents). Ap-
plying this logic to the D. discoideum system, an individual cell
should modulate its “willingness” to differentiate into a stalk cell
based on its measurement of relatedness to other members of
its aggregation, with the actual level of investment being de-
termined by the benefits of producing a stalk relative to the cost
of diminished spore production. From an economics perspective,
we can view players as investors in some collective venture who
are out to maximize return on investment, with relatedness
representing their level of stake or “ownership” in the venture.
When a player has a low relatedness to the group, their personal
investment can have little effect on the overall performance of
the venture (regardless of how much they invest), so they are
better off withholding their investment. In contrast, when a player

has high relatedness to the group their investment can have a
large impact on the performance of the venture. Therefore, they
should be willing to invest more heavily. In the context of the
D. discoideum system, this perspective logically implies that a
strain at a low frequency in an aggregation cannot affect the
performance of the fruiting body regardless of how much it invests
into stalk, and hence that strain should withhold their investment.
Finally, we can view the scenario from the perspective of a dy-
namic game, with individuals as players out to maximize their
payoff. From this perspective, a player contributes to the public
good because they directly benefit from their own contribution
and the optimal strategy is determined by the benefit they receive
in relation to the cost paid (Fig. 1A). Players with low represen-
tation in the group do not contribute much to the public good
because their contribution is diluted by the group, so they receive
back only a small fraction of what they invest. In contrast, a player
with high representation in the group should invest more because
they receive back most of the benefit, and consequently they are
mostly helping themselves through production of the public good.
In the context of theD. discoideum system, this perspective implies
that a strain with a high frequency in an aggregation should con-
tribute heavily to stalk production because most of the benefit
goes to their own spores, and lower investment would only hurt
them. The result is that a strain with a lower frequency, which
would see little return on its contribution, can be exploitative since
it is in the best interests of a common strain to build a stalk to its
own benefit.
Although these different perspectives suggest different logical

explanations for why and how individuals should invest in public
goods, they are ultimately interchangeable since all are based on
the same underlying framework. All suggest that organisms
should adopt dynamic strategies in which they modulate their
contribution to cooperation through public goods in relation to
their relatedness to the group. Furthermore, it suggests that
approaches where organisms are simply classified as cooperators
and cheaters (11, 12, 61) will often fail to capture the true nature
of cooperative behavior in many systems. Indeed, the same in-
dividual or genotype could be expected to be cooperative or
exploitative depending on their relatedness to the group. This
scenario is clearly realized in the D. discoideum system. Although
strains have typically been viewed as cooperators and cheaters
(49, 62–64), the striking fit of the observed investment behavior
by natural strains to the predictions of the Collective Investment
game (Fig. 4) provides strong evidence they cooperate through
the implementation of a dynamic frequency-dependent strategy.
As a result, all strains can appear as cheaters when they are at a
relatively low frequency in a group and as cooperators when they
are at a relatively high frequency. Our finding that even simple
organisms like a social amoeba can implement the sorts of savvy
relatedness-dependent investment suggests that these dynamic
adaptive strategies may be common in nature.

Materials and Methods
The Collective Investment Game. The Collective Investment game is a two-player
game in which each individual makes an investment into a public good and
receives a payoff as a function of their own investment and the collective
investment of the pair. The structure of the game is related to economic games
of public goods (4, 7) but differs in that the return on investment is a function
of a player’s relatedness to the group. The game is described with reference to
the D. discoideum system but the basic structure is easily adapted for other
systems. The players are different genotypes (strains) but in principle can
represent any evolutionarily relevant fitness-maximizing agent. Within an
aggregation (which represents the group or collective) strains may have
varying relative frequencies or proportions (pi). The frequency of a strain in a
group is equivalent to whole-group relatedness since it represents the average
relatedness of a randomly selected cell to the entire group (self-included) (20,
21). We present the model results and insights with regard to relatedness in
keeping with theory but discuss the results in the context of frequencies of
strains within a group to provide a clear link to the experimental methods.

Strains invest a proportion of their cells into stalk (Iijpi
) and the rest (1− Iijpi

)
into spores (with the level of investment potentially depending on their pro-
portion, pi). Therefore, their level of investment represents the proportion of
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Fig. 6. Empirical measures of fruiting-body stability and segregation behavior.
(A) The proportion of fruiting bodies that spontaneously collapsed as a function
of the frequency of the focal strain in each mix (estimated from six chimeric
pairings; n = 324). (B) The relative degree of segregation as a function of the
frequency of the designated focal strain. Measurements are from three differ-
ent chimeric pairings across the nine frequencies (n = 692 total sporeheads, with
an average of 25.6 sporeheads measured for each pair at each frequency). In A
and B, the points represent the means and the bars their SEs, estimated from a
mixedmodel (following themodel structure inMaterials andMethods, but with
frequency as a categorical factor). For A, the curve gives the best-fit cubic re-
lationship while for B the curve gives the best-fit quadratic relationship (with
the shaded region indicating a one SE range on either side of the curve).
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their entire “budget” of cells that are allocated toward stalk production
(hence 0 ≥ Iijpi

≤ 1). Investment into stalk is costly because it reduces the total
number of spores a strain can produce and hence the “payoff” (component of
fitness) to a strain through spores declines (at a rate of γs) as a function of their
investment in stalk (Fig. 1A):

ϕsporesðiÞ = 1− γsIijpi
. [1]

The payoff is scaled to a value of 1 when no cells are invested into stalk.
Strains presumably invest in building a stalk to facilitate dispersal of spores

(49, 50, 56). While the cost of investing into the stalk is paid by the individual
strain from their total budget of cells, the benefit (payoff) gained from
dispersal depends on the architecture of the fruiting body, and hence on
collective investment into the stalk (which is simply the weighted average of
the stalk allocation of the two players, IG =

P ​ Iijpi
pi). We model the perfor-

mance of the fruiting body for spore dispersal as an increasing function of
collective investment:

ϕdispersalðGÞ = 1+ γdIG, [2]

where γd gives the rate at which the payoff through dispersal increases as a
function of investment into stalk (Fig. 1A). As with the payoff through
spores (Eq. 1), the payoff through dispersal is scaled to a value of 1 when no
investment is made. For both payoff functions (Eqs. 1 and 2) the qualitative
results do not depend on this scaling, so the baseline value of 1 is used in
both cases for simplicity. Similar cost/benefit relationships underlie a wide
array of models that consider tradeoffs, such as models for the evolution of
life histories (e.g., models of clutch size and parental investment). For ex-
ample, models for the evolution of parental investment assume increasing
investment per offspring is costly because it reduces fecundity but beneficial
because it increases offspring survival. Although, like many of these models,
we assume a linear relationship between investment and costs/benefits, the
qualitative results are robust across an array of relationships (so long as costs
and benefits both increase with investment).

The overall success of a strain is determined by its payoff through spores
weighted by the overall performance of the fruiting body. This is consistent with
evolutionary theory, such as models that consider trade-offs between compo-
nents of fitness or episodes of selection, and is necessary to properly account for
the influence of multiple factors affecting fitness. For example, to calculate total
parental fitness inmodels for the evolutionof parental investment, it is necessary
to multiply an individual’s fecundity (number of offspring produced) by the
expected survival of the progeny they produce (since the product represents
the number of surviving offspring). In terms of the D. discoideum system, the
expected success of each spore depends on its expected dispersal, and hence
fitness of a strain is the product of spore number and spore dispersal:

ωi =ϕsporesðiÞϕdispersalðGÞ. [3]

The overall success of a group is simply the average fitness of its members (Eq. 3),
ωG =

P​ωipi, which is equivalent to the expected payoff for the group through
spores weighted by the payoff through dispersal, ωG =ϕsporesðGÞϕdispersalðGÞ
(where the group payoff through spores is the weighted average of the spore
production by group members, ϕsporesðGÞ =

P
​ ϕsporesðiÞpi). The trade-off between

spore production and spore dispersal reflected in the payoffs (Eqs. 1 and 2; see
Fig. 1A) results in a quadratic relationship between collective investment and
group success (Fig. 1B). From this relationship, we can derive the level of col-
lective investment (IG) that maximizes group success (IG =ΘG), which represents
the most efficient (welfare optimal) allocation of cells to stalk and spores that is
possible given the costs and benefits of stalk investment:

ΘG =

8><
>:

1
2

�
1
γs
−

1
γd

�
, if

�
1
γs
−

1
γd

�
> 0

0, otherwise

, [4]

where the condition ensures that investment is nonnegative. Therefore, the
optimal level of investment into stalk (in terms of group success) is de-
termined by the relative importance of payoffs through spores versus
through dispersal. Consequently, under any conditions where the benefits of
dispersal outweigh the cost to spore production, the collective will have
highest overall success at some intermediate level of investment into stalk.
Because aggregations of D. discoideum invest into stalk while also producing
spores, the pattern of payoffs in nature must result in such an intermediate
optimum. The strength of selection on fruiting-body architecture (Γ) is given
by the rate at which group success declines as the level of investment de-
viates from the group optimum:

Γ=−γsγd . [5]

The value of Γ represents the curvature of the relationship between col-
lective investment and group success (i.e., it is the quadratic coefficient for
the parabolic relationship between collective investment and group success;
see Fig. 1B).

While Eq. 4 represents the optimal investment into stalk for a group,
individual players (strains) within a group should invest in a way that max-
imizes their expected individual fitness (Eq. 3). The optimal level of in-
vestment for a given player (a strain) is a function of their relatedness to (i.e.,
frequency in) their group:

Θi =

8><
>:

1
2

�
1
γs
−

1
γdpi

−
Ijjpj

pj

pi

�
, if

�
1
γs
−

1
γdpi

−
Ijjpj

pj

pi

�
>0

0, otherwise

. [6]

Logically, the optimal level of individual investment corresponds to the value
that maximizes group success (Eq. 4) when a strain is clonal (pi = 1). At all
other frequencies, the optimal level of investment will be lower than the
value that maximizes group success (since 0 ≥ Ijjpj

≤ 1 and 0 > pi < 1). The level

of investment given by Eq. 6 represent the ESS for a strain, but because the
optimal level of investment by each strain depends on the level of in-
vestment by other strains, the actual level of investment will depend on the
joint resolution of that interdependence. As a result of this interdependence,
the constraints on the range of investment values (0 ≥ Iijpi

≤ 1), and the
constraints on the range of frequencies (0 ≥ pi ≤ 1), we use numerical so-
lutions from Eq. 6 to illustrate the patterns of the ESS under different con-
ditions (discussed below).

To understand the properties of the ESS consider the case where other
strains make no investment, such that the ESS is simply 1=2ð1=γs − 1=γdpiÞ (or
zero when the term is negative). This level of investment represents the
most economically “efficient” strategy for a strain. Under these conditions,
when the optimal strategy is to make a nonzero stalk investment, the two
terms in parentheses must be greater than zero, with the first term (1=γs)
representing the reciprocal of the cost of investing and the second term
(1=γdpi) the reciprocal of the benefit of investing. Thus, at the optimal
payoff piγd > γs, which is a form of Hamilton’s rule (19, 65), the kin selection
benefits (piγd) must outweigh the costs (γs). The third term in parentheses
(Ijjpj

pj=pi) reflects the dispersal benefit to the focal strain arising from in-

vestment into stalk made by other strains, with the numerator (Ijjpj
pj) rep-

resenting the total investment made by others. The ESS deviates from the
most efficient strategy because any investment made by other strains in-
creases the value of the focal strain’s spores, and hence increases the cost of
making their own investment. This term can be viewed from an economic
perspective as an “opportunity cost,” where a strain has the opportunity to
gain from the dispersal benefit provided by the investment made by others
and loses that opportunity when those spores are killed to invest into stalk.
The kin selection consequences of this opportunity cost can be seen by ex-
amining the conditions where the ESS level of investment is nonzero, which
correspond to piγd > γsð1+ γd Ijjpj

pjÞ. Consequently, if we view these condi-

tions as a form of Hamilton’s rule, we can see that the dispersal benefit to
kin from investing has to overcome both the direct cost from making an
investment and the additional cost arising from the missed opportunity to
exploit investments made by others.

We can also view the cost of investment into stalk in terms of its effect on the
representation of a strain in the sporehead of their group (p’

i), which defines
their within-group fitness. Their representation is determined by their in-
vestment in stalk relative to the overall investment made by the group:
p’
i =pið1− Iijpi

=1− IGÞ. The within-group fitness can be calculated as a strain’s
representation in the sporehead relative to its frequency in the group:
ω̂i =p’

i=pi, making the relative (within-group) fitness of a strain (ρi = ω̂i=ω̂j):

ρi =
1− Iijpi

1− Ijjpj

. [7]

Therefore, relative fitness within a group is a direct function of the relative
investment made by strains. The pattern of relative fitness within a group is
similar to the pattern of relative absolute fitness (ωi=ωj), which is simply
ð½1− γsIijpi

�=½1− γsIjjpj
�Þ.

The Nature of the Game. To understand the properties of the ESS we can
characterize the payoffs to players in relation to the payoff structures of the
Prisoner’s Dilemma and Snowdrift games (23). This analysis allows us to

Madgwick et al. PNAS | vol. 115 | no. 21 | E4829

EV
O
LU

TI
O
N

PN
A
S
PL

U
S



relate the game’s properties to the intuitive framework of existing well-
understood models. However, to achieve this goal we need to first address
the fact that the investment game differs from the canonical games in three
key aspects. First, the investment game differs in that expected payoffs vary
as a function of relatedness, so there is no single payoff matrix but rather a
relatedness-dependent payoff function. Therefore, we need to evaluate the
properties of the game across levels of relatedness, which allows us to un-
derstand how the properties of the game change as a player’s relatedness to
the group changes. Second, when the opposing players differ in their re-
latedness to the group, they will also differ in their expected payoffs.
Therefore, we need to consider a separate payoff matrix for each player at
each level of relatedness. Finally, because investment into public goods can
vary quantitatively, the game does not have discrete strategies that corre-
spond to fixed alternative strategies like cooperate or defect. There are
several logical alternative ways to consider cooperation versus defection and
the type of game that a scenario corresponds to necessarily depends on the
level of investment being made by a cooperator. The higher the investment
made by a cooperator the higher the rewards for defection, which changes
the optimal response (Eq. 6). Therefore, we use a simple framework where
we consider defection as the case where individuals make no contribution to
the public goods and cooperation as the case where individuals make some
nonzero contribution (the size of which we vary in our analysis of the game).

The game scenario depends on payoffs to a player in terms of their
expected fitness (ωi, Eq. 3) under four scenarios (stating the focal player’s
strategy first): cooperate against a cooperator (CiCj), cooperate against a
defector (CiDj), defect against a cooperator (DiCj), or defect against a de-
fector (DiDj). Because we are primarily interested in how payoffs lead to
“motivation” for a player to invest or defect, we consider “weak” forms of
the games rather than the overall structure of the payoff matrices. That is,
we consider whether a player’s fitness is increased or decreased by making a
contribution to public goods when their opponent either cooperates (makes
a contribution) or defects (withholds their contribution). Payoffs are classi-
fied as being Prisoner’s Dilemma-like when a player is better off defecting
regardless of the strategy of their opponent (DiCj > CiCj and DiDj > CiDj) and
Snowdrift-like when they are better off defecting against a cooperator and
cooperating against a defector (DiCj > CiCj and CiDj > DiDj). If a player is
better off cooperating regardless of the strategy of their opponent (CiCj >
DiCj and CiDj > DiDj) we consider their strategy as selfish investment,
meaning they are favored to cooperate because it is in their own selfish
interests regardless of what their opponent does.

Both players can “agree” on the game being played or, because of the
asymmetry in payoffs, they can disagree. When both agree that the game is
Prisoner’s Dilemma or Snowdrift we classify the scenario as the agreed
game. Disagreement over the game being played generally arises when one
player views the scenario as favoring selfish investment, while the other sees
the scenario as a Prisoner’s Dilemma. This scenario is analogous to the ESS
for an asymmetrical Snowdrift game, with one player getting a payoff for
cooperating with a defector and the other getting the payoff for defecting
against a cooperator. In this case, the asymmetry in relatedness determines
which player will take the role as cooperator and which as defector (with the
higher-relatedness player being the cooperator). Hence, we describe this
scenario as being like an asymmetrical Snowdrift game.

Imperfect Information. The derivation of the Collective Investment game im-
plicitly assumes that players (strains) have perfect information about their re-
latedness to the group and can therefore adjust their investment accordingly. In
the context ofD. discoideum, “information” is the output of anymechanism that
provides feedback to cells that reflects their frequency in a group, and hence can
potentially arise frommany molecular mechanisms. Of course, if the players have
no information about their relatedness we would not expect to see any
relatedness-dependent changes in stalk investment, so any frequency-dependent
change in behavior must correspond to some information (regardless of whether
it is actively or passively acquired). Presumably any molecular mechanism or re-
sponses to information should have some degree of noise, resulting in random
error in the measurement of relatedness. In the D. discoideum system, random
noise could simply represent the variation from cell to cell in their measurement
of their frequency, so the entire group of cells from a strain measures their fre-
quency with some noise. The mean of their measurement could be accurate, but
the individual cells would respond as if they were at a different frequency,
making the response deviate from the perfect information case.

We modeled error using a Gaussian probability density function (PDF),
where themean of the PDF represents the true frequency (relatedness) of the
strain and the SD the level of noisiness (SI Appendix, Fig. S2). We assume that
measurement error depends on the complexity of group composition, so the
magnitude of the error (i.e., the SD of the PDF) was weighted by 4p1p2

(which has a maximum value of 1 when p1 =p2 and declines to zero as either
strain nears a frequency of 1). Logically, this implies that strains are much
more able to measure their frequency (relatedness) when they are at ex-
treme frequencies than when they are at intermediate frequencies in a
group. For example, a strain would be better able to distinguish between a
true frequency of 0.01 and 0.21 than it would be able to distinguish between
0.4 and 0.6. Analyses were integrated over all possible frequencies (from 0 to
1), with the probability that a strain behaves as if it has a particular fre-
quency being given by the PDF weighted by the group complexity term.
Because each player assesses their own frequency, analyses at a given fre-
quency require integration over all possible pairwise frequencies.

Model Predictions. To generate predictions for collective investment in D.
discoideum, we varied the relative cost to spore production (γs) and benefit
from dispersal (γd) from stalk investment to alter the strength of selection on
fruiting-body architecture (Eq. 5). For most illustrations in the main text we
restricted the parameters to values that result in an optimal level of clonal
investment of 30% of cells to the stalk, which corresponds to the approximate
pattern observed in naturally derived strains (54, 55). However, in Fig. 2 D–F
we hold the strength of selection constant (at Γ= 2) and vary the optimal level
of clonal investment to illustrate the impact of different optima. We illustrate
a much wider range of parameter space in SI Appendix, Fig. S1, varying both
the strength of selection and the clonal investment optimum systematically
across panels. Within the range of values that keep fitness nonnegative, the
strength of selection on allocation of cells and the clonal investment optimum
(which are both determined by the values of γs and γd; see Eqs. 4 and 5) do not
change the qualitative predictions of the model.

At each frequency (relatedness) we solved the ESS level of investment (Eq. 6)
for the two players. Exact solutions were generated using the Solve function in
Mathematica 10.0 (Wolfram Research, Inc.). Given the ESS level of investment,
we calculated absolute and relative (within-group) fitness of each player and
the level of collective investment. We also analyzed the game scenarios under
each scenario to link these patterns to the logic of the Prisoner’s Dilemma and
Snowdrift games. To link the model results to the experimental data we also
calculated individual and collective investment following the methods used in
the experimental work (where all measures are based on spore counts and
representation in chimeric sporeheads, discussed below).

Measurement of Spore Allocation. We followed well-established D. discoideum
protocols (29, 48, 54), which are therefore only briefly outlined here. We used
a set of 10 naturally cooccurring strains of D. discoideum from Little Butt’s
Gap, NC (NC28.1, NC34.2, NC52.3, NC60.1, NC63.2, NC69.1, NC71.1, NC80.1,
NC99.1, and NC105.1) that have previously been used in several studies of
social interactions (29, 57, 66). All strains were grown on SM plates with
Klebsiella aerogenes as a food source. Before aggregation, cells were har-
vested and washed of bacteria by repeated centrifugation in KK2 (16.1 mM
KH2PO4 and 3.7 mM K2HPO4). To construct experimental chimeras we re-
ciprocally mixed cells from a strain that was fluorescently labeled with 10 mM
CellTracker Green CMFDA (5-chloromethylfluorescein diacetate) dye with an
unlabeled partner treated with DMSO to control for any effect of labeling.
Clonal sets of labeled and unlabeled cells were also created to provide a
measure of any counting bias. Cell mixes were plated for development on
1.5% KK2 purified agar plates (surface area ∼21.3 cm2), at a density of 4.7 ×
105 cells per cm2. Relative proportional representation of the focal strain in the
sporehead was primarily determined by counting the percentage of fluores-
cent spores using flow cytometry. However, for some sets of replicates from
two pairs (NC28.1+NC63.2 and NC34.2+NC105.1) measurements were done by
microscopy (with spores washed into 5 mL spore buffer and imaged using a
fluorescence imaging system). Despite the fact that two different methodol-
ogies were used to measure relative spore number, the patterns of relative
representation in the sporehead were indistinguishable. Because of technical
limitations associated with the labeling process, an average of 0.3% (SD = 0.
09%) of unlabeled spores are counted as being labeled and an average of
1.4% (SD = 0. 9%) of labeled spores are counted as being unlabeled (based on
data from clonal populations of labeled and unlabeled). Therefore, to correct

for any potential counting bias, the raw proportion of labeled (p*i ) cells of
strain i in a chimeric mix with an unlabeled strain j was corrected using the

proportion of labeled cells measured from clonal sets of labeled (p*iðCÞ) and

unlabeled cells (pjðCÞ) (created using the same pools of cells as in the chimeric

mixtures): p̂*i = ðp*i −pjðCÞÞ=ðp*iðCÞ −pjðCÞÞ. To count the total number of spores

produced by a set of fruiting bodies from a given number of cells plated (107

cells per plate), we harvested the entire agar discs from the plates into 5 mL of
spore buffer (20 mM EDTA and 0.05% Nonidet P-40) and counted spores using
a hemocytometer.
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The 10 strains were used to construct 34 different types of chimeric
mixtures, with each strain used in at least four different pairings. Within each
pairing, chimeras were created in which strains were mixed in seven different
input frequency combinations (0.05, 0.10, 0.25, 0.50, 0.75, 0.90, and 0.95). For
each pair of strains, the set of chimeric mixtures across different input fre-
quencies were independently replicated at least twice (with an average of
four replicates per pair) for a total of 944 chimeric mixtures composed from
the 34 pairs across the various input frequencies. Two of these strain pairings
(NC28.1+NC63.2 and NC34.2+NC105.1) were replicated a larger number of
times (n = 18 and n = 15 replicates, respectively) to provide higher-resolution
examples. Each experimental replicate therefore provides measurements of
the relative representation of each strain in the sporehead and the total
number of spores produced by the pair across different input frequencies.
Every experimental replicate for a given pair also produced an estimate of
the clonal spore production for both strains in the pair.

Estimation of Investment and Relative Fitness. To provide for direct compar-
ison between the model and the experimental data we calculated each
parameter from the model following the same methods used to process the
data. Four types of measurements were used to generate an estimate of stalk

investment of a strain within a chimera (̂Iijp̂i
): the total number of spores

produced by chimeric fruiting bodies composed from strains i and j (T̂GðijÞ),
the total number of spores produced by a strain when in clonal fruiting

bodies (T̂ i), the input proportion of a strain within a chimeric mix (p̂i), and

the output proportion of a strain within chimeric sporeheads (p̂’

i). From
these values we calculated the number of spores from a given strain within

the chimeric sporeheads as p̂’

i T̂GðijÞ. This measure of spore production was
normalized against the clonal spore production of the strain to account for
any inherent differences in numbers of spores produced by different strains
[which reflect differences in spore size and fixed differences in allocation of
cells to spores (29, 66)] to produce a measure of relative spore production:

T̂ ijp̂i
= ðp̂’

i T̂GðijÞÞ=ðp̂i T̂ iÞ. The inverse of the relative allocation of cells to spores
provides a measure of relative investment into stalk:

Îijp̂i
= T̂ ijp̂i

−1 =
ðp̂i T̂ iÞ�
p̂
’

i T̂GðijÞ
�. [8]

Therefore, an investment value (̂Iijp̂i
) of 1 indicates that a strain allocates the

same proportion of cells to spores when in a chimera as when clonal. Since
we expect the allocation pattern of clones to correspond to the optimal
pattern, a value of 1 indicates that cells in both clones and chimeras are
allocating a proportion ΘG of their cells into stalk and 1−ΘG into spores. In
the case where strains allocate 100% of their cells to spores, the estimate of

relative investment (̂Iijp̂i
) is expected to simply be the ratio of the clonal level

of allocation of cells to spores (1−ΘG) to 1 (where 1 is the proportion allo-
cated in a chimera). Thus, an investment value corresponding to 1−ΘG is
equivalent to a pattern of zero investment of cells into stalk. Therefore,
when we present the patterns of investment we rescale the estimates that
are based on relative spore production to a scale that reflects relative in-
vestment in stalk by simply subtracting a value of 1−ΘG. As a result, when
strains invest at the clonal level we get the expected investment value of ΘG,
and when they allocate all cells to spores (i.e., show zero investment) we get
a value of 0. When applying this method to the analysis of data from the
natural strains we use an optimal investment value of 30% of cells into the
stalk, which is supported by a variety of empirical measurements (54, 55).
The investment for both strains within each chimeric combination within
each experimental replicate were calculated separately.

To calculate relative collective investment for a group (̂IG) we first calcu-
lated the number of spores we would expect in a chimera given the clonal
spore production for the pair and their relative frequencies in the chimera:

T̂GjclonalðijÞ = ðp̂iTi + p̂jTjÞ. Collective investment was calculated following Eq. 4

by dividing this clonal expectation by the observed number of spores pro-
duced by a chimera:

ÎG =
T̂GjclonalðijÞ

T̂GðijÞ
=

�
p̂iTi + p̂jTj

�
T̂GðijÞ

. [9]

Collective investment for each chimeric combination was calculated for each
experimental replicate using the measures of the component parameters for
that replicate. As with the measure of individual investment (Eq. 8), the
pattern of collective investment reflects the relative allocation of cells to
spores by strains in a chimera compared with the pattern they shown when

clonal (but measured for the entire group, rather than for the individual
strains separately). Hence, the values of collective investment calculated
using Eq. 9 have the same scaling as the measure for individual investment
(Eq. 8). Therefore, we also subtracted a value of 1−ΘG from all collective
investment values, such that optimal investment (i.e., the clonal pattern)
corresponds to the expected value of ΘG and the scenario where the col-
lective produces only spores corresponds to a collective investment value
of zero.

Relative fitness within a group follows the definition in the model and
simply reflects the representation of a strain in the sporehead relative to its
input frequency:

ρ̂ijj = p̂’

i

.
p̂i . [10]

For simplicity, we compare the fitness of strains using the ratio of their
relative fitness values (e.g., ρ̂ijj=ρ̂jji for strain i relative to j). Values of rel-

ative fitness were calculated for each individual replicate. To test for any
potential bias caused by the experimental labeling and methods used to
calculate relative fitness, we applied the calculation of relative fitness in
Eq. 10 to clonal self-mixes of labeled and unlabeled cells across the same
set of frequencies. We find no significant frequency-dependent pattern of
relative fitness in these self-mixes (F1, 195 = 1.65, P = 0.2; see SI Appendix,
Fig. S8).

Patterns of collective investment, individual investment, and relative fit-
ness across frequencies were modeled using a mixed model implemented in
SAS (SAS Institute) fitted by maximum likelihood. For collective investment,
frequency was modeled as a quadratic fixed effect with experimental rep-
licate as a random effect. For individual investment and relative fitness,
frequency was modeled as a cubic fixed effect. For relative fitness, strain by
block was included as a random grouping variable, while for investment
strain was included as a grouping variable (owing to a lack of convergence for
amodel containing a block or replicate effect). Reduced versions of all models
were also run without any fixed effects (i.e., with only the random effects).
Significance was determined by calculating twice the difference in the
negative log likelihoods of the two models (full model and reduced), which is
approximately χ2 distributed with degrees of freedom determined by the
difference in the number of parameters in the models.

Measurement and Analysis of the Cost of Chimerism. To measure the risk of
fruiting-body collapse we collected two sources of data. First, we created
50:50 chimeric and clonal mixes of 10 strain pairs (NC28.1, NC34.2, NC52.3,
NC60.1, NC63.2, NC69.1, NC71.1, NC80.1, NC99.1, and NC105.1), with an
average of 10.4 replicates per chimeric combination (total n = 469) and
13 replicates per clone (total n = 130) (which together represent data from
31,026 fruiting bodies). Differences between clonal and chimeric mixes were
analyzed using a mixed model with aggregation type (clonal or chimeric) as
a fixed effect and pair as a random effect. Model degrees of freedom were
determined using the Kenward–Roger approximation, which corrects the
denominator degrees of freedom for the fixed effect based on the structure
of the random effect to avoid pseudoreplication. Second, we created chi-
meric mixes across a range of focal strain frequencies (0.05, 0.10, 0.25, 0.5,
0.75, 0.90, and 0.95) for six strain pairs (NC28.1+NC105.1, NC99.1+NC105.1,
NC99.1+NC60.1, NC34.2.1+NC105.1, NC63.2.1+NC60.1, and NC34.2+NC60.1).
Mixes were plated as a 10-μL droplet onto nonnutrient KK2 agar in a 24-well
dish and allowed to develop into fruiting bodies. The number of fruiting
bodies that had spontaneously collapsed was scored as a proportion of the
total number of fruiting bodies in the well. Data were modeled using a
mixed model implemented in SAS (SAS Institute) fitted by maximum likeli-
hood with frequency modeled as a fixed quadratic effect and pair as
a random grouping variable. Significance was determined by calculating
twice the difference in the negative log likelihoods of the two models
(discussed above).

Measurement and Analysis of Segregation. To measure the degree of segre-
gation between pairs of strains across different asymmetry in relatedness, we
followed established protocols for measuring segregation for pairs at equal
frequency and applied these methods to measurements across a range of
pairwise frequencies (58, 67). Briefly, cells were labeled with CellTracker
Green CMFDA (with DMSO used as a control for unlabeled cells) and strains
were reciprocally mixed at a range of relative frequencies of the labeled
strain (0.05, 0.10, 0.25, 0.5, 0.75, 0.90, and 0.95). Mixes were plated as a 10-μL
droplet on ∼1.25 g of sharp horticultural sand (Keith Singleton) wetted with
250 μL of KK2 in a 24-well dish and allowed to develop to form fruiting
bodies. Individual fruiting bodies were then harvested into spore buffer
(KK2 with 20 mM EDTA and 0.05% Nonidet P-40), and the proportion of
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fluorescent to nonflourescent spores in each fruiting body measured by flow
cytometery. We measured patterns of segregation using three different
pairs of strains (NC28.1+NC63.2, NC105.1+NC34.2, and NC105.1+NC99.1),
with at least 10 sporeheads measured for each pair at each frequency (for a
total of 692 sporeheads overall).

Ametric of the degree of segregationwas calculated following ref. 57. Briefly,
this measure is based on the SD of a strain’s proportional representation across

sporeheads [stdðp̂’

iÞ] at a given input frequency. If there is no segregation, then
we would expect all variation in the representation of a strain across fruiting
bodies (composed from the same proportions of strains) to be due to random

binomial sampling error, and hence stdðp̂’

iÞ should be very small given the
number of spores counted. However, when there is segregation, we expect to
see much more variation in the representation of a strain across fruiting bodies
as strains preferentially aggregate with themselves. Because the maximum value
of this SD depends on the relative frequencies of the strains, it is standardized to
the maximum possible value, which is determined by the geometric mean of the

average representation of the two strains across all sporeheads (p̂’

i), which isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂’

ið1− p̂’

i

q
Þ. This yields a standardized measure of segregation:

Segregationi,j =
std

�
p̂’

i

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂’

i

�
1− p̂’

i

s � , [11]

which goes from 0 (no segregation) to 1 (the maximum possible degree of
segregation, which would necessarily correspond to all fruiting bodies being
clonal, with the relative frequency of each type of clonal fruiting body
depending on the relative frequencies of the strains). In the statistical
analysis, segregation data were modeled using a quadratic model following
the approach outlined above for fruiting-body collapse.
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