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Abstract

Cumulative risk assessment (CRA) methods promote the use of a conceptual site model (CSM) to 

apportion exposures and integrate risk from multiple stressors. While CSMs may encompass 

multiple species, evaluating endpoints across taxa can be challenging due to data availability and 

physiological differences among organisms. Adverse Outcome Pathways (AOPs) describe 

biological mechanisms leading to adverse outcomes (AOs) by assembling causal pathways with 

measurable intermediate steps termed key events (KEs), thereby providing a framework for 

integrating data across species. We used a case study focused on the perchlorate anion (ClO4
−) to 

highlight the value of the AOP framework for cross-species data integration. Computational 

models and dose-response data were used to evaluate the effects of ClO4
− in twelve species and 

revealed a dose-response concordance across KEs and taxa. The Aggregate Exposure Pathway 

(AEP) tracks stressors from sources to the exposures and serves as a complement to the AOP. We 

discuss how the combined AEP-AOP construct helps to maximize the use of existing data and 

advances CRA by 1) organizing toxicity and exposure data, 2) providing a mechanistic framework 

of KEs for integrating data across human health and ecological endpoints, 3) facilitating cross-

species dose-response evaluation, and 4) highlighting data gaps and technical limitations.
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1. Introduction

Researchers commonly evaluate risk from chemical stressors in the context of a single 

substance and target organism1. As a regulatory agency, the United States Environmental 

Protection Agency (EPA) is often required to meet its statutory mandate on a chemical-by-

chemical basis. However, understanding how simultaneous exposure to multiple 

environmental contaminants and non-chemical stressors affects the health of individuals and 

populations is often relevant2,3. Growing concerns about this issue led the EPA to develop a 

framework for cumulative risk assessment (CRA)4. CRA methods, which can be qualitative 

or quantitative5, evaluate the effects of aggregated exposure from multiple sources to 

characterize risk for adverse outcomes (AOs)6,7. These techniques promote the use of a 

conceptual site model (CSM) to account for the stressors in a given environment, and thus 

can facilitate place-based assessments by incorporating relevant exposure data for that 

location8. While the emphasis of a CRA framework is on the effects of multiple chemicals 

and stressors4, the 2009 NRC report “Science and Decisions”6 highlighted the importance of 

considering “human health or ecological effects, taking account of such factors as 

vulnerability and background exposures”, and the recent National Academies report on the 

use of new technologies for decision support9 emphasizes the same for both data integration 

and to ensure comprehensive risk characterization corresponding to real-world scenarios. 

Therefore, in this work CRA is considered to evaluate the effects of multiple stressors on 

multiple endpoints.

Integration of human health and ecological endpoints can be difficult because confounding 

factors such as physiological differences may lead to a diversity of species-specific 

endpoints, relevant exposure concentrations, experimental designs, and assessment 

approaches. For example, human health risk assessments have traditionally focused on the 

occurrence of an adverse health effect at the level of the individual by identifying hazards, 

collecting and evaluating dose-response and exposure data, and combining this information 

to characterize risk10. However, guidance for ecological endpoints, provided in a report on 

Generic Ecological Assessment Endpoints (GEAEs) for ecological risk assessment11,12,13, 
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includes organism-level (e.g. survival or growth), population-level (e.g., abundance), 

ecosystem-level (e.g., production), and ecosystem service-level (e.g. waste treatment) 

responses. The assessment endpoints at these levels of organization can vary, and identifying 

assessment endpoints that are relevant for receptors in potentially affected organisms is a 

well-recognized step in the problem formulation process within ecological risk 

assessment14. Additional challenges such as differences between field and laboratory studies 

or differences in experimental design that include exposure media, magnitude, and duration 

can further complicate the integration of human health and ecological data. Despite these 

challenges, however, integration of mechanistic data across species remains essential for 

site-specific, place-based community risk assessments and the maturation of CRA15.

Advances in modeling frameworks and computational tools have enabled researchers to 

begin to address the challenges associate with this process. In recent years, CRA frameworks 

have been developed to address the challenge of cross-species data integration. For example, 

multi-criteria decision analysis (MCDA)16 and combined exposures decision trees17 are 

frameworks specifically designed to facilitate the evaluation of risk in both human health 

and ecological endpoints by summing hazard indices for endpoints in human and non-

human species to estimate overall risk. However, a mechanism-based framework for 

organizing and integrating data to evaluate relative risk across multiple species remains to be 

developed. This work begins to address this challenge by combining the Adverse Outcome 

Pathway (AOP)18,19 and Aggregate Exposure Pathway (AEP)20 frameworks to integrate 

dose-response data across multiple endpoints in multiple taxa.

AOPs describe biological pathways that link perturbations at the molecular level (molecular 

initiating events; MIEs) to AOs through a series of causal key events (KEs)18. These KEs 

can be measured and used to confirm the activation of an AOP. AOs can encompass both the 

organismal and population levels21,22, making AOPs useful for integrating mechanistic data 

across multiple species. Furthermore, AOPs are chemical-agnostic and pertain to any 

stressor(s) that activate a KE in the pathway19,23; therefore, these constructs can form 

networks that encompass multiple chemicals and endpoints. AOP networks provide an 

organizing framework for toxicity data that describe responses after exposure to 

contaminants, but do not address the mechanisms of environmental fate and transport 

leading to these exposures.

The AEP framework parallels the AOP framework, but tracks contaminants from sources, 

through the environment, to target site exposures (TSEs) in affected organisms20. Ideally, the 

TSE will correspond to the same level of biological organization as the MIE, thereby 

allowing prediction of the expected perturbation of the AOP based on in silico or in vitro 
dose-response information. This framework builds off previous ideas about the importance 

of incorporating multiple routes of exposure into CRA6,24,25,26 by creating a generic CSM 

that is not constrained to a single site. The AEP consists of two entities: a key exposure state 

(KES) that describes the amount of a stressor at a given location and time, and a key 

transitional relationship (KTR) that describes either the transport of that stressor to a 

different location or the transformation of that stressor into a different molecule. Individual 

AEPs can be assembled into AEP networks to characterize the movement of multiple 

stressors and transformations from one stressor to another20. As with the AOP, these AEP 
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networks are useful for CRA because they can organize exposure data from multiple 

sources, make that information readily available for the development of site-specific CSMs, 

and highlight data gaps and uncertainties at study locations.

These organizing frameworks can be linked to form a joint AEP-AOP construct that 

provides a mechanistic scaffold for organizing and integrating exposure and toxicity data 

from multiple species20,27,28. This construct has the potential to be applied to CRA across 

classes of environmental contaminants affecting the same MIE29,30, as well as across species 

affected by the same MIE. Cross-species AOP networks provide a common ground for 

evaluating species-specific responses to environmental stressors across taxa by highlighting 

the effects of stressors at the same KEs in different species. In this work, we develop 

techniques to apply the joint AEP-AOP construct to integrate human health and ecological 

data. We conducted a case study using a single contaminant, the perchlorate anion (ClO4
−), 

to provide a simple example of this approach. The results highlight the potential of the AEP-

AOP construct to advance CRA by enabling evaluation of risk from aggregate exposures 

across multiple species and endpoints.

2. Methods

2.1 Case study

ClO4
− was selected for the case study presented in this work because it is a wide-spread 

environmental contaminant that has been heavily studied in several taxa31,32. This 

contaminant, which is the subject of a National Primary Drinking Water Standard under 

development at EPA33, is found in parts per billion (ppb) concentrations in sources ranging 

from drinking water, to soil, to plant material, to cow’s milk34, and can reach concentrations 

over 100 parts per million (ppm) in surface water at point locations32. Relevant exposure 

concentrations can vary greatly between locations31. Crucially, this anion affects organisms 

primarily through a well-defined mechanism involving the competitive inhibition of iodide 

uptake into the thyroid at the sodium-iodide symporter (NIS)6,31,35,36,37. NIS inhibition 

affects the hypothalamic-pituitary-thyroid (HPT) axis by decreasing iodide availability in the 

thyroid gland, resulting in decreased thyroxin (T4) and triiodothyronine (T3) synthesis and 

may result in a feedback response of increases in thyroid stimulating hormone (TSH) 

production in the pituitary gland. Reductions in these TH levels can have important effects 

on the growth and development of organisms (Figure 1)38 and circulating T4 and T3 often 

serve as surrogates for thyroid hormone (TH) influences in the brain. Conservation of HPT 

axis biology, and therefore pieces of the NIS inhibition AOP, across diverse taxa make 

ClO4
− a straightforward compound for demonstrating proof of concept and developing 

techniques for cross-species data integration using a joint AEP-AOP construct.

Dose-response data for ClO4
− were assembled across multiple endpoints from published 

literature covering twelve species, eight vertebrate and four invertebrate; all doses were 

adjusted by the molecular weight of the perchlorate salt used and anion concentrations were 

converted to units of μg/kg/d. In addition to humans, vertebrate species included three 

representative small mammals: rats (Rattus sp.), meadow voles (Microtus sp.), and rabbits 

(Oryctolagus cuniculus), one representative amphibian: the African clawed frog (Xenopus 
laevis), two representative fishes: zebrafish (Danio rerio) and mosquito fish (Gambusia 
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holbrooki), and one representative bird: the bobwhite quail (Colinus virginianus). 

Invertebrate species examined in this study included earthworms (Eisenia foetida), mosquito 

larvae (Culex quinquefasciatus), the water flea (Daphnia magna), and the sand dollar 

(Peronella japonica). Although invertebrates lack an HPT axis, these organisms were 

included in this study because NIS homologs, as well as adverse effects of ClO4
− exposure, 

have been reported in invertebrates39,40. Furthermore, TH production has been suggested to 

occur in invertebrates41; thus, a plausible basis exists for AOPs linking NIS inhibition to 

AOs in these organisms.

The dataset of species included in this work possessed a variety of relevant exposure 

pathways, experimental design, physiology, life-history traits, and AOs, allowing for the 

demonstration of data integration in the presence of these complicating factors. The 

organisms included in this type of analysis can serve as surrogates for affected wildlife 

species, and the set of species included in other applications of the AEP-AOP approach will 

vary based on the objective of the risk assessment. For example, predictive assessments may 

use a broad range of species, while place-based evaluations may consider a much more 

focused assemblage. This study focused on representative members from the different taxa 

of animals examined in prior ecological risk assessments for ClO4
−, and species were 

included based on the availability of dose-response data and evidence for the presence of the 

NIS inhibition AOP31,42,43.

The ClO4
− case study focused on twenty-nine endpoints contributing to four AOs among 

these species (Supporting Information; Table SI1). Developmental neurotoxicity was 

selected as the AO to inform human health risk because NIS inhibition can reduce maternal 

serum TH levels available to the fetus and passive transport of ClO4
− across the placental 

barrier can additionally affect TH production in the fetus, making this the most susceptible 

human life stage and endpoint to exposure32,44,45. We used findings from established assays 

such as the FETAX (Frog Embryo Teratogenesis Assay – Xenopus) assay46, which relies on 

the link between THs and metamorphosis in amphibians, to inform selection of AOs for non-

human species. Data supporting developmental neurotoxicity as a result of ClO4
− exposure 

were also available for rats, the African clawed frog, and zebrafish31,47,48; therefore, we 

considered this AO in these species as well. This study did not consider thyroid cancer since 

there are no data suggesting that NIS inhibition leads to cancer in humans and 

developmental neurotoxicity is established as an outcome of greater concern at 

environmental exposure levels; further, rats are considered more susceptible to thyroid 

malignancy due to a number of physiological factors49. Other AOs considered in this work 

were based on the reported effects of ClO4
− in the examined species and conformed to the 

guidelines for GEAEs13. These GEAEs included altered growth in zebrafish, mosquito 

larvae, and water fleas, decreased survival in mosquito fish, earthworms, and mosquito 

larvae, and decreased fecundity in zebrafish, meadow voles, earthworms, and water fleas. 

Impaired metamorphosis was used as a measurement endpoint in frogs and sand dollars; 

therefore, we included these organisms in the altered growth GEAE (Figure 1). Data for 

specific AOs were not available for rabbits and quails, but these species were included in this 

study because dose-response data for intermediate KEs in the NIS inhibition AOP were 

available.
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2.2 Adverse Outcome Pathway (AOP) network

The AOP network portion of the AEP-AOP construct assembled the NIS inhibition AOPs of 

the different species examined to provide a common ground for comparison. We based this 

network on the preliminary AOP for NIS inhibition in mammals authored by Gilbert and 

colleagues in the AOP-Wiki (https://aopwiki.org/aops/134), the 2002 EPA perchlorate 

report31, and the 2005 NRC assessment for ingested perchlorate32. NIS inhibition was the 

only MIE in this network, and led to decreased synthesis and depletion of TH in the thyroid 

as an early biological effect for all of the vertebrate species examined. We included a 

separate KE for depletion of TH in the thyroid because measurement of depleted stores is an 

early histopathological indicator of perturbation in the HPT axis. Data on decreases in 

circulating TH and the subsequent upregulation of TSH in a feedback response were also 

available across the taxa examined. Decreased serum TH levels result from these early 

biological effects in all vertebrates, and the branching of subsequent KEs reflected the 

diversity of the AOPs across all of the species examined (Figure 1). For example, altered 

hormone economy can result in hypertrophy and hyperplasia of the thyroid gland to 

compensate. Deficits in TH ultimately lead to developmental neurotoxicity in rats as 

assessed by brain morphometry and behavior31,32, and to different adverse effects in other 

species such as impaired metamorphosis (growth) in the African clawed frog47 (Figure 1). 

Altered structure and functions of thyroid tissues aside from colloid depletion were 

classified as “other thyroid histology changes” (Figure 1), and included angiogenesis50, 

follicle cell hypertrophy51, and hyperplasia52. AOs and GEAEs stemming from altered 

development were used to categorize the different effects of NIS inhibition across species. 

The resulting AOP network was used to organize dose-response data for endpoints 

pertaining to KEs and facilitate the integration of this information to inform CRAs.

2.3 Aggregate Exposure Pathway network

The AEP network portion of the AEP-AOP construct represents the movement of the ClO4
− 

in the environment from its sources to different TSEs in the species examined. This places 

the measured exposures used as input for the AOP network in a relevant context and could 

be used to relate the current results to a place-based risk assessment by populating the 

exposure pathways for different species with site-specific data. Thus, the AEP network can 

serve as a general representation of a conceptual site model (CSM)20, as is highlighted by 

the generic AEP network for ClO4
− presented in this work.

The generic AEP network includes multiple sources (atmospheric deposition, water 

discharge, and disposal in the form of ClO4
− salts) and transport to several different media 

including groundwater, surface water, and soil (Figure 1). The resulting pathways include 

both direct exposure to organisms through contaminated media and exposure through trophic 

interactions with organisms in intermediate KESs. Previous ecological assessments for 

ClO4
− have considered possible exposure to animals through accumulation of the ClO4

− in 

the plant matter that they graze on42,53. Therefore, we included consumption of plant matter 

for both human and non-human species into the AEP. TSEs in the AEP are driven by 

absorption, distribution, metabolism, and elimination (ADME) processes, which describe the 

amount of ClO4
− affecting the NIS inhibition MIE at the thyroid after external exposure in 

each organism (Figure 1). In mammals, these processes are complicated by the fact that both 
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ClO4
− and maternal TH cross the placenta into the fetus, thus adding additional ADME 

considerations. Species-specific TSEs resulting from ADME processes link the AEP 

network and the AOP network. Flows between KESs in the AEP were not quantified for the 

purpose of this case study, as environmental exposure data were not necessary to 

demonstrate cross-species integration of toxicity data and the generic AEP network does not 

represent a specific, measurable location. However, the incorporation of the AEP network 

into the AEP-AOP construct is crucial to illustrate how the techniques presented in this work 

can inform CRAs by creating a context for considering relevant environmental exposures 

and by highlighting knowledge gaps in relevant exposure mechanisms.

2.4 Data acquisition

Dose-response data for KEs in the NIS inhibition AOP network were obtained from 

literature sources and included a combination of laboratory experiments and model outputs. 

For humans, the point of departure (POD) of 7.0 μg/kg/d was obtained from Greer et al. 

(2002)54, which provided in-vivo data for NIS inhibition from ClO4
−; however, no further 

human in vivo empirical data for NIS inhibition were available. We used the biologically 

based dose-response (BBDR) model for a pregnant mother and fetus presented in Lumen et 

al. (2013)55 to simulate ADME processes in humans and to estimate hypothyroxinemia 

(serum T4 below 10 pmol/l) as an early biological effect of NIS inhibition55. This model 

allowed for consideration of susceptible populations of interest by predicting serum-free T4 

levels in both the mother and fetus at different levels of ClO4
− and iodide intake. We 

considered the doses of ClO4
− necessary to induce predicted hypothyroxinemia in women 

receiving the World Health Organization recommended 200 μg iodide per day56, as well as 

in iodide-deficient women receiving just 75 μg iodide per day, to provide estimations across 

a range of relevant iodide intake conditions55. For KEs downstream of serum T4 reduction, 

which were not included in the BBDR model, we hypothesized that a ClO4
− dose at least as 

high as the dose necessary to induce hypothyroxinemia would be required for activation. 

This hypothesis assumes a 1:1 relationship among upstream and downstream events, and 

therefore does not take into account possible biological feedbacks explicitly except those 

that were empirically inherent by time point in the experimental design. The reference dose 

(RfD) for oral consumption of the ClO4
− presented in the EPA Integrated Risk Information 

System (0.7 μg/kg/d)32,57 was also included in this case study to provide a context for dose-

response data.

Data sources for non-human species were obtained through prescribed searches of the 

ECOTOXicology knowledgebase58, as well as from the 2002 EPA ClO4
− toxicological 

review and risk characterization31. ECOTOX search parameters for each species included an 

exact match for genus and species name, “Perchlorates” as a predefined chemical group, and 

Lowest-Observed-Effect-Concentration (LOEC), No-Observed-Effect-Concentration 

(NOEC), Lowest-Observed-Effect-Level (LOEL), and No-Observed-Effect-Level (NOEL) 

as endpoints. No further search parameters were provided and results were sorted by 

response site and organism life stage. The relevant data identified through the ECOTOX 

search was added to the data included in the 2002 EPA review31, which contained Lowest-

Observed-Adverse-Effect-Level (LOAEL), and No-Observed-Adverse-Effect-Level 

(NOAEL) findings in addition to these other metrics. Therefore, the final data set included 
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NOEC, LOEC, NOEL, LOEL, NOAEL, and LOAEL observations. Statistical approaches, 

including benchmark dose (BMD) modelling values and the 95% confidence limit of the 

BMD (BMDL) values according to the methods described in the 2002 EPA assessment31, 

were used to characterize hormone, histopathological, and brain morphometry responses in 

rats and rabbits because data were available.

2.5 Data integration

The AOP network allowed for the organization of data from different studies into aggregated 

KEs, each of which spanned multiple measured endpoints, to create a context for 

comparison. We used the conceptual AOP network (Figure 1) to assemble a total of nine 

KEs from twenty-nine different measurement endpoints (Supporting Information). Although 

data were not available for every KE in all species, each AOP in the AOP network shared the 

NIS inhibition MIE and the early KEs of T4/T3 decrease, and TSH increase. When 

assembling data, we separated colloid depletion from other compensatory thyroid 

histological changes to reflect the fact that colloid depletion must occur before downstream 

KEs and AOs. The four AOs considered in this study had equal proximity to the MIE and 

were not assumed to occur sequentially.

The measurement units of the data generated by different experimental designs were made 

to be consistent within and across aggregated KEs to allow for comparison across species. 

The set of studies used in this work dosed organisms using ammonium, potassium, or 

sodium perchlorate salts, and reported data were adjusted by the ratio of the molecular 

weight of ClO4
− to the appropriate source molecule (0.85, 0.72, 0.81, respectively) to ensure 

that appropriate anion concentrations were considered. While doses for terrestrial organisms 

were often reported in units of μg/kg/d, aquatic organisms are dosed by media concentration 

(μg/L or ppb). The dose metrics from all studies were converted to μg/kg/d, and the blood 

concentration of ClO4
− for aquatic organisms was assumed to be equal to the medium 

(water) concentration. This assumption is plausible in this case study due to the high 

mobility, stability and poor complexing properties of ClO4
−, and equilibration of these 

organisms with their aqueous environment59. However, tools such as physiologically based 

pharmacokinetic (PBPK) models may be necessary to simulate ADME properties and 

estimate the internal dosimetry of other compounds.

We visually compared and evaluated data for the NOECs, LOECs, NOELs, LOELs, 

NOAELs, LOAELs, BMDs, and BMDLs from different studies for each species and 

endpoint at each KE in the AOP network (Figure 2). Data for lethal concentration (LC50) 

were also considered, but were restricted to invertebrates to highlight the existing literature 

data for these organisms. LC50 data points were not considered when comparing dose-

response data across species. We arrange the KEs in the NIS inhibition AOP network from 

the MIE to the AOs, then plotted the ClO4
− dose-response data (μg/kg/d) versus the KEs. 

This linearized arrangement of KEs (Figure 2) does not imply causal relationships, but rather 

these relationships are described by AOP network layout presented in Figure 1. To provide a 

conservative estimate of sensitivity to ClO4
− across KEs and species, we determined the 

lowest reported dose observed to activate each KE for each species, regardless of 

experimental design or duration. While it is possible that this approach could bias results in 
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AOPs where the timing of activation differs greatly among early and late KEs, no patterns 

were observed between experimental duration and KE activation in the NIS inhibition AOP, 

suggesting that ClO4
− concentration at activation of a KE is an appropriate conservative 

indicator of sensitivity. We examined the variability both within and among each species and 

KE by calculating the coefficient of variation (standard deviation divided by mean) for each 

comparison (Table 1).

3. Results and Discussion

3.1 ClO4
− case study

The data assembled for the ClO4
− case study focused on toxicity and included empirical 

dose-response results for 29 endpoints linked to 9 KEs across the AOP network (Supporting 

Information; Table SI1). Data points indicating KE activation spanned 7 orders of magnitude 

(Figure 2) and ranged from 4.2 μg/kg/d for impaired growth in African clawed frogs47 to 3.5 

g/kg/d for LC50 in earthworms60 after adjusting for the type of perchlorate salts used in each 

experiment. The mechanistic nature of the AOP network and conserved KEs facilitated data 

evaluation across endpoints in human and non-human targets, which were measured using 

different experimental designs, and provided an organizing framework for the display of 

dose-response data across the species-specific mechanisms of action (Figures 2 and 3).

The dose-response data showed relatively flat trends in the amount of ClO4
− necessary to 

activate KEs across NIS inhibition AOPs for the species examined, particularly in early and 

intermediate KEs (Figure 3). The coefficient of variation for the ClO4
− dose required to 

activate the early and intermediate KEs (Table 1) was less than two for all species and less 

than or equal to one for four of the species examined (humans, meadow voles, rabbits, and 

mosquito fish), indicating relatively little within-species variation. Rats consistently 

displayed among the lowest reported ClO4
− doses for KE activation of the species examined, 

and closely mimicked the human responses hypothesized from the Lumen et al. (2013) 

model predictions55. In this way, cross-species comparisons can be used to support the 

plausibility of hypothesized responses in data-limited species. The fact that KEs within a 

species were activated at similar concentrations in multiple studies suggests that the AOs in 

the NIS inhibition AOP are similarly sensitive to the activation of the MIE.

KE activation doses for invertebrate organisms were generally higher than those for 

vertebrates, but some endpoints were lower than those for fish at the impaired reproduction, 

developmental effects, and mortality AOs (Figures 2). This finding may be the result of 

limited testing efforts at lower concentrations in fish. Alternatively, different biology among 

the diverse taxa that make up invertebrates may cause some species to be more sensitive to 

ClO4
− exposure than others. For example, the two LC50 data points for the mortality AO 

correspond to earthworms (3.5 g/kg/d)60 and mosquito larvae (63 mg/kg/d)40, and 

differences between these organisms such as ADME properties or life history traits may 

account for this discrepancy (Figure 2). However, the fact that invertebrates showed 

responses within the same order of magnitude as vertebrates for AOs, despite lacking an 

HPT axis, gives support to the hypothesis that control pathways similar to the NIS inhibition 

AOP are present in these organisms. This finding highlights the utility of the approach 
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presented in this work to leverage the conserved mechanism of action for ClO4
− to integrate 

and interpret data across species.

The AOP network (Figure 1) facilitates the interpretation of dose-response data both by 

describing the sequential relationship among KEs and highlighting uncertainties. For 

example, the lowest doses reported to induce TSH increases in zebrafish and African clawed 

frogs were approximately 100-fold greater at this KE than at other early and intermediate 

KEs in these species such as TH decrease in the serum and thyroid histology changes. 

However, direct measurement of TSH in these organisms during their development is 

challenging and sampling efforts were only made at higher doses61,62, resulting in an 

apparent increase in the amount of perchlorate necessary to active this KE. It is likely that 

this KE is activated at lower doses than those reported for each species, and the fact that KEs 

both upstream and downstream of TSH increase are activated at lower doses in these species 

supports this claim (Figures 2 and 3). Similarly, measurements of T4 decrease in the plasma 

of quails were observed at doses over 100 times the upper limit of the dose range reported 

for other species, but effects were observed at lower activation doses for both upstream and 

downstream KEs. This finding suggests that more work is required to verify the dose-

response relationship for ClO4
− on TH in the serum of these organisms, despite an observed 

NOEL (Figure 2). In a separate example, the ClO4
− dose (81.2 mg/kg/d) required to cause 

altered jaw development in zebrafish larvae63 is relatively high compared to other KEs and 

other species at the development KE. The AOP construct highlights that this finding may be 

an overestimation because few NOELs for this endpoint have been reported (Figure 2), and 

therefore indicates that the lack of response observed at low doses may be a result of 

sampling bias due to experimental design rather than an absence of effect. By highlighting 

considerations such as these in the context of sequential KEs, the AOP network facilitates 

the evaluation of experimental results from disparate studies across multiple taxa.

The framework provided by the AOP network also facilitated comparison of the dose-

response data across species at each KE. Although the activation doses of ClO4
− for early 

and intermediate KEs spanned three orders of magnitude across the organisms examined, 

four of the species (rats, rabbits, African clawed frogs, and zebrafish) showed activation of at 

least one KE within the same order of magnitude as the human POD (7.0 μg/kg/d; Figure 3). 

African clawed frogs and rats had the lowest activation doses at seven of the nine KEs (see 

Supporting Information; Figure SI1 for additional information), suggesting that these species 

may be more vulnerable than others to ClO4
− exposure; however, this apparent sensitivity is 

likely biased by data availability and sampling efforts. For example, data were not available 

for meadow voles at doses lower that 338 μg/kg/d for any KEs in the NIS inhibition AOP. 

Therefore, we were unable to confirm NOELs at concentrations similar to the human POD 

and the higher ClO4
− dose needed for KE activation in meadow voles observed in Figure 3 is 

likely an underestimation driven by experimental design. Taken in total, similar trends were 

observed in data reported in studies across species and KEs (Figure 3), a finding that reflects 

the highly conserved nature of HPT axis biology among vertebrate organisms64. Thus, this 

case study demonstrates how disparate human health and ecological data sources can be 

integrated to inform a CRA. However, this case study also highlights that additional efforts 

directed at filling in data gaps and testing the same concentrations across species are 

necessary to strengthen cross-species comparisons.
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3.2 The role of uncertainties

Confidence in the interpretation of results from cross-species comparisons within an AEP-

AOP construct is dependent on the availability and quality of data used to inform dose-

response relationships, the completeness of data sets for each organism, and the strength of 

the evidence for parallel mechanisms of action across organisms that includes the utility of 

the given experimental design and relevance to the particular KE. In the ClO4
− case study, 

for example, the absence of dose-response data for fishes at relatively low concentrations 

that result in AOs for other species (Figure 2) implies an increased uncertainty in the dose 

that will result in AOs for fishes. Identification of data gaps such as these can guide the 

exposure dose-range for future studies to refine results. Additionally, uncertainties such as 

assumptions about the ADME properties of different species or biological mechanisms of 

action can decrease confidence in results. While challenges such as these can make cross-

species data integration difficult, one strength of the combined AEP-AOP approach used in 

this work is that it provides a mechanistic structure to assist with identifying and 

documenting data gaps and assumptions that are made in the absence of data. These 

assumptions can then be tested and relaxed when data become available. Thus, AEP-AOP 

constructs can assist with transparent communication of risk assessment results.

3.3 AEP-AOP construct applications in CRA

Hazard identification, exposure, and toxicity have long been recognized as integral 

components of human health and ecological risk assessment6,65,66. The combined AEP-AOP 

construct provides a framework for integrating data that facilitates place-based, community-

scale applications of the phased approach to CRAs described in Menzie et al. (2007)67. In 

this approach67, a conceptual model is first constructed, environmental hazards are then 

identified, and the individual and combined effects of hazards are assessed through toxicity 

screening. The CSM for relevant exposure mechanisms is extracted from the AEP and the 

conceptual model for toxicity effects is captured in the AOP network. This approach has the 

potential to accommodate multiple stressors by assembling the CSM from AEP networks 

covering the stressors of interest. Additionally, these AEP networks can include 

transformational relationships whereby one stressor is converted into another. The chemical-

agnostic nature of AOP networks19,23 implies that multiple stressors affecting an MIE 

individually or in concert could be evaluated by converting TSEs to equivalent doses 

informed by toxicity testing. Thus, the AEP-AOP construct enables the combination of 

exposure from multiple chemicals and stressors with relevant toxicity data, as advocated by 

World Health Organization’s International Programme on Chemical Safety15 and the 

National Academies of Sciences, Engineering, and Medicine9, to inform cross-species CRA.

While the ClO4
− case study presented in this work focused on a single substance to provide 

an example of how the AEP-AOP construct can organize and integrate data across species, 

the NIS inhibition AOP network used in this work is relevant to all chemicals that perturb 

the NIS inhibition MIE or other KEs in the network. Therefore, if data are sufficiently 

robust, exposure and toxicity data for other NIS inhibitors such as nitrate and 

thiocyanate44,68,69,70 could be combined with ClO4
− data, and, assuming sufficient data 

exist for the additional chemicals, cumulative risk could be assessed based on the exposures 

of each substance described by the AEP network9,15.
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For chemicals with complex relationships between environmental exposure and TSEs, 

species-specific information on the ADME properties of a contaminant can be incorporated 

into PBPK models to quantitatively describe the mechanistic links between the AEP and 

AOP networks. The resulting AEP-AOP continuum can qualitatively assess risk across 

human health and ecological endpoints to identify species of concern, or can be used 

quantitatively to calculate species-specific hazard indices such as those as in Price et al. 

(2012)17. However, caution should be taken when conducting quantitative analyses to ensure 

that a consistent set of doses with relevant experimental conditions has been tested across 

species as well as across KEs in the AOP network to avoid observational bias.

The AEP-AOP approach presented in this work employs the AOP framework differently 

from toxicity screening applications such as those presented in Angrish et al. (2015)71 and 

Knapen et al. (2015)72. Instead of identifying potentially hazardous chemicals, the AOP 

network highlights similarities and differences among species responses to contaminants and 

can be used in support of site-specific community decision making. The mechanistic 

emphasis of the AEP-AOP approach provides a systematic construct for communities to 

both understand components of risk characterization and voice valuation preferences 

regarding either exposures or species and endpoint of interest, and affords decision makers a 

more comprehensive characterization of alternatives and impacts. Thus, the AEP-AOP 

approach readily informs decision support tools such as MCDA16. Additionally, the 

organization of data provided by the AEP-AOP construct identifies data gaps that can help to 

prioritize future research efforts.

3.4 Benefits of a holistic perspective

The joining of the AEP framework to the AOP framework is essential for the application of 

the data integration techniques described in this case study to CRA. This construct provides 

a holistic perspective that allows for the incorporation of relevant TSEs derived from site-

based AEPs to be used in conjunction with toxicity data describing KEs in the multi-species 

AOP network for a community risk assessment. These AEPS can consider exposure 

differences among organisms based on life-history characteristics, exposure media, or other 

factors such as degradation of contaminants by bacteria. Exposures experienced by different 

organisms can be projected onto the dose-response data for KEs in an AOP network of 

representative species to identify species or groups at risk. For example, the ClO4
− case 

study demonstrates that vertebrate organisms exposed to environmental conditions leading to 

TSEs of 100 μg/kg/d or greater, including mammals, fish, amphibians, and birds, may also 

be at risk for NIS inhibition and the downstream KEs and AOs in the NIS inhibition AOP 

network (Figure 3). Using the same logic, the dose-response data assembled in this case 

study suggest that ClO4
− exposures leading to the EPA RfD of 0.7 μg/kg/d57 (Figure 2) 

would not result in high risk of AOs in either human health or ecological endpoints from 

NIS inhibition.

The holistic approach provided by the combined AEP-AOP construct is also useful for 

informing the problem formulation stage of risk assessments. For example, the inclusion of 

invertebrates in the ClO4
− case study, despite the fact that these organisms do not have a 

well-characterized AOP that is analogous to the AOP for NIS inhibition in vertebrates, 
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highlights how this approach can help to identify potentially affected species in a 

community. Additionally, the inclusion of invertebrate species demonstrates how the limited 

data available for these organisms can be placed in the context of the data for other species 

in a community. The ability of the AEP-AOP construct to organize data based on 

mechanistic processes enables a systematic evaluation of knowledge gaps.

3.5 Towards a mechanistic approach for place-based community CRAs

Developing a site-specific CSM based on AEPs for an area of concern should be an early 

goal for conducting community based CRAs. These AEPs could be either qualitative or 

quantitative in nature, depending on the substance(s) and availability of data, and describe 

the drivers of risk for the organisms inhabiting the study site. Exposure pathways that use 

different media such as water, air, or food may result in different internal doses for different 

organisms, and can be captured in an AEP. Additionally, the species included in an AEP 

network, along with risk assessment goals, can inform which AOs are relevant for inclusion 

in an AOP network. Recent work has encouraged a paradigm shift for risk assessments that 

focuses first on exposure, then on toxicity73, and consideration of exposure scenarios to 

inform problem formulation is emphasized in the new TSCA law. The AEP-AOP construct 

facilitates a mechanistic application of this paradigm by linking exposure information in the 

form of an AEP network to toxicity for individual KEs in an AOP network and highlights 

the importance of ADME considerations to describe the appropriate TSE as the critical link 

to an MIE. Future efforts are needed to address this linkage by developing quantitative AEPs 

that link the dose-response data for an AOP network to environmental exposures, and efforts 

are currently underway to provide an example application of this mechanistic continuum for 

the ClO4
− case study presented in this work. Implementation of this approach could 

facilitate the comparison of risk across species and identify species at greater risk due to 

either higher internal doses from exposure pathways or more severe toxicological effects.

Connecting toxicity data across species with KEs can be challenging and illustrates the need 

for careful attention to experimental design and a common ontology across disciplines, 

especially when performing systematic reviews. A KE for an AOP can be described in term 

of specific processes and objects based on existing biological ontologies74. For example, the 

impaired growth KE in the ClO4
− case study could be assigned the “growth” process term 

from the Gene Ontology75. These biological process and objects can be further related to 

specific ontological terms from ontologies focused on experimental measurements or 

toxicological outcomes. For example, in the ClO4
− case study the growth process can be 

related to endpoints such as “body weight”, “height growth measurement”, and “growth 

condition” from the Experimental Factor Ontology76 to allow endpoints to be matched to 

KEs in searchable databases. This functionality could contribute to automated population of 

dose-response data into cross-species AOP networks. Furthermore, adherence to reporting 

criteria for toxicological data such as those presented in Hanson et al. (2017)77 could assist 

in the development of these ontologies and help to ensure that high quality data are available 

for risk assessments. Combining well-described AOPs with an ontology linking KEs to 

measurement endpoints will increase the utility of the AEP-AOP construct for integrating 

human health and ecological endpoints into CRA.

Hines et al. Page 13

Environ Sci Technol. Author manuscript; available in PMC 2019 January 16.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



The techniques presented in this work demonstrate how a joint AEP-AOP construct can be 

used to integrate data on human health and ecological endpoints. This approach can advance 

CRA applications in at least four ways. First, the AEP-AOP construct facilitates the 

organization of data into mechanistic pathways linking sources of contamination to 

outcomes in multiple species (Figure 1). This organization provides a common basis for 

comparing the results of exposure and toxicity experiments and can be used to link a CSM 

for place-based community CRA to toxicity data. Second, the AEP-AOP construct can 

inform the evaluation of risk across communities by integrating data from studies spanning 

multiple taxa (Figure 2). For example, in the ClO4
− case study, we observed a general 

concordance across species with regard to dose necessary to activate the MIE and early KEs, 

suggesting similar susceptibility to ClO4
− exposure across the taxa examined. This approach 

could provide insight into vulnerable populations and lifestages, elucidate differences and 

similarities in sensitivity among species or experimental design, and inform decision support 

tools such as MCDA. Third, the AEP-AOP construct highlights data gaps and can identify 

areas where more data would be most useful. Identifying and understanding the effects of 

data gaps is an essential task for guiding the interpretation of existing data and identifying 

research needs. Furthermore, organizing the information in a systematic way highlights the 

caveats associated with those data (Figure 2–3, Supplemental Information Figure SI1), and 

can be used to identify areas where additional caution is needed when interpreting data. 

Finally, the AEP-AOP construct emphasizes the need for a common ontology to guide the 

integration of endpoints across species. The mechanistic approach for cross-species data 

integration described in this work represents an important step for informing CRA.
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Acronyms

AEP Aggregate Exposure Pathway

AO Adverse Outcome

AOP Adverse Outcome Pathway

BMD benchmark dose

BMDL benchmark dose 95% confidence limit

ClO4
− perchlorate anion

CRA Cumulative Risk Assessment
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CSM Conceptual Site Model

GEAE Generic Ecological Assessment Endpoint

HPT Hypothalamic-Pituitary-Thyroid

KE Key Event

KER Key Event Relationship

KES Key Exposure State

KTR Key Transitional Relationship

LOAEL Lowest-Observed-Adverse-Effect-Level

LOEC Lowest-Observed-Effect-Concentration

LOEL Lowest-Observed-Effect-Level

MCDA Multi-Criteria Decision Analysis

MIE Molecular Initiating Event

NIS sodium-Iodide Symporter

NOAEL No-Observed-Adverse-Effect-Level

NOEC No-Observed-Effect-Concentration

NOEL No-Observed-Effect-Level

PBPK Physiologically-Based Pharmacokinetic

T3 triiodothyronine

T4 thyroxin

TH Thyroid Hormone

TSE Target Site Exposure

TSH Thyroid Stimulating Hormone
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Figure 1. 
The joint AEP-AOP construct applied to the ClO4

− case study. White clouds represent 

different exposure media, while white boxes rectangles represent KESs in the AEP and the 

purple circle represents the sum of human consumption from KESs. Different colored 

pathways in the AEP depict different KTRs. Yellow boxes and black arrows depict KEs and 

KE relationships in the AOP, and the black box represents the unknown effects of thyroid 

histology changes. Silhouettes of different species show how species-specific AOPs were 

integrated into the AOP network.
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Figure 2. 
Dose-response data for the nine aggregated KEs in the ClO4

− AOP network. Each data point 

represents a different study result, and the point fill represents the type of data. The shape of 

points corresponds to the legend beneath each KE column, which specifies the measurement 

endpoint. Colors depict different species, and vertical lines link studies with the same 

endpoints in the same species. Black asterisks and vertical line in the “TH decrease in 

serum” KE show the range of predictions from the Lumen et al. (2013) model for 

hypothyroxinemia based on daily iodide intakes of 200 μg (top) and 75 μg (bottom) to 

represent iodide sufficient and deficient populations, respectively. Black lines in KEs 

downstream of “TH decrease in serum” show the hypothesized activation of KEs in humans 

based on upstream events. Data points were scaled by the ratio of the molecular weight of 

ClO4
− to the source salts of ammonium (0.85), potassium (0.72), or sodium (0.81) 

perchlorate used in each experiment.
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Figure 3. 
Trajectories of the lowest endpoint observed to activate each KE in the ClO4

− AOP network 

for vertebrate each species. Invertebrates were excluded from this analysis because the data 

points included four different species. Dotted black line for human indicates that the points 

shown for these KEs are hypothesized from the Lumen et al. (2013) model results for 

pregnant women receiving 200 μg iodide per day. A heatmap highlighting the relative 

activation doses for each species at each KE, as well as data gaps, is available in the 

Supporting Information (Figure SI1).

Hines et al. Page 22

Environ Sci Technol. Author manuscript; available in PMC 2019 January 16.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Hines et al. Page 23

Table 1

Coefficients of variation (CV) for the lowest reported activation dose across early and intermediate (E/I) KEs 

and all KEs the species examined in this study.

Organism CV (E/I KEs) CV (all KEs)

Humans (Homo sapiens) 0.9* NA

rats (Rattus sp.) 1.3 1.4

meadow voles (Microtus sp.) 0.17 0.17

rabbits (Oryctolagus cuniculus) 1.0 1.0

African clawed frog (Xenopus laevis) 1.1 1.7

zebrafish (Danio rerio) 1.9 2.3

mosquito fish (Gambusia holbrooki) 0.44 2.0

bobwhite quail (Colinus virginianus) 1.7 1.7

NA indicates not applicable;

*
indicates based on modeled results.
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