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Abstract

Objective—Modern machine learning-based modeling methods are increasingly applied to 

clinical problems. One such application is in variable selection methods for predictive modeling. 

However, there is limited research comparing the performance of classic and modern for variable 

selection in clinical datasets.

Materials and Methods—We analyzed the performance of eight different variable selection 

methods: four regression-based methods (stepwise backward selection using p-value and AIC, 

Least Absolute Shrinkage and Selection Operator, and Elastic Net) and four tree-based methods 

(Variable Selection Using Random Forest, Regularized Random Forests, Boruta, and Gradient 
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Boosted Feature Selection). We used two clinical datasets of different sizes, a multicenter adult 

clinical deterioration cohort and a single center pediatric acute kidney injury cohort. Method 

evaluation included measures of parsimony, variable importance, and discrimination.

Results—In the large, multicenter dataset, the modern tree-based Variable Selection Using 

Random Forest and the Gradient Boosted Feature Selection methods achieved the best parsimony. 

In the smaller, single-center dataset, the classic regression-based stepwise backward selection 

using p-value and AIC methods achieved the best parsimony. In both datasets, variable selection 

tended to decrease the accuracy of the random forest models and increase the accuracy of logistic 

regression models.

Conclusions—The performance of classic regression-based and modern tree-based variable 

selection methods is associated with the size of the clinical dataset used. Classic regression-based 

variable selection methods seem to achieve better parsimony in clinical prediction problems in 

smaller datasets while modern tree-based methods perform better in larger datasets.

Keywords

Models; Statistical; Regression Analysis; Machine Learning; Data Interpretation; Statistical; 
Electronic Health Records; Variable selection

1. INTRODUCTION

The widespread implementation of electronic health records across the healthcare system is 

paving the way for large-scale, data-driven clinical research [1–3]. Modern data modeling 

methods, mostly derived from the machine learning literature, are also becoming widely 

available and are starting to be used by clinical researchers [2–4]. However, there has been 

limited research comparing the performance of classic and modern modeling methods in 

clinical datasets [5].

The prediction of clinical outcomes is a common medical information need that is 

particularly adept to the use of large clinical datasets, making clinical predictive modeling a 

promising area of study in this era of digital healthcare [3]. One of the crucial steps in the 

development of clinical prediction models is the variable selection process, which aims at 

removing irrelevant input variables from the models being derived [6]. Data used to derive 

prediction models oftentimes contains both replicable variables with a true relationship with 

the outcome (also known as “signal”), and non-replicable variables with only an 

idiosyncratic relationship with the outcome (or “noise”). The goal of variable selection 

methods is to increase the signal-to-noise ratio in the data in order to develop appropriately 

fitted models that will make accurate predictions when new, unseen data is used as input [7, 

8].

Variable selection methods are also used to reduce the complexity of the prediction models 

without compromising their accuracy. Sparse, less complex models that achieve good 

performance are said to be parsimonious [8]. Highly complex, non-parsimonious models are 

not only difficult to replicate in different healthcare settings but there is a real world 

monetary and computational cost associated with mapping and maintaining numerous 

variables for complex algorithms designed to run in real-time [9].
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Classic variable selection methods, such as selection by subject matter experts and 

regression-based stepwise selection, have been commonly used in the development clinical 

prediction models [10–16]. An alternative to these is the use of modern variable selection 

methods derived from tree-based algorithms (e.g. random forest). These methods are widely 

used in other areas of biomedical research [17, 18], but their use in clinical prediction 

models has been limited so far. Furthermore, there is evidence that the size of a dataset and 

the event per variable ratio (that is, the number of events –or cases – in the derivation dataset 

for every variable included in the model) play a major role in the performance of different 

methods [5].

Our aim in this study was to analyze the performance of eight different variable selection 

methods, both regression-based and tree-based methods, in two clinical datasets of different 

sizes used for predictive modeling: a multicenter adult clinical deterioration cohort and a 

single center pediatric acute kidney injury cohort [14, 15].

2. MATERIALS AND METHODS

2.1. Clinical datasets

2.1.1. Adult clinical deterioration cohort—This is a multicenter observational cohort 

dataset with 269,999 patients admitted to the wards of five hospitals [14]. 6.1% of patients in 

the dataset had a clinical deterioration event: 424 cardiac arrests, 13,188 intensive care unit 

(ICU) transfers, and 2,840 deaths on the wards. The dataset was analyzed using a discrete-

time survival format in 8-hour time windows. The variables extracted from the electronic 

health record (EHR) for predictive modeling of clinical deterioration included laboratory 

results, vital signs, and patient demographics (29 variables in total). Missing values were 

imputed using the population median, and the original dataset was divided in a 60/40 split 

for derivation and validation, which resulted in 356 events per variable in the derivation set.

2.1.2. Pediatric early acute kidney injury cohort—This is a single center 

observational cohort dataset of 6,564 critically ill children admitted to a pediatric ICU 

without evidence of acute kidney injury (AKI) [15]. Among the patients in the dataset, there 

was a 4% incidence of early AKI, which was defined as the development of new AKI by 72 

hours of ICU stay. The variables extracted from the EHR for predictive modeling of early 

AKI included laboratory results, vital signs, medications from the first 12 hours of ICU stay 

as well as demographic information and admission characteristics (26 variables in total). 

Missing values were imputed using multiple imputation methods and the original dataset 

was divided in a 60/40 split for derivation and validation, which resulted in 6 events per 

variable in the derivation set.

2.2. Variable selection methods

2.2.1. Overview—We studied the performance of eight variable selection methods: four 

regression-based methods (stepwise backward selection using p-value and AIC, Least 

Absolute Shrinkage and Selection Operator, and Elastic Net) and four tree-based methods 

(Variable Selection Using Random Forest, Regularized Random Forests, Boruta, and 

Gradient Boosted Feature Selection) [8, 19–23]. We chose to focus our analysis on 
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regression-based and tree-based variable selection methods given their prevalence in the 

medical literature [6, 16]. Furthermore, we chose four representative variable selection 

methods from each group to balance the comparisons and include methods with wider 

adoption (e.g. stepwise backward selection, random forest) and methods generating 

increasing interest in the literature (e.g. elastic net, gradient boosted feature selection). Here 

we review both types of methods in more detail.

2.2.2. Regression-based methods

2.2.2.1. Stepwise backward selection using p-values: Stepwise backward selection using 

p-values is a classic variable selection method that has been extensively used in the medical 

literature [8]. First, all the variables are tested in a regression model and subsequently the 

least significant variables are eliminated in a stepwise approach. Most commonly, this 

method uses a p-value cut-off as a stopping rule, usually keeping the subset of variables that 

have a significance level of p<0.05, but other levels can also be used. We implemented this 

method in our two cohorts using a significance level of p<0.05 to select the variables and 

evaluate the performance of the method in the validation set.

2.2.2.2. Stepwise backward selection using AIC: Stepwise backward selection using the 

Akaike Information Criterion (AIC) is a method very similar to the stepwise backward 

selection using p-value, except the stopping rule is based on achieving the lowest AIC. AIC 

penalizes the complexity of the model by decreasing the p-value threshold at which variables 

are dropped from the model in proportion to the number of variables selected. That is, the 

lower the number of variables in the model, the less restrictive the p-value threshold 

becomes [8].

2.2.2.3. Least Absolute Shrinkage and Selection Operator (Lasso): Lasso is a linear 

regression-based model that is regularized by imposing an L1 penalty on the regression 

coefficients [22]. The L1 penalty forces the sum of the absolute value of the coefficients to 

be less than a constant. The variable selection process is embedded in this model because, 

given the nature of the L1 norm, some coefficients will be forced to be 0, and hence are 

eliminated from the model. In order to find the optimal constraint parameter in our 

implementation we performed 100 sequential searches over a parameter grid of 0.02 

increments and calculated the area under the receiver operating characteristic curve (AUC) 

using ten-fold cross-validation. The model with the highest AUC was used to determine 

which variables were selected and to evaluate the performance of the method in the 

validation set.

2.2.2.4. Elastic Net: Elastic Net could be considered an extension of the Lasso where an L1 

and an L2 penalty are imposed [24]. The properties of the L2 norm encourage a grouping 

effect so that highly correlated variables are either kept in the model or are eliminated 

together. It also performs variable selection in an embedded fashion similar to the Lasso. 

The potential advantages over the Lasso can be attributed to the grouping effect and the fact 

that Elastic Net can better deal with situations where the number of predictors exceeds the 

number of cases (p > n situations). In our implementation, the optimal parameters were 

found by performing 100 random searches over a parameter grid and calculated the AUC 
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using a two-dimensional ten-fold cross-validation. The model with the highest AUC was 

used to determine which variables were selected and to evaluate the performance of the 

method on the validation set.

2.2.3. Tree-based methods

2.2.3.1. Variable Selection Using Random Forest (VSURF): The random forest is an 

ensemble model of hundreds or thousands of decision trees that uses the average output of 

all the trees to predict an outcome [7]. Each individual decision tree is derived by 

performing recursive partitioning of random subsets of the input variables. The variables 

selected and the actual cut-points for the partition are determined based on the overall goal 

of splitting the data into subsets that have the most differing proportions of the outcome or 

information gain. VSURF takes advantage of the variable selection mechanisms embedded 

in the random forest algorithm and selects the smallest model with an out-of-bag error less 

than the minimal error augmented by its standard deviation. The method selects two variable 

subsets: one used for interpretation that includes all variables highly correlated with the 

outcome, and one more limited that only includes the smallest subset of variables that are 

appropriate for prediction [20]. In our implementation, the variables in the interpretation 

subset determined by the algorithm were considered as the variables selected by the VSURF 

method. To evaluate the performance of the method, the variables selected were then used to 

derive a random forest model using 500 trees and other default settings. The resultant model 

was used to test the performance on the validation set.

2.2.3.2. Regularized Random Forests (RRF): RRF are a random forest-based method that 

penalize the selection of a new variable for splitting in each tree if the information gain is 

not superior to that of previous splits [19]. RRF therefore favors the selection of the smallest 

subset of variables possible to perform the prediction. In our implementation we regularized 

the model derivation by performing 100 searches over a randomly generated parameter grid 

and determined the best tuning parameter using ten-fold cross-validation. The resulting 

model was used to determine the variables selected and to evaluate the performance of the 

method on the validation set.

2.2.3.3. Boruta: Boruta is a random forest-based method that iteratively removes the 

features that are proven to be statistically less relevant than random probes, which are 

artificial noise variables introduced in the model by the algorithm [21]. In our 

implementation the variables rejected by the Boruta algorithm were removed from the 

original variable set and the remaining variables were considered as the variables selected by 

the method. To evaluate the performance of the method, the variables selected were then 

used to derive a random forest model using 500 trees and other default settings. The 

resultant model was used to test the performance on the validation set.

2.2.3.4. Gradient Boosted Feature Selection (GBFS): GBFS uses the gradient boosting 

machine framework to select variables. GBFS derives an ensemble of limited-depth 

regression trees for which variables are selected sparsely by penalizing the inclusion of new 

variables. When a tree selects a new variable, the algorithm penalizes the model at a cost 

equal to the parameter lambda, while allowing the use of previously utilized variables at no 
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added cost. Therefore, only variables producing sufficient gain in prediction accuracy to 

overcome the penalty will be included [23]. In our implementation, in order to find the 

optimal lambda we performed sequential searches over a parameter grid of 0.1 increments 

and determined the best lambda using ten-fold cross-validation. The resulting variables 

selected by the GBFS method with the optimal lambda were used to derive a gradient 

boosted machine model using 500 trees with interaction depth of 4 and a learning rate of 0.1, 

consistent with the default GBFS method. The resultant model was used to test the 

performance on the validation set.

2.3. Method-specific modeling approaches

2.3.1. Regression-based methods—Since the regression-based methods assume a 

linear relationship between the variables and the outcome, the continuous variables in the 

regression-based models were transformed using restricted cubic splines with three default 

knots [8, 25].

2.3.2. Tree-based methods—Since tree-based methods are known to underperform in 

highly unbalanced datasets, such as the ones used in this paper, the derivation data for both 

datasets were balanced using non-heuristic random sub-sampling of the majority class [26].

Otherwise the method-specific default settings were used for the rest of the modeling 

consistent with prior literature comparing modeling methods [5].

2.4. Method evaluation

2.4.1. Parsimony—A model is considered parsimonious when it is both sparse (i.e., it uses 

the least amount of variables possible) and has good prediction accuracy [7, 8]. The trade-off 

of sparsity and accuracy is difficult to quantify, and hence we present both performance and 

sparsity measures together to allow for different use case interpretation. Prediction 

performance was measured using the area under the ROC curve (AUC) of the model on the 

validation set and sparsity as the number of variables selected by the method.

2.4.2. Performance change from reference model—Three reference models for each 

dataset were derived using all the variables available to measure the change from the 

baseline performance incurred by each method. A fixed effects logistic regression model 

with restricted cubic splines was used as reference for the two backward selection methods 

(p-value and AIC), Lasso, and Elastic Net. A random forest model with 500 trees was used 

as reference for the VSURF, RRF, and Boruta methods. Finally, a gradient boosted machine 

model with 500 trees was used as reference for the GBFS method. As described above, the 

method-specific default settings in the corresponding statistical package were used for the 

three reference models, consistent with prior literature comparing modeling methods.

2.4.3. Variable importance and variable selection—Variables in each model were 

ranked by importance and a category from 1 to 4 was assigned to each variable based on the 

quartile of importance, with the 4th quartile being the variables with the highest importance. 

This was done to account for the different importance metrics that each method uses and to 

allow for comparison between methods.
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For all method evaluations, the derivation (60%) sets from the original publications were 

used to run the various variable selection methods and the validation (40%) sets were used to 

calculate resulting model accuracy.

2.5. Analysis

Data were analyzed using STATA version 13 (StatCorp, College Station, TX), MATLAB 

release 2015b (The MathWorks, Inc., Natick, MA), and R version 3.2.2 (R Foundation for 

Statistical Computing, Vienna, Austria). The following R packages were used for modeling: 

glmnet, VSURF, Boruta, RRF, gbm, randomForest, and caret [27].

Institutional Review Boards at the University of Chicago, NorthShore University 

HealthSystem, and Children’s Hospital Los Angeles granted waivers of consent for this 

study based on general impracticability and minimal harm.

3. RESULTS

3.1. Parsimony

Figures 1 and 2 present the parsimony measures (AUC against the number of variables 

selected) for the adult clinical deterioration cohort and the pediatric early acute kidney injury 

cohort, respectively.

In the adult clinical deterioration cohort, the most accurate model was Boruta (29 variables 

selected, AUC 0.796) and the sparsest was GBFS (17 variables selected, AUC 0.787). 

Overall, GBFS, backward selection using p-value, and VSURF achieved the best parsimony 

in that cohort (Figure 1). In the pediatric early acute kidney injury cohort, the most accurate 

model was backward selection using p-value (11 variables, AUC 0.837) and the sparsest 

were VSURF and GBFS (9 variables, AUCs 0.809 and 0.785). Overall, backward selections 

using p-value and AIC achieved the best parsimony in that cohort (Figure 2). RRF 

performed poorly in both cohorts (29 variables, AUC 0.735; and 20 variables, AUC 0.817).

3.2. Performance change from reference model

The reference models for the adult clinical deterioration cohort had a performance AUC in 

the validation set of 0.78 for the logistic regression, 0.80 for the random forest, and 0.79 for 

the gradient boosted machine. In the pediatric early acute kidney injury cohort, the reference 

models had an AUC of 0.82 for the logistic regression, 0.83 for the random forest, and 0.80 

for the gradient boosted machine.

Figures 3 and 4 present the performance changes measure (method-based AUC minus 

reference model AUC) against the number of variables selected for the adult clinical 

deterioration cohort and the pediatric early acute kidney injury cohort, respectively.

In general, most regression-based methods had equal or better performance than their 

reference model after variable selection, whereas tree-based methods had some a loss of 

performance. Model sparsity had no obvious effect in this relationship, that is, methods that 

resulted in fewer variables still performed equally well or better than other methods in their 

family (e.g. backward selection using p-value vs. Lasso, or VSURF vs. RRF).
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3.3. Variable importance and variable selection

Figure 5 and 6 present the variables selected and importance ranking by quartiles from 

highest (4th quartile) to lowest importance (1st quartile) for the adult clinical deterioration 

cohort and the pediatric early acute kidney injury cohort, respectively. A description of the 

variables in each cohort can be found in the original papers [14, 15].

In general, the sparsest models in both cohorts were the backward selection using a p-value 

<0.05, VSURF and GBFS. Regression-based models were more likely to rank ordinal 

variables (e.g. “AVPU” or “Prior ICU stays” in the adult clinical deterioration cohort) or 

binary variables (e.g. “Post-op”, “Arrest”, “Acyclovir”, or “ACEI” in the pediatric early 

acute kidney injury cohort) as higher importance when compared to the tree-based models. 

The majority of the variables ranked as highly important in the tree-based methods were 

continuous variables. Only “respiratory rate” in the adult clinical deterioration cohort and 

“pH” in the pediatric early acute kidney injury cohort were ranked in the highest quartile of 

importance by all of the methods.

4. DISCUSSION

We present the performance of eight variable selection methods, both regression-based and 

tree-based, in two clinical datasets of different sizes. Tree-based variable selection methods, 

especially GBFS and VSURF, achieved better parsimony in the larger dataset and 

consistently ranked continuous variables as more important. The regression-based methods, 

especially the classic backward selection method using p-value <0.05 and the AIC-based 

method, achieved better parsimony in the smaller dataset. The tree-based methods tended to 

incur a loss of performance in comparison to the reference models when fewer variables 

were used, whereas most of regression-based methods either retained the same performance 

or improved compared to the reference model when fewer variables were selected. The 

sparsest methods in both datasets were GBFS, VSURF, and backward selection using p-

value <0.05.

Prior studies have compared the performance of different variable selection methods in 

clinical and biomedical datasets [6, 28–33]. For example, Bagherzadeh-Khiabani and 

colleagues compared 19 variable selection methods, mostly regression-based, in a small 

cohort of pre-diabetic patients (about 12 events per variable in their best performing model) 

[6]. Consistent with our findings, one of the methods with best parsimony in their study was 

the backward selection methods using p-value <0.05, which achieved performance within 

1% of the AUC of the best performing method with about a third of the variables selected. A 

random forest-based selection method was also amongst the sparsest methods, which is in 

agreement with our findings. Van der Ploeg and Steyerberg compared the performance of 

four variable selection methods in a small cohort of 222 clinical and environmental 

Legionella pneumophila strains with a large number of continuous variables as predictors 

(>400) [33]. In their study, the random forest-based method had the best performance 

followed by the Lasso. Since they did not report measure of sparsity, it is difficult to 

compare these results with our study, but the performance of the random forest-based 

method might be explained by the large number of continuous variables used, which would 

be in agreement with our findings. This bias of tree-based methods towards continuous 
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variables has been previously described [34], and can be problematic in clinical datasets 

with a large number of categorized variables.

Our findings are consistent with the study by Van der Ploeg and colleagues who found that 

modern modeling methods tend to be “data hungry” [5]. In their analysis, using artificially-

generated clinical databases, they found that the classic logistic regression method 

performed well in datasets with 20 to 50 events per variable, whereas random forest and 

other modern modeling methods required >200 events per variable to achieve stability. Our 

findings that the random forest methods performed better in the larger dataset whereas the 

regression-based methods performed better in the smaller AKI dataset confirm the findings 

by Van der Ploeg and colleagues. However, even though tree-based methods performed 

better than regression-based methods in the larger cohort with a higher events-per-variable 

ratio, it is important to note that, compared to the reference model, tree-based methods also 

tended to incur greater loss of performance than the regression-based methods as fewer 

variables were selected. This was consistent in both cohorts even though, in theory, fewer 

variables would improve the events-per-variable ratio. This goes against recent literature that 

claims that fewer variables are better [6]. While this is true in the context of regression-based 

methods, it doesn’t appear to be the case in tree-based methods. In fact, our results show that 

tree-based methods perform at their best when all variables are used in both cohorts. A 

possible explanation for this is that tree-based methods explicitly account for variable 

interactions, whereas regression-based methods do not.

While we found that the classic regression-based methods perform better in the smaller 

dataset, it is important to note that the events-per-variable ratios were at least 15:1 in the best 

models. Prior studies have demonstrated that backward selection using p-value and other 

classic regression-based methods tend to overestimate coefficients in cohorts with lower 

events-per-variable ratios, so they should be used with caution in those situations [35, 36].

Our findings highlight the importance of understanding that different modeling methods 

have different advantages and disadvantages. As the growth of the digital infrastructure takes 

hold in the healthcare environment, clinical researchers find themselves with a new set of 

opportunities and challenges, and top amongst these is making the best possible use of the 

large amounts of clinical data available to make new discoveries and improve patient care 

[1–3]. Using the appropriate modeling methods is a key component of this process. 

Consistent with Wolpert’s “No Free Lunch Theorem”, we found that algorithms that 

perform well on one class of problems will suffer in other cases [37]. However, at least 

having a general idea of the types of modeling methods more likely to succeed with specific 

types of problem can be useful to researchers. A generalization of our findings is that for 

clinical problems in smaller datasets with <20 events per variable, classic regression-based 

variables selection methods achieve better parsimony, whereas in prediction problems with 

larger datasets and >300 events per variable, tree-based variable selection methods, like 

GBFS or VSURF, work better. Further research will be needed to determine whether these 

findings are consistent in other clinical problems and types of datasets and what should be 

done in cases when the events-per-variable ratio falls in the mid-range.
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Our results have to be interpreted understanding that in our method evaluation we valued 

parsimony, or the balance between performance and sparsity, as the most desirable 

characteristic of a variable selection method. This was based on the premise that very 

complex, non-parsimonious clinical prediction models are difficult to replicate in different 

healthcare settings. Furthermore, there is a real world cost associated with mapping and 

maintaining numerous variables for complex algorithms in an already strained healthcare 

information technology infrastructure [9]. As more clinical prediction models reach 

production status, it is likely that those in charge of implementing and maintaining these 

models will view their degree of parsimony as a key characteristic.

Our study has several limitations. First, we used the default settings of the algorithms that 

we tested and made no attempts to optimize the algorithms using different settings. This is 

consistent with prior studies [5], but we understand that some algorithms are highly 

customizable and this can provide a level of flexibility that might be advantageous but that 

we did not test in this study. In addition, we used only two clinical datasets to test the 

different methods. While this limits the generalizability of our findings, we did attempt to 

represent the two most common types of EHR-based datasets found in the literature: the 

very large multicenter dataset and the smaller single center dataset.

5. CONCLUSION

In conclusion, the performance of regression-based and tree-based variable selection 

methods is associated with the events-per-variable ratio of the clinical dataset used. Classic 

regression-based variable selection methods seem to achieve better parsimony in clinical 

prediction problems in smaller datasets with <20 events per variable, while modern tree-

based methods have better parsimony in larger datasets with >300 events per variable. 

Further research is needed to determine whether these findings are consistent in other 

clinical problems and dataset sizes.
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9. APPENDIX A

9.1. Additional details of the clinical datasets

9.1.1. Adult clinical deterioration cohort

The clinical variables used and their distributions are shown in Table A.1. Variable 

missingness differed by data type and participating site, with vital signs having the least 

percent missing (all <1% except oxygen saturation [10%] and AVPU [19%]), followed by 

complete blood count (7–8%), electrolytes and renal function tests (11–16%), and liver 

function tests (48–50%). When a variable value was missing for a time interval, the previous 

value was carried forward. If no previous value was available, the median value for that 

variable was imputed under the assumption that these values were normal, as performed in 

similar studies. Preliminary screening for collinearity was performed using pairwise 

correlations between all variables. The correlation for all pairs variables used in the analyses 

was <0.75. A limited number of variable interactions were also explored preliminarily in a 

full logistic regression model. The interaction of age and time in the ward with the rest of the 

variables was examined, but had no effect in model performance [14].

Table A.1

Distribution of clinical variables in the adult clinical deterioration cohort.

IQR, inter-quartile range.

Variable Distribution

Continuous variables Median (IQR)

Diastolic blood pressure (DBP), mmHg 68 (59, 76)

Heart rate, beats per minute 81 (71, 92)

Oxygen saturation (O2 Sat), % 97 (96, 98)

Respiratory rate, breaths per minute 18 (18, 20)

Systolic blood pressure (SBP), mmHg 124 (110, 140)

Temperature, degrees Celsius 36.6 (36.3, 36.9)
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Variable Distribution

Albumin, g/dL 3 (3, 3.1)

Alkaline phosphatase (Alk Phos), units/L 80 (80, 80)

Bilirubin, mg/dL 0.7 (0.7, 0.7)

Blood urea nitrogen (BUN), mg/dL 16 (11, 24)

Calcium, mg/dL 8.5 (8.2, 8.9)

Chloride, mEq/L 104 (101, 106)

Carbon dioxide (CO2), mEq/L 26 (24, 28)

Creatinine, mg/dL 0.9 (0.7, 1.2)

Glucose, mg/dL 111 (98, 129)

Hemoglobin, g/dL 10.7 (9.5, 12)

Platelets, K/uL 215 (164, 274)

Potassium, mEq/L 4 (3.8, 4.3)

Aspartate aminotransferase (SGOT), units/L 26 (26, 26)

Sodium, mEq/L 138 (136, 139)

Total protein, g/dL 6 (6, 6)

White blood cell count (WBC), K/uL 8.4 (6.3, 10.9)

Pulse pressure index (PPI) 0.5 (0.4, 0.5)

BUN:Creatinine (BUN:Cr) ratio 15.7 (12, 21.4)

Anion gap, mEq/L 8 (6, 10)

Time in ward, hours 52 (20, 112)

Age, years 65 (50.2, 79.1)

Categorical variables Proportion, %

Mental status per AVPU (AVPU), score

 0 – Alert 97.5

 1 – Responds to voice 1.6

 2 – Responds to pain 0.7

 3 – Unresponsive 0.2

Prior ICU stays

 0 82

 1 16

 2 1.7

 ≥ 3 0.3

1.1.1. Pediatric early acute kidney injury cohort

The clinical variables used and their distribution are shown in Table A.2. Variable 

missingness differed by data type, with vital signs having the least percent missing (<1%), 

followed by electrolytes and renal function tests (1.1%), complete blood count (32.3%), 

bilirubin level (47.6%), and pH (90.4%). Gender and race were recorded in all cases. Other 

categorical variables (i.e. pre-admission cardiac arrest, postoperative recovery, and 

medications) that were not recorded in the EHR were assumed to be negative. Missing 
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continuous variables were considered to be missing at random due to the short clinical time 

window (12 hours from ICU admission) and the likelihood that missing variables were 

associated with observed variables. In these cases, missing variables were imputed using 

multiple imputation by chain equations, as previously described [38]. Preliminary screening 

for collinearity was performed using pairwise correlations between all variables. The 

correlation for all pairs variables used in the analyses was <0.75. Interactions amongst 

variables were not explored in a logistic regression model given the constraints of the lower 

event-per-variable ratio.

Table A.2

Distribution of clinical variables in the pediatric AKI cohort.

IQR, inter-quartile range.

Variable Distribution

Continuous variables Median (IQR)

Age, years 7.1 (1.6, 13.5)

pH 7.31 (7.25, 7.46)

Weight, kg 22 (10.5, 45)

Urine output (UOP), z-score 0 (0, 0)

Bilirubin, mg/dL 0.5 (0.4, 0.5)

Blood urea nitrogen (BUN), mg/dL 10 (8, 13)

Hemoglobin, g/dL 11.1 (10, 12.4)

Platelets, K/uL 226 (161, 299)

Potassium, mEq/L 4 (3.8, 4.2)

White blood cell count (WBC), K/uL 11.4 (8, 15.5)

Lowest systolic blood pressure (SBP), z-score 0 (0, 0)

Systolic blood pressure standard deviation (SBP[SD]), mmHg 10 (8, 12)

Lowest SaO2/FiO2 (SF) ratio 171 (158, 476)

Vasoactive-inotropic score (VIS) 0 (0, 0)

Disseminated intravascular coagulopathy (DIC) score 0 (0, 0)

Categorical variables Proportion, %

On mechanical ventilation 44

Male 54

Black 7.5

Cardiac arrest pre-admission 2

Postoperative recovery 37

Received vancomycin 2.4

Received amphotericin B (ampho B) 1

Received ganciclovir 0.5

Received ACE inhibitors (ACEI) 1.8

Received acyclovir 2

Received ampicillin/tazobactam (Zosyn) 5.9
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6. SUMMARY TABLE

What was known:

1) Modern machine learning-based modeling techniques are increasingly applied to clinical problems, 
including variable selection methods for predictive modeling using Electronic Health Record data.

2) Prior studies have shown that modern modeling techniques are “data hungry.”

3) There is limited research comparing the performance of classic and modern modeling techniques for 
variable selection in clinical datasets.

What we add:

1) The performance of classic and modern variable selection methods appears to be associated with the 
size of the clinical dataset and the event-per-variable rate.

2) Classic regression-based variable selection methods perform better in smaller datasets, while modern 
tree-based methods do better in larger datasets.
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Highlights

• Modern, machine learning-based modeling techniques are increasingly 

applied to clinical problems, including variable selection methods for 

predictive modeling using Electronic Health Record data

• Prior studies have shown that modern modeling techniques are “data hungry”

• The performance of classic and modern variable selection methods appears to 

be associated with the size of the clinical dataset and the event-per-variable 

rate

• In our study, we showed that classic regression-based variable selection 

methods perform better in smaller datasets, while modern tree-based methods 

do better in larger datasets
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Figure 1. 
Parsimony measures in the adult clinical deterioration cohort. Area under the curve is the 

discrimination performance on the validation set.

AIC, backward selection using Akaike Information Criterion; p-value, backward selection 

using p-value <0.05; EN, Elastic Net.
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Figure 2. 
Parsimony measures in the pediatric early acute kidney injury cohort.

The area under the curve is the discrimination performance on the validation set. AIC, 

backward selection using Akaike Information Criterion; p-value, backward selection using 

p-value <0.05; EN, Elastic Net.
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Figure 3. 
Performance change from the reference model in the adult clinical deterioration cohort.

Area under the curve (AUC) is the discrimination performance on the validation set. Models 

above the black line represent an improvement over the reference model, whereas models 

below the black line represent a loss of performance. AIC, backward selection using Akaike 

Information Criterion; p-value, backward selection using p-value <0.05; EN, Elastic Net.
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Figure 4. 
Performance change from the reference model in the pediatric early acute kidney injury 

cohort.

Area under the curve (AUC) is the discrimination performance on the validation set. Models 

above the black line represent an improvement over the reference model, whereas models 

below the black line represent a loss of performance. AIC, backward selection using Akaike 

Information Criterion; p-value, backward selection using p-value <0.05; EN, Elastic Net.
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Figure 5. 
Heat map of the variables selected and their importance quartile for each variable selection 

method in the adult clinical deterioration cohort.

The color of each cell represents the importance of each variable (in the vertical axis) as 

ranked by each variable selection method (in the horizontal axis). The importance ranking is 

categorized in quartiles, with darker cells denoting higher importance quartiles. White cells 

represent variables not selected by a particular variable selection method. Notably, only one 

variable, Respiratory Rate, was ranked by all methods in the top two quartiles of importance, 

and no variable was excluded by all methods. AIC, backward selection using Akaike 

Information Criterion; p-value, backward selection using p-value <0.05; EN, Elastic Net.
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Figure 6. 
Heat map of the variables selected and their importance quartile for each variable selection 

method in the pediatric early acute kidney injury cohort.

The color of each cell represents the importance of each variable (in the vertical axis) as 

ranked by each variable selection method (in the horizontal axis). The importance ranking is 

categorized in quartiles, with darker cells denoting higher importance quartiles. White cells 

represent variables not selected by a particular variable selection method. Notably, only one 

variable, pH, was ranked by all methods in the top two quartiles of importance, and only one 

variable, Black, was excluded by all methods. AIC, backward selection using Akaike 

Information Criterion; p-value, backward selection using p-value <0.05; EN, Elastic Net.
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