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Abstract

Emotional processing appears to be interlocked with perception, cognition, motivation, and action. 

These interactions are supported by the brain’s large-scale non-modular anatomical and functional 

architectures. An important component of this organization involves characterizing the brain in 

terms of networks. Two aspects of brain networks are discussed: brain networks should be 

considered as inherently overlapping (not disjoint) and dynamic (not static). Recent work on 

multivariate pattern analysis shows that affective dimensions can be detected in the activity of 

distributed neural systems that span cortical and subcortical regions. More broadly, the paper 

considers how we should think of causation in complex systems like the brain, so as to inform the 

relationship between emotion and other mental aspects, such as cognition.

Introduction

Why does emotion matter for cognition? Research in the past two decades has described 

how emotion interacts and is integrated with cognition [1]. Supporting these interactions are 

the brain’s non-modular anatomical and functional architectures [2–4]. Signal distribution 

and integration are the norm, allowing the confluence of information related to perception, 

cognition, emotion, motivation, and action. Thus, emotion is interlocked with all these 

mental domains via internetwork communication.

To better understand how brain networks inform the understanding of the interactions 

between emotion and cognition, we need to refine how they are conceptualized [5–7]. Here, 

two aspects of brain networks will be discussed: brain networks should be considered as 1) 

inherently overlapping, as well as 2) highly dynamic and context-sensitive. This discussion 

leads to the question of how emotions are represented in the brain. Even more broadly, the 

paper considers how we should think of causation in complex systems like the brain, so as to 

inform the relationship between emotion and other mental aspects, such as cognition.
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From regions to networks: What’s right and what’s wrong with networks

Neuroscience has been always interested in circuits. Yet, the last 15 years have witnessed 

vigorous progress in neuroscience and network science analysis methods alike, with 

networks described at multiple levels, from micro (neuronal) to meso (pathways) to macro 

(whole-brain) levels [8]. In most instances, understanding structure-function mappings at the 

level of brain regions may be less productive because regions are not a meaningful 

computational unit in this regard [6]. Networks of brain regions collectively support 

complex behaviors. Thus, the network itself is the unit, not the brain region. Processes that 

support behavior are implemented by the interaction of multiple areas, which are 

dynamically recruited into multi-region coalitions.

Networks are overlapping, not disjoint

One of the goals of network analysis of brain data is to partition brain regions into clusters 

or “communities” that consist of regions that communicate more strongly (or that behave 

more alike) within the community than across it [9]. Most analyses describe networks in 

terms of disjoint sets, such that each brain region belongs to a single cluster of regions. But 

this assumes that brain areas compute a fairly well defined and specific function [6]. An 

alternative is to conceptualize networks as containing overlapping regions [10–13], such that 

specific areas belong to several intersecting networks [14]. In this manner, the processes 

carried out by an area will depend on its network affiliation (that is, the regions it clusters 

with) at a given time. What determines a region’s affiliation? An hypothesis is that the 

functional/behavioral context plays a pivotal role [15]. For example, region A will be part of 

network N1 during a certain context C1 but will be part of network N2 during another 

context C2.

These ideas resonate with the “flexible hub theory” [16], where some regions are suggested 

to flexibly shift their functional connectivity (that is, the degree to which signals from two 

regions co-vary in time) patterns as a function of task demands. To further understand 

potential network overlap, in a recent investigation of functional MRI (fMRI) data, we 

determined during rest and task conditions the distribution of “membership values,” that is, 

the extent to which each region participated across multiple networks ([17], see also [18]). 

Regions of the task-negative (or “default”) network, for example, participated in multiple 

networks simultaneously. Distributed participation was even more evident in a community of 

frontal and parietal regions important for attention and executive control, consistent with 

their multifunctional roles [19]. Overall, it is suggested that overlapping networks implement 

context-dependent computations that bring about behavioral flexibility.

Functional MRI is currently limited in its ability to inform the organization of brain 

networks at finer spatial resolutions. Such level is informed by recent neurotechniques that 

have precise control of cellular- and pathway-level activation and silencing, including 

optogenetics. A current debate is whether, within a structure, neuronal populations linked to 

appetitive and/or aversive processing are anatomically intermingled or segregated (for 

intermingled examples, see [20,21]; for segregated examples, see [22,23]). This literature is 

particularly relevant to inform the question of circuit/network overlap.

Pessoa Page 2

Curr Opin Behav Sci. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



At least three scenarios are relevant. First, segregated populations within a region may be 

involved in interactions with separate regions (Figure 1A). In this case, we can refer to sub-

regions of a larger anatomical region, which contains distinct populations of cells. In fact, in 

terms of networks, this situation could be described as involving disjoint and not overlapping 

networks. However, in some contexts, it is possible that the sub-regions involved, when 

combined, form noteworthy functional units, so the description in terms of overlapping 

networks may still be informative. Second, intermingled neuronal populations may exist, 

each of which is connected with different regions (Figure 1B). In this case, the neuronal sub-

populations would be expected to exhibit different functional properties. Third, the same 

neurons may affiliate with different regions as a function of context (Figure 1C). For 

instance, neurons in a nucleus of the amygdala may affiliate with accumbens neurons in one 

context but with BNST neurons in a different one. In cellular-level studies, this possibility 

has not received as much attention yet. However, examples of how neurons or neuronal 

populations multiplex signals are well documented [24,25]. In such situations, multiple 

signals may be combined and transmitted even through a single “communication channel,” 

and even at the same time.

Networks are dynamic, not static

Brain networks are not static but evolve temporally. Functional connections vary as a 

function of context, and are altered by cognitive, emotional, and motivational variables (see 

[1]). Therefore, network organization must be understood dynamically [26–29]. Indeed, the 

growth of methods to describe time-varying functional connectivity has begun to yield novel 

characterizations of how network organization evolves [30–32].

An example of changes to network organization is illustrated by a study in which 

participants performed a cognitive task during reward vs. no-reward conditions [33]. When a 

cue at the beginning of the trial signaled the possibility of reward, the functional connections 

between cortical regions important for cognitive processing and subcortical regions involved 

in reward processing increased systematically (Figure 2). In particular, the functional 

connections of the nucleus accumbens increased with all but one of the regions engaged by 

the task.

More generally, there are two important ways in which brain networks are dynamic. First, 

we can consider how specific networks evolve across time (Figure 3A–B). At the 

spatiotemporal resolution of fMRI, we and others have started to characterize how emotion 

influences the temporal unfolding of large-scale network organization [34–37]. In a recent 

study [36], periods of “anxious anticipation” were associated with transient and sustained 

changes to the salience, executive, and task-negative networks in the human brain. Notably, 

how the bed nucleus of the stria terminalis and the amygdala participated in network 

communication (as quantified by the measure of centrality) was altered during anxious 

states.

Second, networks do not comprise fixed collections of regions. Networks are suggested to be 

dynamic coalitions of brain regions that form and dissolve to meet specific computational 

needs [6]. Accordingly, network descriptions need to specify how groupings of regions 

evolve temporally (Figure 3C–D). This poses several challenges, as the very notion of a 
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network as a coherent unit is challenged. For instance, at what point does a coalition of 

regions become something other than, say, the salience network? Conceptualizing networks 

as inherently overlapping, as described previously, helps to mitigate this problem. For 

example, each node can be considered to be a member of multiple networks with a specific 

probability-like “membership value” [17], which fluctuates across time.

How are emotions represented in the brain?

Findings from pattern analyses of neuroimaging data show that affective dimensions and 

emotion categories can be detected in the activity of distributed neural systems that span 

cortical and subcortical regions. Indeed, attempts to classify brain states from distributed 

patterns of fMRI activation to predict these attributes have yielded high levels of specificity 

[38]. Some results indicate that emotion categories are not contained within any one region 

or system, but are represented as configurations across multiple brain networks [38]; for 

debate about emotion categories, see [39].

Interestingly, in one study [40], predictive patterns spanned multiple cortical and subcortical 

systems, with no single system being necessary or sufficient for predicting affective 

experience. Furthermore, predictive patterns were not reducible to activity in traditional 

“emotion-related” regions (e.g., amygdala) or resting-state networks (e.g., task-negative 

network).

When investigating the representation of emotions in the brain with fMRI, the spatial 

resolution of the technique must be considered, and the results interpreted with some 

caution. Although multi-voxel (distributed) representations have been proposed to be more 

sensitive spatially, consideration of Figure 1 highlights the fact that the issue is not simple, 

particularly when heterogeneous subcortical structures are involved. For instance, if the 

voxel size is larger than the tissue in Figure 1A, the subpopulations will be averaged or 

unsystematically linked to voxel placement; the situation is more problematic in Figure 1B, 

of course. Critically, Figure 1C highlights a scenario where the problem would exist 

regardless of the spatial resolution, and even cellular-level resolution would not solve it. This 

is because a region’s function will depend on the pattern of signal co-variation across 

regions.

This last case illustrates how the study of the brain basis of emotion benefits from studying 

functional relationships between regions. This could be done, for example, by employing 

machine learning to investigate patterns of functional connectivity ([41], see also [42]). In 

one study, we proposed combining functional connectivity with “functional fingerprint” 

analysis ([43], see also [44]). We used a meta-analytic approach to analyze the functional 

profiles of brain regions that exhibited co-activation with insular subdivisions (dorsal 

anterior, ventral anterior, and posterior insula). Functional profiles were determined based on 

interrogating fMRI study databases in terms of multiple task “domains” such as emotion, 

memory, attention, and action. The results suggested that all insular subdivisions are 

functionally diverse and that characterizations of the insula should move beyond cognition-

emotion-interoception partitions.
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I have proposed that the representation of emotion in the brain can be understood in terms of 

functionally integrated systems that involve large-scale cortical-subcortical networks that are 

sensitive to bodily signals [45]. The high degree of signal distribution and integration in the 

brain provides a nexus for the intermixing of information related to perception, cognition, 

emotion, motivation, and action. Importantly, as described above, the functional architecture 

consists of multiple overlapping networks that are dynamic and context-sensitive. Thus, how 

a given brain region affiliates with a specific network shifts as a function of task demands 

and brain state. Whereas the proposal of functionally integrated systems is consistent with 

multivariate and machine learning analyses of fMRI data indicating that emotional states are 

highly distributed, the model also predicts that brain “signatures” of affective dimensions are 

highly context-dependent, and may not generalize well across tasks and conditions.

How to think of causation in complex systems like the brain?

When we consider how emotion is represented in the brain and interacts with cognition, as 

in other areas of neuroscience, we tend to reason according to a billiard ball causal model (at 

least implicitly). In this model, force applied to a ball (external stimulus activating a region) 

leads to its movement until it hits the target ball (activation of an anatomically connected 

region) (Figure 4A). But this mode of thinking, which has been very productive in the 

history of science, is too impoverished when complex systems are considered [see 46]. 

When systems are not isolable, understanding the interrelatedness between “sub-systems” 

means that we should consider interactions between systems and integration of signals as the 

central elements to be unraveled.

Whereas thinking of causation in complex systems is challenging, we can consider the 

situation illustrated in Figure 4B. When the initial force is applied to the yellow ball and it 

hits the target ball, the goal is to understand the evolution of the system of coupled elements 

as they interact with one another across time. In a related vein, an important goal for mind-

brain scientists should be to understand the interactions between emotion and perception/

cognition.

At the broadest level, the present discussion speaks to how we should study systems as 

complex as minds and brains. As advocated elsewhere [e.g. 47,48], the focus should not be 

on parts but on processes, which must be understood not solely in terms of their putative 

constituent elements but in terms of interactions and temporal evolution. In the brain, we 

will be often interested in describing the joint state of a set of regions, and how this joint 

state evolves through time. Consider the set of activity strengths for a set of brain regions: 

x1, x2, ···, xn. The vector x describes the current state of the system and x(t) describes its 

trajectory across time. At a particular time, the state of a set of regions can be represented as 

a point in multidimensional state space in which each axis represents a region’s activity. 

Therefore, the evolution of the system can be described as a spatio-temporal trajectory ([49], 

for an example involving cell recordings, see [50]).

In this view, we can advance our understanding of the emotional brain by studying and 

characterizing spatio-temporal trajectories (that is, how the joint activity across multiple 

brain regions evolves across time) of distributed systems believed to be central to emotional 
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functions. And given the large-scale, overlapping, and dynamic nature of brain networks, 

emotion matters not only for closely associated motivational processes, but for perception, 

action, and cognition.
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Highlights

• Interactions between emotion and cognition rely on large-scale distributed 

networks

• Brain networks are composed of overlapping regions (not disjoint sets of 

regions)

• Brain networks are dynamic, not static

• Understanding interactions requires characterizing causation in complex 

systems

Pessoa Page 10

Curr Opin Behav Sci. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Overlapping networks and neuronal populations. Blue and green circles represent brain 

regions of (relatively) separate networks. The orange circle indicates a region that is 

functionally linked to both networks. The small circles in A–C indicate neurons. (A) 

Segregated populations within a region are involved in interactions with separate brain 

regions/networks. (B) Intermixed neuronal populations within a region are involved in 

interactions with separate brain regions/networks. (C) The same population of neurons 

within a region is functionally connected with different brain regions/networks.
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Figure 2. 
Widespread changes in functional connectivity during cognitive-motivational interaction. 

(A) Representation of two communities during the control condition (no reward). Nodes 

indicate community organization (red: subcortical community; teal: cortical community) and 

edges indicate functional connections (purple: between-community edges). (B) Changes in 

reward vs. control connectivity between the two communities are shown. Reproduced with 

permission from Kinnison, Padmala, Choi, and Pessoa (2012).
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Figure 3. 
Brain networks are dynamic. (A–B) Specific network properties (“network index”) evolve 

across time. (C–D) A region’s grouping with multiple networks evolves across time as 

indicated by the “membership index” (inset: white region and its functional connections to 

multiple networks). The region indicated in white increases its coupling with one of the 

networks and stays coupled with it for the remainder of the time.
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Figure 4. 
Causation in complex systems. (A) Simple billiard ball model of causation applied to the 

interactions between brain regions. (B) Some of the balls are connected by springs to 

suggest that they are coupled. When the yellow ball eventually hits the red one (B1), not 

only is the red ball affected but all of the ones coupled with it (B2). Thus, the overall goal of 

explanation is to understand the evolution of the coupled system as it evolves temporally 

(B2).
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