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Abstract

Intervertebral disc degeneration is a major cause of neck and back pain, a very common clinical 

problem. However, no effective treatment is available, which is largely due to the lack of 

understanding of molecular mechanisms underlying disc degeneration. Here, we briefly described 

the process of intervertebral disc aging and degeneration and summarized major findings in 

molecular signaling pathways implicated in disc aging and degeneration.
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An intervertebral disc consists of an annulus fibrosus ring, a nucleus pulposus core, and two 

cartilaginous superior and inferior endplates. The outer annulus is made up of highly ordered 

collagen lamellae in which type I collagen fibers are aligned with elongated fibroblasts (1,2). 

Relative to the outer annulus, the inner annulus is more like cartilage, containing spherical 

chondrocyte-like cells, and greater amount of type II collagen and proteoglycans (3). The 

central nucleus, a highly hydrated gelatinous tissue, is predominantly composed of 

proteoglycans produced by large notochordal cells (4). The annulus, the nucleus, and the 

endplates are interconnected to form the most important part of the motion segment of the 

spine, allowing the intervertebral disc to function as a shock absorber and to resist tensile 

and torsional forces. Human disc degeneration starts during childhood. As notochordal cells 

diminish rapidly after birth and are gradually replaced by much smaller chondrocytes, the 

nucleus becomes dehydrated and cartilage-like by adulthood (5). In the early stage of disc 

degeneration, clefts and tears occur in the nucleus and the inner annulus, and chondrocyte-

like cells in the inner annulus proliferate (cloning) and produce matrix in the vicinity of the 

structural defects (6). However, the regenerated tissue cannot withstand the daily loading of 

the spine, leading to structural defect progression. As disc degeneration advances, clefts/

tears extend into the outer annulus, and are filled with granular material; fibroblasts in the 

outer annulus differentiate into chondrocyte-like cells, and deposit matrix; chondrocyte-like 

cells in the inner annulus and endplates form large clones and migrate into the nucleus (6,7). 

In the late stage of disc degeneration, collagen content and cross linking increase throughout 
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the disc; the distinction between the anatomic regions is no longer possible; and the entire 

disc becomes fibrotic and scar-like (6,8).

As described above, disc degeneration is an age-related process. Thus, it is difficult to 

distinguish the physiologic process of disc aging from that of disc degeneration. In general, 

when a disc with structural failure is combined with accelerated or advanced signs of aging, 

it is considered to be a degenerate disc (8,9). Given that the process of disc aging is affected 

by many risk factors such as genetic inheritance, excessive mechanical loading, obesity, 

trauma, nutrition, smoking, and inflammation, as well as catabolic cytokines and proteases, 

disc degeneration occurs in every population worldwide (7). It affects almost all individuals 

by sixth and seventh decade of life. As disc degeneration is a major cause of neck and back 

pain, a leading cause of disability in people aged less than 45 years, an effective treatment is 

required (10,11). Currently, this disease is firstly treated with conservative measures for pain 

relief. If pain persists, surgical therapies include decompression, spinal fusion and disc 

replacement will be performed. However, all these treatment methods are not curative 

because none of them can prevent, reverse or slow down the process of disc generation. The 

lack of drugs that can effectively treat the neck and back pain patients beyond pain relief is 

largely due to the lack of understanding of the molecular mechanisms underlying disc 

degeneration.

Senescent cell accumulation in discs plays a central role in disc aging and degeneration, 

because most risk factors are senescence-inducing stresses and some are consequences of 

senescent cells (12,13). Senescent cells cease proliferation, but remain metabolically active 

and exhibit altered gene expression (14). Since in human adult discs, blood vessels are 

normally restricted to the outmost layers of the annulus, and the inner annulus and entire 

nucleus are avascular tissue, disc cells resident in these regions experience a limited nutrition 

supply, hypoxia, anaerobic metabolism, and associated increase in acidity. Accumulating 

evidence supports the view that disc cells can tolerate this condition, otherwise the cells die 

or become senescent. For example, when rat or bovine disc cells were cultured at low 

oxygen (0-5% O2) levels, the cells were viable, underwent proliferation and produced 

significant amount of proteoglycans, whereas the normoxia (20-21% O2) level caused 

decreased cell survival rate, reduced proteoglycan synthesis, and enhanced expression of 

matrix metalloproteinases (MMPs) (15,16). Disc cells are more sensitive to the 

concentrations of nutrients than O2. Bovine disc cells would die or underwent senescence 

without glucose, but enhanced proliferation and matrix synthesis in low glucose cultures 

(15,17). However, if the cells were cultured under high glucose, a glucose-mediated 

oxidative stress was generated and induced senescence (18). Although permeability and 

metabolite transport decrease in an aging disc due to low water content in the nucleus and 

fibrotic feature of entire disc, they increase again when the aging disc is herniated or injured 

due to trauma or repetitive over-loading (19), which presumably leads to an aberrant 

increase in concentrations of nutrients in the microenvironment adjacent to the structural 

defects, because cell cloning, senescent cells, and structural defect extension are frequently 

detected in the areas adjacent to structural defects (20-22; 9). These phenotypic changes 

imply a correlation between cell proliferation, cell senescence, and matrix breakdown during 

disc degeneration progression. Consistently, senescent cell number in human degenerative 
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discs increases with advancing disc degenerative grade and positively correlates with the 

expression levels of matrix-degrading enzyme MMP-13 and aggrecanase ADAMTS-5 (23).

Cell senescence transition in human discs is most likely induced via p53-p21-Rb pathway. 

Several lines of evidence suggest that with advancing disc degenerative grade, senescent cell 

number is increased, telomere lengthen is shortened, and p53-p21-Rb pathway is actively 

maintained (24,21,23). When disc cells were cultured in vitro, p16-Rb pathway was 

activated once the cells entered senescence program (25). Although the risk factors for disc 

degeneration such as excessive loading, trauma, nutrition, and smoking, etc. often induce 

acute senescence transition in in vitro an in vivo models via p16-Rb pathway (26,18,15,16), 

they may exert an effect individually or cumulatively on disc cells in human beings via 

affecting the telomere-shortening-rate.

Smad ubiquitin regulatory factor (Smurf) 2, an E3 ubiquitin ligase, was highly detected in 

human degenerated articular cartilage, and overexpression of Smurf2 under the control of 

type II collagen alpha 1 promoter (Col2a1) induces osteoarthritis in Col2a1-Smurf2 
transgenic mice (27). We have recently shown that Col2a1-Smurf2 transgenic mice also 

exhibit accelerated age-related intervertebral disc degeneration (9). During development of 

the disc degeneration in these transgenic mice, many phenotypic changes such as fibroblast-

to-chondrocyte differentiation, chondrocyte-like cell cloning, migration, and fibrosis, were 

similar to those occurring in humans and reflected connective tissue growth factor (CTGF) 

function during wound healing and scleroderma (28). Indeed, CTGF expression and 

secretion is increased in the chondrocyte-like cells that are prone to degenerate in Col2a1-
Smurf2 transgenic mouse discs, indicating that Smurf2-mediated disc degeneration is via 

upregulation of CTGF (9). Because discs possess a limited ability to repair when they are 

disrupted, tears/clefts in discs are never healed and could cause a persistence of CTGF 

expression by the cells adjacent to the structural defects due to continuous production and 

release of TGF-β, an inducer of CTGF expression, by these cells as a cellular response to 

repetitive excessive deformation of disrupted matrix (29,8,30) (Wu et al., unpublished data). 

Notably, TGF-β induces Smurf2 expression in chondrocytes in vitro (31). Thus, it is possible 

that in an aging disc, TGF-β activity is increased in the microenvironment adjacent to 

structural defects, activates Smurf2 gene expression by the local cells. Smurf2, in turn, 

induces disc generation via upregulation of CTGF.

While Smurf2 was originally found to be an E3 ubiquitin ligase, which targets the TGF-β 
receptor and receptor-regulated Smads for ubiquitination and proteasomal degradation 

(32,33), it was reported to induce cell senescence in cultured proliferating fibroblasts via 

activation of p53 pathway (34). As the senescence associated secretory phenotype 

accompanies disc aging and degeneration, we are testing a hypothesis that in Col2a1-Smurf2 
transgenic mice, the disc chondrocyte-like cells that overexpress Smurf2 could become 

senescent, and secrete CTGF, leading to disc degeneration and progression.
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