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Abstract

Pancreatic ductal adenocarcinoma (PDAC) has a dismal prognosis. In order to improve outcomes, 

there is a critical need for improved tools for detection, accurate staging and resectability 

assessment. This could improve patient stratification for the most optimal primary treatment 

modality. Molecular imaging, used in combination with tumor-specific imaging agents, can 

improve established imaging methods for PDAC. These novel, tumor-specific imaging agents 

developed to target specific biomarkers have the potential to specifically differentiate between 

malignant and benign diseases, such as pancreatitis. When these agents are coupled to various 

types of labels, this type of molecular imaging can provide integrated diagnostic, non-invasive 

imaging of PDAC as well as image-guided pancreatic surgery. This review provides a detailed 

overview of the current clinical imaging applications, upcoming molecular imaging strategies for 

PDAC, and potential targets for imaging, with an emphasis on intraoperative imaging applications.

Address correspondence to: R.J. Swijnenburg, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands 
(r.j.swijnenburg@lumc.nl). Tel: +31 71 526 4005, Fax: +31 71 526 6750. 

Conflict of Interest Disclosure: The authors declare no conflict of interest to the submitted work.

Disclosures
This manuscript describes the investigational use of Cetuximab-IRDye800, SGM-101, and [18F]FP-R01-MG-F2 not yet approved by 
the FDA.

HHS Public Access
Author manuscript
Pancreas. Author manuscript; available in PMC 2019 July 01.

Published in final edited form as:
Pancreas. 2018 July ; 47(6): 675–689. doi:10.1097/MPA.0000000000001075.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Molecular imaging; tumor-specific imaging; pancreatic cancer; intra-operative

INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) accounts for about 90% of all pancreatic 

neoplasms and is the fourth most common cause of cancer-related deaths in developed 

countries.1 PDAC has a dismal prognosis, with a five-year survival rate of less than 5%. 

Pain, jaundice and weight loss are the most common presenting symptoms but in the early 

stages of the disease, these symptoms may be subtle which often leads to delayed diagnoses.
2 The median size of PDAC at the time of diagnosis is ~3.1 cm, and these statistics have not 

changed in the past three decades despite advances in imaging technologies, as well as in 
vitro diagnostic testing methods.3 Resection of tumors while they are small, well-defined 

and localized results in a higher chance of complete tumor clearance which translates into 

greater patient survival rates.3,4

Only 15% to 25% of patients are eligible for curative resection at their initial diagnosis, due 

to locoregional spread and metastasis.5,6 More precise detection methods can lead to 

improved patient stratification for the most optimal primary treatment modality; either 

surgery or systemic (neoadjuvant) therapy. This selection can prevent patients from 

undergoing resections without any oncologic benefit. Another advantage of precise 

visualization of the tumor could be a more radical resection. Tumor margin-positive (R1) 

resections occur in up to 70% of PDAC cases, leading to a high number of locoregional 

recurrence.7,8 This means that for all patients diagnosed with PDAC, only 15% of these 

patients will receive a radical, tumor-margin negative resection and have a chance for 

prolonged survival. Therefore, improved tools for diagnosis, accurate staging, and more 

effective, tumor-margin negative pancreatic surgeries are crucial for improving patient 

outcomes.9

Imaging techniques play an important role in the diagnosis of PDAC. Current clinical 

imaging protocols include transabdominal ultrasound, computed tomography (CT) and/or 

magnetic resonance imaging (MRI) for disease staging and prediction of resectability.1 

Endoscopic ultrasound (EUS) can complement these imaging methods with valuable staging 

information as well as the opportunity of tissue diagnosis by fine-needle aspiration.10

Molecular functional imaging has the potential to play an important role in PDAC 

management and be of complementary value to these conventional imaging techniques. It 

could be used for earlier tumor detection, and improved characterization, staging, and 

response assessment to neoadjuvant therapy. It could also serve as a guide for surgery during 

diagnostic laparoscopy and tumor resection. Possible imaging modalities for molecular 

imaging include molecularly-targeted contrast-enhanced transabdominal (CEUS) and EUS, 

CT, MRI, positron emission tomography (PET), photoacoustic imaging (PAI), fluorescence 

molecular imaging, and Raman optical imaging (Fig. 1).
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Recently, Laeseke et al. published a review focused on the role of molecular imaging in 

early detection of PDAC.11 The current review gives an overview of the status of clinical 

imaging applications, the advances of molecular imaging strategies, and most optimal 

imaging targets for PDAC, with a special emphasis on intraoperative applications.

CURRENT DIAGNOSTIC IMAGING TOOLS FOR PDAC

Transabdominal and endoscopic ultrasound

Ultrasound (US) is often the initial diagnostic assessment used in patients presenting with 

jaundice, weight loss, and abdominal pain. US is a relatively inexpensive, portable, 

noninvasive, and widely available tool. However, the sensitivity and accuracy of US is highly 

dependent on the operator’s skills, degree of disease progression and body habitus of the 

patient. Therefore, sensitivity of conventional US for detecting PDAC varies widely and 

ranges from 95% in tumors > 3 cm to 50% in tumors < 1 cm.12 In addition, it is difficult to 

differentiate between PDAC and inflammatory diseases such as pancreatitis using US 

technology.

EUS has become a valuable diagnostic tool for PDAC since it allows for tissue sampling and 

cytological evaluation, both of which can provide a definitive diagnosis.13,14 For the 

evaluation of solid pancreatic tumors, EUS detects lesions <2 cm with greater sensitivity 

(98%) than CT (86%). On the other hand, EUS also has important limitations in the 

evaluation of solid pancreatic lesions. First, there is substantial operator-dependence, 

resulting in variable sensitivity ranging from 57% to 81%.15,16 Second, the sensitivity is 

relatively poor (80%) when detecting PDAC in patients with pancreatitis.17 And finally, the 

invasive nature of EUS is a significant disadvantage of this technique.

Computed Tomography

Multiphase multi-detector row CT (MDCT) with intravenous contrast is the diagnostic test 

of choice for suspected pancreatic lesions. MDCT has the highest accuracy in determining 

the extent of primary tumor, locoregional extension, vascular invasion, distant metastases 

and resectability.14 MDCT is used to predict resectability of PDAC with a positive predictive 

value (PPV), sensitivity and specificity of 89%, 96% and 33–72%, respectively.18,19 An 

additional advantage of MDCT imaging is the possibility to detect extrapancreatic spread by 

perineural invasion.20 This is of great importance since these patients have significantly 

reduced survival after pancreaticoduodenectomy.21 CT perfusion can be used to differentiate 

between low and high grade PDAC, by using peak enhancement intensity values and blood 

volume parameters.22 Despite its sensitivity, MDCT cannot reliably detect small lesions 

(<1cm), differentiate between malignant lesions and benign conditions, or detect 

isoattenuating primary tumors.23

Magnetic Resonance Imaging

MRI has a reported sensitivity and specificity for diagnosis of PDAC of 85–93% and 72–

79%, respectively.24,25 MRI has advantages over CT regarding improved soft tissue contrast 

resolution and the absence of ionizing radiation. This leads to several situations were MRI is 

preferred above CT; such as with small tumors, isoattenuating lesions, and fatty infiltration 
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in the pancreatic head.26 In addition, there are alternative sequences when using MRI, such 

as magnetic resonance cholangiopancreaticography (MRCP) which can be used to image the 

biliary and pancreatic ducts in detail. MRCP has comparable sensitivity to the more invasive 

endoscopic retrograde cholangiopancreaticography (ERCP) in diagnosing PDAC.27 Another 

potential sequence is diffusion-weighted images (DWI), with this technique the difference in 

diffusion of water molecules is visualized by using the apparent diffusion coefficient (ADC). 

PDAC tends to have low ADC values due to high levels of fibrosis. This methods is helpful 

for the identification of subtle lesions with diffusion restriction.26 Due to its high soft tissue 

contrast MRI is the preferred modality for assessing cystic lesions in the pancreas.28 

Another important advantage of MRI over CT is the more precise detection of enlarged 

lymph nodes and distant metastases.28 A disadvantage of both CT and MRI, is that neither 

can reliably distinguish residual or necrotic tumor from fibrosis and radiation changes after 

treatment.

PET Imaging

Currently, PET is the only molecular imaging technique used for PDAC. It enables whole 

body imaging to allow staging of diseases, similar to CT and MRI. [18F]-2-fluoro-2-deoxy-

glucose (18F-FDG)-PET has an established role in the work-up of various malignancies. The 

normal pancreas has low glucose usage compared to PDAC, so areas with increased uptake 

can be visualized and point towards potential lesions. Because the metabolic activity of a 

tumor is expressed by the degree of 18F-FDG uptake it is possible to predict tumor 

aggressiveness and even survival in patients by the degree of uptake.29,30 The average 

sensitivity and specificity of 18F-FDG for PDAC are 94% and 90% respectively, compared 

to 82% and 75% for CT.31 Choi et al. reported the use of 18F-FDG-PET to detect 

biologically active tumor volumes and therefore to assess treatment effectiveness.32 A recent 

multi-center trial in the UK with 550 patients looking at the diagnosis of PDAC showed a 

sensitivity of 92.7% for FDG PET/CT compared to 88.5% for MDCT (P = 0.010) and a 

specificity of 75.8% compared to 70.6% (P = 0.023).33 A problem of using 18F-FDG uptake, 

is that glucose metabolism is not specific for malignant processes, and physiologic uptake 

can be found in normal tissues as well as in inflammatory tissue which might lead to false-

positive findings, causing a similar appearance for pancreatitis and PDAC.34

CURRENT INTRA-OPERATIVE IMAGING TOOLS

A major limitation of the aforementioned imaging techniques, such as CT, MRI or PET is 

the fact that these techniques cannot be applied as intraoperative imaging tools due to altered 

positioning of the body, and tissue manipulation by the surgeon.35 For brain cancer surgery, 

the use of MRI-guided resection has almost become standard practice.36 Unfortunately, this 

method is time-consuming, costly. Therefore, chances are low that MRI-guided resection 

will be widely-implemented outside the field of brain cancer surgery. Currently, the only 

tools available for a pancreatic surgeon to ensure complete tumor resection are visual and 

tactile information, frozen-section analysis by a pathologist, and intra-operative ultrasound.

Intra-operative frozen-section analysis (IFSA) is commonly performed to determine 

resectability when unanticipated locoregional spread is identified during surgery and to 

Tummers et al. Page 4

Pancreas. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ensure negative final margins after resection.37 Although frozen section analysis is 

commonly used to determine successful ablation, it is time-consuming,and only samples a 

small fraction of the wound bed which could lead to false-negative results. During surgery, if 

the IFSA of the resection margin turns out to be positive, additional pancreatic tissue is often 

removed in an effort to clear the margin. Only a few single institutional studies have 

assessed the value of this surgical maneuver so far and it is shown that there is actually no 

improved overall survival when additional IFSA-guided resection is performed.38–40 IFSA 

has a reported low incidence of false-positive results, but the amount of false-negative results 

has ranged widely from 1.2% to 75%.41,42 This relatively high incidence of false-negative 

results could indicate that preoperative imaging and possibly even surgical judgement are 

more reliable than a negative IFSA.

Intra-operative Ultrasound

Currently, the only intra-operative imaging technique to help the surgeon delineate PDAC 

from its surrounding structures is anatomical intraoperative ultrasound. The ability to 

provide high resolution real-time imaging, along with accurate lesion detection, has 

established the role of intraoperative ultrasound (IOUS) in PDAC surgery. IOUS can be used 

for intraoperative guidance and localization of lesions, for determining resectability, surgical 

planning, differentiation between cystic and non-cystic lesions, and metastatic survey.43,44 

IOUS also has disadvantages since it is less reliable for detecting superficial and small 

lesions compared to visual and tactile methods.45 Another disadvantage is its operator 

dependence; substantial training and experience are essential for generating and interpreting 

useful images for intra-operative surgical decision-making.12,46

THE NEED FOR ADVANCED MOLECULAR IMAGING IN PDAC

To be able to improve detection and patient stratification for treatment, there is a critical 

need to develop and improve imaging methods that specifically recognize cancer.47 In 

current practice, the accurate identification of tumors is mainly subjective and relies heavily 

on the surgeon’s experience leading to a significant variability in surgical outcomes.48 This 

inability to exactly identify tumors intraoperatively could result in: 1) Incomplete resection 

of tumors that could otherwise have been resected completely; 2) Attempt to resect tumors 

which should have been identified as locally advanced tumors; 3) Incomplete lymph node 

clearance due to lack of knowledge of the involved or potentially involved lymph nodes, and 

4) Resection of the primary tumor in the presence of visually occult micrometastasis. In each 

of these situations, patients undergo operations with little or no oncological benefit, but with 

a high risk of deterioration of quality of life due to surgery in their end stage of life. There 

are two other challenges a surgeon faces when resecting PDAC. First, both the benign 

pancreatitis and malignant PDAC have abundant stroma, and therefore both entities are 

difficult to distinguish using conventional imaging techniques. Second, the introduction of 

neoadjuvant treatment regimens such as FOLFIRINOX, leading to a 51% increase in tumors 

becoming resectable after 4 months of neoadjuvant treatment.49 One of the major drawbacks 

after neoadjuvant treatment is that conventional imaging modalities, such as CT and MRI, 

are often not able to differentiate between viable tumor and chemoradiation-induced tumor 

necrosis and fibrosis, and, therefore, prediction of resectability is limited.50 Neoadjuvant 
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treatment effects make differentiation between (vital) tumor and fibrotic pancreatic tissue 

even harder for surgeons during the operation.

Tumor-targeted molecular imaging could provide crucial information in these situations. 

Molecular imaging can either be performed by using conventional imaging techniques in 

combination with tumor-specific imaging agents, or by the development of novel imaging 

techniques, such as fluorescent, photoacoustic and Raman optical imaging. Currently, 

several first-in-human clinical trials are conducted using these techniques in pancreatic 

cancer patients.

TUMOR-TARGETED MOLECULAR IMAGING STRATEGIES FOR PDAC

A molecular imaging approach using imaging agents that target molecular features of cancer 

could lead to more precise diagnoses.13 The common consensus is that PDAC evolves from 

precursor lesions that transform into invasive carcinoma through a multistep process, that 

involves the progression from pancreatic intraepithelial neoplasia (PanIN) into PDAC.51 

Genetic alterations, such as mutations in the KRAS oncogene or p53, DPC4, and BRCA2 

tumor suppressor genes affect a core group of signaling pathways. The processes that are 

altered in PDAC lead to the expression of specific biomarkers, and these changed 

biomarkers may serve as targets for tumor-specific imaging.52 Potential biomarkers for 

tumor-specific targeting must possess certain characteristics such as diffuse upregulation 

through tumor tissue, strong upregulation compared to the expression in normal and 

surrounding tissue, and localization on the cellular membrane.53, 54 An effective molecular 

imaging agent needs to demonstrate a high ratio of specific to non-specific binding to make 

sure the signal truly reflects the molecular imaging target.

There are numerous categories of available molecular imaging agents including small 

molecules, peptides, aptamers, antibodies, engineered protein fragments, nanoparticles, or 

micro-sized contrast agent. Each of these types of agents is different in size and thus 

possesses different pharmacokinetic characteristics (Table 1). It goes beyond the scope of 

this review to describe all the different molecular imaging agents in detail; however, please 

refer to the following review for further details.55

The most important groups of targeted imaging agents that are currently being explored are 

based on targeting specific receptors that are upregulated during the progress of PDAC 

development. For example, global expression analysis of PDAC has revealed that claudin 4 

and prostate stem cell antigen (PSCA) are upregulated in the vast majority of PDACs.56,57 

Given the membrane localization and the presence of an extracellular domain, these proteins 

are attractive candidates for targeted imaging. Additionally, claudin 4 has a high expression 

in high grade PanIN lesions, indicating the potential to detect lesions before development 

into an invasive carcinoma.58 Other targets employed for tumor-specific imaging of different 

cancer types are not applicable for PDAC due to co-expression of these receptors on normal 

pancreatic tissue (somatostatin, secretin, bombesin, cholecystokinin, vasoactive intestinal 

peptide).59–62 Another possibility for PDAC would be the use of a combined target, against 

both tumor and surrounding stroma, which can be of significant advantage because of the 

abundance of stroma in PDAC, such as the target uPAR.63 Since several potential imaging 
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targets have been identified for normal pancreatic tissue, an alternative strategy could be to 

visualize normal tissue while abnormal/cancerous would be visualized by a lack of imaging 

signal. For example by targeting the bombesin receptor, PDAC would appear by a lack of 

contrast agent uptake.64 However, specificity of those potential molecular imaging targets 

compared to pancreatitis is still to be determined.

MOLECULARLY TARGETED IMAGING AGENTS FOR CURRENT CLINICAL 

IMAGING MODALITIES

Molecularly Targeted (Intra-operative) Ultrasound

Contrast-enhanced US (CEUS) involves the use of targeted microbubble imaging agents and 

specialized imaging techniques. For the diagnosis and differentiation of pancreatic 

malignancies, transabdominal CEUS has generated test characteristics comparable to, or 

better than other diagnostic modalities such as conventional ultrasound and CT.65 CEUS 

with a non-specific agent showed similar sensitivity to contrast-enhanced CT for the 

detection of PDAC (91.7% and 97.2%, respectively) and of pancreatitis (82.1% and 67.9%, 

respectively).66 Intra-operative CEUS is well established in liver surgery, but it has not yet 

found its place in PDAC. However, CEUS provides a potential for the detection of small 

tumors, since it shows improved sensitivity and specificity compared to multi-detector CT 

(MDCT) for pancreatic lesions <2 cm; 91% vs 71% and 94% vs 92%, respectively.67

Ultrasound using molecularly targeted microbubbles would be a tool to increase sensitivity 

and specificity even further.68 Targeted imaging agents differ from those initially developed 

by the presence of a targeting moiety able to link the microbubble to the selected biomarker.
68–72 A disadvantage of microbubbles is their relatively large diameter. Therefore, they 

remain within the vascular compartment after intravascular administration, which limits 

targeting to molecules that are overexpressed on the surface of endothelial cells of the tumor 

vasculature (Fig. 2).73

Molecular-targeted Agents for Ultrasound Imaging—The formation of new blood 

vessels is a fundamental process during tumor progression. Under hypoxic conditions, which 

are required for effective tumor angiogenesis, expression of hypoxia-inducible factors is 

induced in endothelial vessels resulting in vascular endothelial growth factor receptor 

(VEGFR) expression.74 VEGFR is a receptor tyrosine kinase that mediates most of the 

proangiogenic activity of VEGF. Our group has previously shown that VEGFR2 is a 

promising target for detection of PDAC. In a cohort of 129 patients, VEGFR2 was 

abundantly expressed in up to 72% of all PDAC cases.75 Microbubbles developed to 

recognize VEGFR2, integrin and endoglin were used to visualize tumor angiogenesis by 

ultrasound imaging in PDAC of genetically engineered mouse models.76,77 Recently, first-

in-human clinical trials using a VEGFR2-targeted agent have been performed.72 and shown 

great potential in detecting breast and ovarian cancer.78 Foygel et al discovered and validated 

thymocyte antigen 1 (Thy1) as a new PDAC imaging target.79 Thy1 is a marker expressed 

on the neovasculature of PDAC and shown to be differentially expressed in PDAC versus 

pancreatitis and normal pancreatic tissue in humans.79 In vivo imaging studies with a 

genetically engineered mouse model of PDAC showed a 4–5.5-fold increased signal in 
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PDAC compared to normal parenchyma when using a novel Thy1-targeted microbubble.79 

Clinical trials with these agents in PDAC patients have not yet been performed, but are 

planned for the future.

Molecularly Targeted MRI

MRI has a fairly high sensitivity as described above, but increased sensitivity could be 

realized by increased enhancement of the tumors using molecularly-targeted contrast agents. 

Pirollo et al described a way to systemically deliver the imaging agent gadolinium in a 

tumor-targeted nanocomplex leading to better tissue penetration, and therefore better 

visualization of PDAC in an orthotopic animal model.80

Molecular-targeted Agents for MRI—Studies using targeted MR imaging against 

biomarkers, such as plectin-1 and EGFR, showed tumor targeting both ex vivo and in vivo.
81,82 ScFvEGFR-IO injection lead to 4.8 fold specific decrease in MRI signal in the tumor 

area, compared to a non-targeted particle.81 Mucin-1 is a tumor-specific antigen that is one 

of the early hallmarks of carcinogenesis in a broad range of tumors, including PDAC.83 

Medarova et al. developed a dual-modality imaging agent targeting Mucin-1 in an orthotopic 

PDAC model for both MRI and NIRF imaging.83,84 A potential drawback for clinical use of 

mucin-1 as imaging target is that this antigen expression is down-regulated after neoadjuvant 

gemcitabine therapy.85

Molecularly Targeted PET

The specificity of PET imaging could be improved by using a more disease-specific imaging 

agent compared to FDG-PET (Fig. 3). There are several preclinical examples of disease-

specific PET imaging in PDAC, and recently, for the first time a first-in-human trial is 

performed by Kimura et al. using a tumor-specific peptide targeting integrin αvβ6, [18F]FP-

R01-MG-F2, for the detection of PDAC. This study shows proof even in this cancer type 

with dense stroma, an imaging agent can penetrate the tumor [Kimura et al under review].

Molecularly Targeted Agents for PET Imaging—In preclinical setting, several targets 

are explored. Aung et al described the use of 64Cu-RAFT-RGD, targeting αvβ3, for imaging 

an orthotopic pancreatic tumor-bearing mouse model showing higher detectability of cancer 

cells as compared to 18F-FDG-PET.86 Carbohydrate antigen 19-9 (CA 19-9) is widely used 

as a serum marker of PDAC, and it is known to be presented on the tumor cells of 

approximately 90% of all PDAC patients.87, 88 A dual-modal probe targeting CA 19-9 using 

PET and near-infrared fluorescence imaging was developed by Houghton et al. This probe 

identified metastases and map sentinel lymph nodes in an orthotopic PDAC mouse model 

via both PET-computed tomography (PET/CT) and NIRF imaging.89 Unfortunately, CA 

19-9 is also presented on pancreatitis and therefore, this agent will be of limited value in the 

clinic.90 The earlier mentioned cell surface receptor integrin αvβ6 is a well-known target for 

molecular imaging of PDAC since over 90% of human PDAC cases overexpress αvβ6.91–96 

Hackel et al. used two version of an 18F-labeled integrin αvβ6–targeted cystine knot peptide 

for successful PET-imaging of PDAC xenografted tumors in mice.91 Tissue factor (TF), a 

transmembrane glycoprotein, is also known to be upregulated during tumor growth and 

metastasis. There is a strong correlation between the aberrant expression of TF, staging and 
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overall survival in PDAC, making TF an attractive imaging target.97, 98 Hong et al. 

developed a PET tracer, 64Cu-NOTA-ALT-836, for imaging TF expression using the 

chimeric antihuman TF monoclonal antibody, ALT-836. Serial PET revealed that the uptake 

of (64)Cu-NOTA-ALT-836 was significantly higher in TF positive tumors compared to 

negative tumors.99 Activated leukocyte cell adhesion molecule (ALCAM) homotypic 

interactions promote primary tumor growth, and this cell-surface glycoprotein is upregulated 

on cancer cells relative to normal cells.100 McCabe et al. imaged ALCAM expression by 

using a cysteine-modified diabody, CysDb, which binds specifically to ALCAM-positive 

cells with a binding affinity of 1–3 nM and microPET images showed specific targeting of 

positive tumors.101 Clinical translation of this probe seems unlikely due to its relatively short 

half-life and potential nephrotoxicity due to high renal exposure of the beta-emitting 

radionuclide. Alternatively, this agent could be labeled with 18F, which would overcome 

these limitations. Lastly, the transferrin receptor (TfR) was investigated as a possible target 

for PET imaging in PDAC. TfR is a cell-surface receptor involved in iron uptake. It is 

overexpressed on cells with high proliferation rates, and about 80% of all PDAC patients 

show high TfR expression.102 Sugyo et al. developed a PET probe targeting TfR, with a 

mean tumor-to-muscle ratio of 9.8 at day 6 in a subcutaneous PDAC model. However, a 

major disadvantage of this probe is its high accumulation in the liver, which could hinder 

detection of tumor tissue in close proximity to the liver.103

INTRAOPERATIVE MOLECULAR IMAGING TECHNIQUES: POTENTIAL FOR 

IMPROVED INTRA-OPERATIVE PERFORMANCE

Fluorescence Molecular Imaging

Over the last few years, intraoperative imaging technologies using near-infrared (NIR) 

fluorescence have made enormous progress. The volume of publications in this field has 

increased eightfold in the literature in the last 10 years.104 Benefits of Fluorescence imaging 

using NIR fluorescent light include the ability to image in real time using an NIR 

fluorescence camera system without impeding the current clinical workflow. If surgeons 

were able to resect tumors and preserve normal structures more easily, time of surgery could 

be shortened, thereby reducing anesthesia time and its associated risks. Furthermore, this 

could subsequently lower rates of recurrence and complications, which would improve 

patient outcomes and even drive down costs.35 Fluorescence imaging using NIR fluorescent 

light has already been established as a powerful tool for guiding precise intra-operative 

positioning in other types of cancer such as liver metastases,105 breast cancer,106,107 ovarian 

cancer,108 melanoma,109 vulvar cancer,110,111 and cervical cancer.112,113 Currently, only the 

non-specific dyes methylene blue (MB) and indocyanine green (ICG) are approved for 

clinical use by the FDA and in order to determine the true clinical benefit of tumor-specific 

fluorescent imaging, developing and clinically assessing tumor-specific imaging agents will 

be essential (Fig. 4). Recently, two first-in-human clinical studies are performed by our 

research groups using tumor-specific intra-operative imaging in PDAC, targeting CEA with 

SGM-101 [Hoogstins et al under review] and EGFR with cetuximab-IRDye800 [Tummers 

WS et al. accepted]. Hoogstins et al performed a phase 1 clinical trial targeting CEA, with a 

700nm fluorescent agent [Hoogstins et al under review]. Tummers et al conducted a clinical 

trial using both NIR and PA imaging for the tumor-specific detection of PDAC with 
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cetuximab-IRDye800 [Tummers et al accepted]. In both trials successful PDAC imaging 

could be performed, however interfering autofluorescence was seen with the fluorescent 

agent at 700 nm. These trials show the first proof that this imaging technique is possible in 

PDAC, despite the idea that the dense stroma of PDAC will restrict targeted-imaging and 

therapy. Tummers et al. even show proof of drug penetration into the a single tumor duct.

Molecular-targeted Agents for Fluorescent Molecular Imaging—As described 

above, until now only agents targeting the CEA and EGFR receptor are used in clinical trials 

for NIR fluorescent imaging of PDAC. With cetuximab-IRDye800, it was even possible to 

establish a significantly different fluorescent signal in PDAC compared to peritumoral 

inflammation [Tummers et al accepted]. Furthermore, only preclinical work is performed for 

the identification of intraoperative imaging agents and targets. As mentioned before, αvβ6 

seems to be a reliable target for PDAC. Gao et al. synthesized an integrin αvβ6-targeted 

near-infrared phthalocyanine dye-labeled agent, termed Dye-SA-B-HK, and investigated it 

for possible targeted theranostics. Dye-SA-B-HK specifically bound to integrin αvβ6 in 

vitro and in vivo with high receptor binding affinity, and when used for surgical guidance, 

the tumors were successfully removed completely.93 The main advantage of this agent 

compared to nanoparticles is the size of this agent, which gives the ability to extravasate, and 

faster excretion. Zhang et al. recently developed an optical imaging agent, suitable for both 

fluorescent and photoacoustic imaging. This imaging agents consists of a cysteine knottin 

targeting αvβ6 conjugated to the dye Atto-740, A740-R01. The agent was able to 

successfully detect integrin αvβ6 both in vitro and in vivo by photoacoustic and 

fluorescence imaging.114

Cathepsin E (Cath E) is a tumor-associated intracellular non-lysosomal aspartic proteolytic 

enzyme. In normal physiology Cath E is expressed in immune cells. In the pancreas, Cath E 

is present in PanIN lesions and PDAC, but not in normal pancreatic tissue.115 Targeting Cath 

E can be done by Cath E-activatable imaging probes. These agents are nonfluorescent or 

produce low-fluorescence in their unactivated state, but become fluorescent after activation 

as a result of binding to their molecular target such as a tumor-specific enzyme.35,115,116 

Using an activatable imaging probe has several advantages. First, in its native state the 

quenched probe is optically silent, thereby minimizing background fluorescence and 

enhancing tumor-to-background ratios. Second, protease recognition sites allow for specific 

activation of probes. Finally, probes can be designed to be activated by different proteases, 

thus permitting specific detection of tumors with different protease expression profiles.
117,118 Recently, Whitley et al. published results of the first-in-human trial using a protease-

activated fluorescent imaging probe, LUM015, to detect soft tissue sarcoma or breast cancer. 

This study demonstrated the probe’s safety in humans and also its tumor-specific 

fluorescence.119

Despite improved tissue penetration as compared to visible light, an essential limitation of 

the use of NIR fluorescence imaging intraoperatively is its inability to visualize structures 

deeper than approximately 5 – 8 mm below the surface.35,120 As a result of this limitation, 

the field has been shifting towards developing a combination of different forms of imaging 

modalities, such as PAI, as described in the clinical trial of Tummers et al.
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Photoacoustic Imaging

Photoacoustic imaging (PAI), also referred to as optoacoustic imaging, is a relatively new 

imaging technique with significant promise. PAI provides real-time, noninvasive imaging of 

the optical absorption properties of tissues. PAI relies on the photoacoustic effect; a pulsed 

nanosecond-long red-shifted laser beam that is used to stimulate localized thermoplastic 

expansion of the tissues. This expansion generates pressure waves, synonymous with those 

produced in ultrasound, which can be detected by a transducer and converted into images.120 

The combined use of light and sound gives PAI an important advantage over other imaging 

modalities including CT, PET or ultrasound because it provides unique scalability of its 

spatial resolution. The penetration up to clinically relevant depths, namely from 6 mm to 5 

cm, is an important factor for its potential intraoperative use during PDAC surgery (Fig. 5).
120–123

PAI can be performed based on two methods: by relying on the differences in the optical 

absorption properties of endogenous tissue or by using exogenous imaging agents targeting a 

specific molecular process of interest. Exogenous imaging agents have the ability to greatly 

enhance the contrast generated by PAI. The selection of an imaging agent will depend on the 

application for which it will be used. Design considerations and requirements for a PAI 

imaging agent include: (1) ease of synthesis, (2) overall size on the nano-scale or smaller in 

order to extravasate the vascular compartment, (3) a large absorption cross-section of light in 

the NIR wavelength region where light penetration into tissue is maximized, (4) a surface 

chemistry that allows simple bioconjugation of targeting moieties, (5) proven safety profile, 

and (6) a structural and molecular biostability in biological fluids.124 Photostability is also 

very important for these agents as they often suffer from loss of optical absorption 

(photobleaching) due to exposure to prolonged pulsed laser irradiation.125 Nanoparticles are 

the most commonly used types PAI agents, and especially gold nanoparticles, single-walled 

carbon nanotubes (SWNT), and quantum dots.120,124,126,127 Gold nanoparticles have an 

advantage in that their optical properties are highly tunable over the NIR spectrum by 

varying their size and shape. However, they have major disadvantages since they consist of 

gold, which is not approved for human use, and they can become deformed after extended 

exposure to laser radiation.128 SWNTs absorb light over a broad spectrum, and targeting 

agents can easily be conjugated for molecular imaging. Quantum dots are strongly 

fluorescent and have been shown in multiple studies to be successful PAI agents in PDAC.
129,130 Other important disadvantages of gold nanoparticles, SWNTs, and quantum dots are 

their inability to sufficiently extravasate and the potential long term effects due to retention 

in the reticuloendothelial system which are not an issue for small particles.131,132

As previously stated, the strengths of PAI include its clinically relevant depth penetration 

compared to fluorescence imaging and the potential to visualize extravascular molecular 

imaging targeted compared to molecular CEUS. The main disadvantages of PAI are its 

inability to image through bone or air-filled structures, and the fact that no commercial intra-

operative systems are available for now.55 Clinical applications for molecular photoacoustic 

imaging are still being explored. For diagnostics in PDAC, PAI could potentially be used 

during EUS in order to improve the sensitivity of the procedure. Studies investigating the 

intraoperative use of PAI are limited, and only described by Tummers et al. By targeting the 
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EGFR receptor, a significant difference was shown in PA signal in the tumor and 

surrounding pancreatic tissue. This indicates that intraoperatively PAI could potentially help 

determining the extent of the tumor infiltration before removal, tumor delineation, and the 

completeness of removal following resection and also play an important role in the 

assessment of metastases and lymph node status.120

Molecular-targeted Agents for Photoacoustic Molecular Imaging—In preclinical 

studies, the first use of targeted photoacoustic imaging using SWNT was described by De La 

Zerda et al. in 2008. Intravenous administration of SWNT conjugated to cyclic Arg-Gly-Asp 

(RGD) peptides in mice bearing tumors showed eight times greater photoacoustic signal 

compared to mice injected with non-targeted nanotubes.127 Levi et al. developed and 

validated both tumor-specific PAI agents for prostate cancer, against gastrin-releasing 

peptide receptor,133 and for follicular thyroid carcinoma, against MMP-9.134 Both agents 

showed increased PAI signal compared to a control agent. Conjugated polymers (CPs) are 

upcoming optical imaging agents that have unique chemical and optical properties thus 

allowing them to be used as imaging agents for PAI among other technologies.135 

Balasundaram et al. used folate-CP dots for the molecular imaging of breast cancer and 

showed a strong PA signal compared to non-specific CP dots.136 Promising PAI agents are 

activatable agents, as firstly described by Levi et al. targeting a proteolytic enzyme, e.g. 

MMP-2, which is photoacoustically silent before cleavage and leads to PAI signal after 

activation by the target.137

To tackle the abovementioned limitation fluorescence guided surgery is facing with limited 

depth penetration, PAI could help determining the extent of tumor before removal, and the 

completeness of the resection intraoperatively. On the other hand, fluorescent imaging has a 

superior sensitivity for superficial lesions. By combining the two modalities, the strengths of 

both NIR fluorescence imaging and PAI have the potential to overcome the limitations of the 

individual techniques in a combinatorial fashion.

Raman Optical Imaging

Raman optical imaging is based on the Raman effect, a process discovered by 

Chandrasekhara Venkata Raman in 1928 that is based on the inelastic scattering of light. 

Objects made of different molecular compositions will scatter light differently and produce 

unique spectra that are a function of the chemical bonds contained in the molecule of 

interest. Unfortunately, Raman scatter is very weak, with less than one in a million incident 

photons experiencing this effect.120,138,139 When the scattering molecule is placed on a 

surface of a roughened plasmonic substrate, the signal is increased by many log orders and is 

known as surface-enhanced Raman scattering (SERS).140,141 A major advantage of Raman 

optical imaging is the potential to detect multiple SERS nanoparticles simultaneously (a 

process called multiplexing), by modifying the Raman active layer that is absorbed onto the 

metal surface.138 Raman spectroscopy is recently tested ex vivo on human colon tissue. 

Zavaleta et al developed a Raman spectroscope in combination with a multiplexed panel of 

tumor-targeting Raman nanoparticles, to rapidly distinguish between normal and 

precancerous tissues and to identify flat lesions in the colon.142 This technology could be 

used for helping endoscopists or surgeons to delineate tumors while performing procedures.
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143,144 Additionally, Jermyn et al. developed a handheld contact Raman spectroscopy probe 

for the detection of cancer cells in the human brain. Intra-operatively, they were able to 

differentiate normal brain from cancer and normal brain invaded by cancer with a cellular 

resolution with sensitivity of 93% and specificity of 91% in humans.145 Kircher et al 

described a MRI-PAI-Raman imaging nanoparticle to delineate the margins of brain tumors. 

This triple-modality-nanoparticle approach combines the strengths of the three modalities 

and leads to more accurate brain tumor imaging and resection in mouse models.146 A 

variation on Raman spectroscopy, transmission Raman spectroscopy, has enabled 

identification of calcifications at depths of up to 2.7 cm in breast tissue.147 This technique 

could potentially be used in the differentiation between PDAC and pancreatitis, since the 

latter is known for containing abundant calcifications. However, continued development of 

Raman spectroscopic instrumentation is needed in order to perform at the level necessary for 

intraoperative clinical use, including the design of a probe and the complete hardware which 

will need to be compact and easily integrated into the clinical OR.148

SUMMARY AND CHALLENGES FOR THE FUTURE

Despite great efforts to improve treatment for patients with PDAC in recent years, the 

disease still has the worst prognosis of all major solid cancers. Molecular imaging using 

tumor-targeting agents and various modalities has shown great potential, both clinically and 

preclinically, in order to bridge the gap between diagnostic and intraoperative imaging for 

PDAC treatment, and for monitoring response to perioperative chemo- and or radiotherapy. 

Multimodal imaging modalities also have significant potential when used as an integrated 

diagnostic and intraoperative technology, since this can overcome limitations of the 

individual modalities. At this point, feasibility of tumor-specific PET and fluorescence is 

shown in PDAC patients, and as soon as the other modalities are translated into the clinic the 

full potential of tumor-specific molecular can be assessed (Fig. 6).

The discovery of the perfect target (Table 2) and translation of molecular-targeted imaging to 

the clinic remains challenging due to the need for specific exogenous imaging agents in 

order to image the biochemical process of interest. The discovery and validation of such 

imaging targets is time-consuming and expensive, and rarely results in a clinically useful 

agent. Many of the imaging probes reported in animal models have failed to reach the clinic 

and are still in the investigational stage. Unfortunately, the extensive approval process of the 

FDA makes it impossible to quickly test imaging probes in a clinical pilot study in order to 

determine effectiveness in humans and thus save resources and concentrate on more 

promising probes.149 In addition, the added value of molecularly-targeted imaging to patient 

benefit still needs to be proven before wide-spread use of this technique is expected. This 

needs to be accomplished by increasing the number of human trials using a standardized 

technique to demonstrate safety and effectiveness. Although this is still far from current 

reality, the bulk of preclinical studies and the first successful clinical studies outlined in this 

review, show that more wide-spread clinical use is on the horizon.
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FIGURE 1. 
Schematic illustration of the key imaging modalities used for the diagnostics and potential 

intraoperative modalities for pancreatic cancer. Ultrasound, (endoscopic) ultrasound; CT, 

computed tomography; MRI, magnetic resonance imaging; PET, positron emission 

tomography. Representative images are shown of pancreatic cancer with the displayed 

modalities, expect for photoacoustic and raman optical imaging.
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FIGURE 2. 
A, Schematic overview of the principle of ultrasound molecular imaging. A molecularly-

targeted contrast agent (microbubble) is administered intravenously into the subject (in this 

case a mouse). Sound waves are transmitted into the subject by the transducer, the sound 

wave reflections are recorded and converted into images. Because of the size of 

microbubbles of several micrometers, the contrast agent remains intravascular and attaches 

to the target of choice (for example VEGFR2). Examples of in vivo molecular ultrasound 

images with microbubbles in (B) transgenic mouse model of PDAC, showing a strong signal 

when targeting VEGFR2 in focus of PDAC compared to normal pancreatic tissue, even in 

small PDAC lesions [From Pysz et al, 201576], and (C) in human with breast cancer using 

microbubbles targeting kinase insert domain receptor (MBKDR). Left panel: the anatomical 

image for reference, right panel: MBKDR accumulation in breast cancer lesion [Willmann et 

al, 201778]
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FIGURE 3. 
A, Schematic overview of the principle of tumor-targeted PET imaging, a suitable tracer will 

be administered into the subject (in this case a mouse). Depending on the size of the tracer, 

the tracer can target the cancer at multiple locations; e.g. intravascular, receptors on the cell 

membrane, or intracellular. B, Small-animal PET imaging. BxPC-3 (integrin αvβ6 pos) and 

293 (integrin αvβ6 negative) cells were xenografted in nude mice. PET images were 

acquired in tumor-bearing mice using a αvβ6-targeted cysteine knot (18F-fluorobenzoate-

R01) [From Hackel et al, 201391].
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FIGURE 4. 
A, Schematic overview of the principle of fluorescent imaging, a suitable targeted imaging 

agent with a fluorescent dye will be administered into the subject (in this case a mouse). The 

agent is visualized using a fluorescence imaging system, with an adequate excitation laser 

and camera able to detect the emitted light. The targeted agents migrate to the cellular 

targets to visualize the tumor in a target-specific manner, the imaging agent can target the 

cancer at multiple locations depending on the size; e.g. intravascular, receptors on the cell 

membrane, or intracellular. B, Top: schematic overview showing the principle of fluorescent 

imaging. Bottom: Intraoperative image showing the use of tumor-targeted fluorescent guided 

imaging during pancreatic cancer surgery.
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FIGURE 5. 
A, Schematic overview of photoacoustic imaging principle; after injection of a tumor-

targeting agent the imaging agent will target tumor cells and produces an enhanced 

photoacoustic signal, after excitation with a laser. The agent can target the cancer at multiple 

locations depending on the size; e.g. intravascular, receptors on the cell membrane, or 

intracellular. B, Top: Schematic overview showing the principle of photoacoustic imaging; 

the thermo-elastic expansion caused by heating of the tissue due to the laser will lead to 

acoustic waves that can be converted into both ultrasound and molecular images. Bottom: 

Tumor-targeted photoacoustic imaging. Mice bearing FTC133 tumors were 

photoacoustically imaged using 680 and 750 nm light before and after the injection of a 

MMP-targeting probe [From Levi et al, 2013134].
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FIGURE 6. 
A schematic overview of the principle of tumor-targeted imaging in pancreatic cancer, 

showing the most promising imaging modalities for early diagnosis and improved surgical 

treatment, and most promising targets for this purpose. Avβ6; Integrin αvβ6, CEA; 

Carcinoembryonic Antigen, EGFR; Epidermal growth factor receptor, Thy1; Thy-1 cell 

surface antigen, uPAR; Urokinase receptor, VEGFR2; Vascular endothelial growth factor 

receptor 2, Plec1; Plectin 1, Cath E; Cathepsin E.
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