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Abstract

With the introduction of the large number of fitness devices on the market, there are numerous 

possibilities for their use in managing chronic diseases in older adults. For example, monitoring 

people with dementia using commercially available devices that measure heart rate, breathing rate, 

lung volume, step count, and activity level could be used to predict episodic behavioral and 

psychological symptoms before they become distressing or disruptive. However, since these 

devices are designed primarily for fitness assessment, validation of the sensors in a controlled 

environment with the target cohort population is needed. In this study, we present validation 

results using a commercial fitness tracker, the Hexoskin sensor vest, with thirty-one participants 

aged 65 and older. Estimated physiological measures investigated in this study are heart rate, 

breathing rate, lung volume, step count, and activity level of the participants. Findings indicate that 

while the processed step count, heart rate, and breathing rate show strong correlations to the 

clinically accepted gold standard values, lung volume and activity level do not. This indicates the 

need to proceed cautiously when making clinical decisions using such sensors, and suggests that 

users should focus on the three strongly correlated parameters for further analysis, at least in the 

older population. The use of physiological measurement devices such as the Hexoskin may 

eventually become a non-intrusive way to continuously assess physiological measures in older 

adults with dementia who are at risk for distressing behavioral and psychological symptoms.
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1. INTRODUCTION

The number of devices that have been connected via the Internet, increased from around 200 

million in 2000 to approximately 10 billion today, moving us from the age of the Internet of 

Things (IoT) towards the confluence of people, process, data, and things — the Internet of 

Everything (IoE) [1]. More emphasis is being placed on pushing the field forward from data 

towards knowledge by extracting meaning from data that assists in actionable information. 

Advancements in mobile health technologies [15] adds the IoE dimension to healthcare 

innovations bringing to attention the numerous commercial devices available in the market. 

Devices created by manufacturers including Fitbit, Jawbone, Garmin, Apple, and others 

have made physiological and activity information readily available to the public, as well as 

opened up a new world for continuous activity monitoring to manage chronic healthcare 

conditions. However, this also brings the challenges of ensuring that the sensor readings are 

accurate and sensitive enough for chronic disease management. This is crucial not only for 

ensuring the generalizability of a sensor within a target population, but also its capability to 

measure the day-to-day variability in measurement that can be corroborated with the 

symptoms pertaining to the chronic health condition. The aim of this study is to validate the 

parameters measured by the Hexoskin vest sensor against clinically established gold 

standard measures (clinically established ground truth measures [31]) with 31 older adults in 

order to check the feasibility of using the vest with the older adult population.

2. BACKGROUND

Studies described in [2] and [3] indicate the importance of longitudinal analysis of the daily 

routine of older adults to detect anomalies or deviations in their usual patterns using 

automated, non-intrusive methods. Moreover, analyzing physiological measures such as 

heart rate and breathing rate can also provide critical insights to the person’s stress levels 

and physical activity [6]. In order to detect these deviations, the instruments or the sensors 

must be validated prior to use in healthcare settings.

In [13], Schwartz et al. attempted to extract the energy expenditure from physical activity 

measured using motion sensor devices (Omron pedometer (OM), Sportbrain pedometer 

(SB), and Kenz Life-Corder (LC) accelerometer). One interesting observation from the study 

was that the motion sensors performed accurately at higher speeds, with lower accuracies at 

lower speeds. This was not surprising given their primary uses as fitness devices. What was 

surprising in this study was that energy expenditure was not measured well in either the 

normal body mass index (BMI < 25.0 kg·m−2) or obese participants (BMI ≥ 30.0 kg·m−2), 

but performed well in overweight participants (BMI between 25.0 and 30.0 kg·m−2), 

particularly the SB sensor, which had the highest performance. The LC sensor performed 

poorly across all participants, with the OM having a better performance than LC, but poorer 

than SB. The results highlighted performance differences across the different sensors in 
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measurement of energy expenditure. In [14], Diaz et al. validated the use of Fitbit One to 

measure step count and energy expenditure in female adults. Here, different gait speeds were 

tested with 13 participants, and across Fitbit devices placed on the torso, hip, as well as 

wrist. While the step counts were strongly correlated across the devices, the error in energy 

estimate varied from 9–19% for the device placed on the torso, with lower performance for 

the other locations.

In [4], the authors compared the performance of three Fitbit One devices against one another 

to measure the inter-reliability of the devices in 30 healthy adults. The trackers were placed 

on both of the hips, and one in the shirt pocket. Using the step count metric, no significant 

difference was found across the three devices, with high inter-device reliability. In another 

study in [9], three different devices, Fitbit One, Jawbone Up, and Garmin Vivofit were used 

to measure two different activities running and walking for 14 adults. Energy expenditure 

was compared across the trackers and was validated against indirect calorimetry values for 

the participants. Their study showed less promising results, as the devices were found to be 

unsuitable as research measurement tools for recording precise and accurate energy 

expenditure estimates. However, the authors discussed the potential of using these devices in 

interventions of behavior change as they can provide estimates of relative changes in energy 

expenditure that allow users to understand activity patterns on an ongoing basis.

In our earlier study, we investigated the use of a fitness vest, the Hexoskin sensor as a tool 

for use in dementia care and management [5]. Specifically, we used a smaller group of 

adults where 4 participants were of ages 30–35 years, and 3 healthy older adults of age ~60 

years as the preliminary study cohort. In the Hexoskin sensor, five parameters are measured: 

cadence (in steps per minute), activity level (net acceleration in units of g), heart rate and 

breathing rate (in beats per minute), and minute ventilation (in mL per minute). Gait-related 

activities were validated for the cadence measure, and the remaining parameters were 

compared with the cadence using multivariate analysis. This initial study indicated that for 

the diverse population across different activities, the cadence, activity level, breathing rate 

and minute ventilation were strongly correlated with one another.

In all the studies described above, the devices were analyzed specifically to understand their 

potential for use with the healthy population. However, in chronic disease management 

applications, specific target groups need to be investigated as discussed in the review paper 

by Remoortel et al. [10], which reviewed the use of activity monitors across different 

studies. The authors found that most of the studies conducted included only healthy cohorts 

(118 out of 134). They further cautioned against the use of activity monitors in chronic 

healthcare settings without a proper validation study, since activity monitors are less 

accurate at slow walking speeds, and need further examination prior to use in clinical trials.

In this study, we expand the scope of our previous analysis [5] to the older adult population 

of age 65 years and older with mobility impairment, cognitive impairment, neither, or both, 

using participants from the Fels Longitudinal Study (study population described in detail in 

Section 3 of this manuscript).

Specifically, we ask the following research questions:
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i. What are the relationships between the different phenotype measures (such as 

demographic information on age, gender, ethnicity, cognitive status) in our study 

cohort? What are their similarities and differences?

ii. How do the Hexoskin sensor readings compare to gold standard measures in 

terms of accuracy, precision, and bias?

3. STUDY COHORT ANALYSIS

Study visits from thirty-nine participants of the Fels Longitudinal Study were used for the 

validation study described in this manuscript. Information regarding the Fels Longitudinal 

Study has been previously published in detail [23]. Briefly, the study began in 1929 for the 

purpose of examining growth, maturation, and body composition of individuals residing in 

and around the Dayton/Yellow Springs, Ohio area. In many cases, participants were enrolled 

as infants or small children, and then followed throughout their lifespans. Others were added 

during adolescence or adulthood. Although the study is closed to additional recruitment, 

data collection in a substantial portion of participants is ongoing. Participants follow specific 

visit schedules depending on age and sex; for participants ⩾18 years of age, visits occur 

every 2–5 years. Fels participants are overwhelmingly of European descent and typically live 

in southwest Ohio, roughly mirroring that region’s distribution of socioeconomic status. 

Participants are not targeted for study enrollment because of any particular health conditions, 

diseases or body composition, and as such, the study can be considered to approximate 

normal population variation within the represented demographic. For this study, participants 

were prioritized for a study visit if they were over age 65 years (the same criterion as 

Medicare eligibility, hence we chose this age range) and on their previous study visit had, 1) 

mobility impairment as measured by usual gait speed <1.0 meters/sec [24], 2) mild/moderate 

cognitive impairment as measured by a Montreal Cognitive Assessment score <26 [25], 3) 

both, or 4) neither. The recruitment goal was to complete data collection to have N=10 in 

each of the four categories. Due to technical issues, Hexoskin data were not viable for N=9 

participants, leaving N=31 (12 male, and 19 female participants) for final analyses. All study 

procedures were approved by the Institutional Review Board at Wright State University and 

all participants provided informed consent prior to participation.

3.1 Relationships between the Phenotype Variables

Graphical models are a marriage between graph theory and probability theory [20]. 

Specifically, Bayesian networks are graphical models that allow us to represent the 

probabilistic relationships between different variables, as well as understand the structure of 

the relationship between the different variables in a given dataset. Using probability theory, 

the relationships between different data variables can be computed. Among their many 

advantages, BNs allow a way to handle missing or noisy data, can utilize mechanisms to 

avoid overfitting the data (in our study, we used the BIC for structure learning as a means to 

retain a parsimonious model), and can be used for data modeling for smaller sample sizes 

[30]. In related activity modeling work using sensor information and probabilistic 

approaches, previous researchers [24], [25] utilized motion sensor data to learn context-

aware rules using a BN. In our study, we generated a BN for all the phenotype information 

(including physiological and demographic) collected in the Fels study, describing the 
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similarities and dissimilarities in the study cohort. Specifically, 1073 variables were 

investigated in this study and described in this section to provide context to the validity 

evidence described in the latter section of the manuscript. This included information 

regarding the age, gender, prior injuries, presence of comorbidities such as arthritis, width of 

girth, scores from the cognitive scale testing parameters such as performance in the 

subtraction testing, memory test [21], performance in the physical balance testing such as 

the number of sit-to-stands, balance score, etc [17] were computed. We discarded variables 

that were too sparse i.e. present in less than five participants, and discarded date information, 

leaving 98 variables. Then we created a BN using these parameters for structure learning to 

analyze the relationship between these components. We computed a BN for structure 

learning i.e. without any apriori structure using a score-based approach [22]. In this method, 

for each pair of parameters we compute the score of structure G, given the data D and using 

Bayes Rule, we get:

Score(G, D) = Pr(G D) = Pr(D G) ∗ Pr(G)
Pr(D)

As an example, for two variables we use the following three paths, add a directional path, 

delete the directional path, and reverse the directional path [28]. This means the three 

possible relationships between the variables CLOCK_NUM and ABSTRACT2 are:

1. CLOCK_NUM -> ABSTRACT2 (CLOCK_NUM causes ABSTRACT2)

2. CLOCK_NUM ⊥ ABSTRACT2 (no connection, mutually independent)

3. CLOCK_NUM <- ABSTRACT2 (CLOCK_NUM is caused by ABSTRACT2)

The idea here is to compute the likelihood of the graph structure G using the data D for each 

of these possible paths to find the causal relationship that best fits the data. To get to a higher 

granular level across all the variables or parameters used in the model, for every variable p, 

we then compute the likelihood using:

Pr(D G) = ∫ Pr(D G, p) ∗ Pr(p G)dp

Finally, to compare between the different permutations and combinations of the variables, 

we use the BIC score approximation [11] which has the added advantage of penalizing for 

complicated structures, preventing overfitting. In this example, if the model comprising case 

1 i.e. CLOCK_NUM -> ABSTRACT2 yields the lowest BIC score, then that relationship is 

retained. This process is repeated for every pair of variables to obtain the optimal structure.

Using the structure learning technique described above, we generated a BN that excluded 

variables with no relations between them, and preserved the variables which either affected 

another variable, or were affected by another variable. The BN structure with the lowest BIC 

score is shown in Figure 2. We observed that the strongest relationships between the 

variables only occur for the physical and cognitive testing variables. The physical testing 

variables are the ones beginning with the letters PB. The measures are described in more 

detail in the SPPB test description [17]. These include:
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1. PBSCHST (chair stand safe to stand (0-No, 1-Yes))

2. PBSCHST_R (chair stand results (0-Not completed, 1-Without arms, 2-With 

arms))

3. PBRCHST_TIME_DIS (chair stand time displayed (in seconds))

4. PBTSTAND (balance test tandem stand (0-Not attempted or less than 3 seconds, 

01-Held for 3+ seconds and less than 10 seconds, 02-Held for more than 10 

seconds))

5. PBTBSCORE (Balance score)

6. PBCSSCORE (Repeated chair stand score)

7. PBTOTALSCORE (total physical balance test score)

The remaining measures are cognitive testing variables such as CLOCK_NUM or 

ABSTRACT2. These are part of the MOCA testing parameters and include:

1. CLOCK_NUM (identifying the time (0-No, 1-Yes))

2. ABSTRACT2 (Similarity between two entities such as banana – orange = fruit 

(0-No, 1-Yes))

3. ORIENT_CIT (Orientation, identification of current city (0-No, 1-Yes))

4. ORIENT_MON (Orientation, identification of current month (0-No, 1-Yes))

This implied that there is no significant relation between the demographic parameters, or the 

co-morbidities, or medications, and the performance in the physical (SPPB [17]) and 

cognitive (MOCA) tests [21] within the Fels cohort. This is surprising as there are 

indications that demographic information does play a role in cognitive and physical 

performance in older adults; however, within our Fels cohort, the differences are too small to 

generate any significant relationships with the other phenotype measures.

For our 31-participant cohort, we do see a relation between performance in the SPPB [17] 

and MOCA [21]. In particular, within the MOCA, we see that the participants’ performance 

in the abstraction i.e. semantic similarity between objects (ABSTRACT2) relies on their 

performance in other cognitive measures such as identifying the time (CLOCK_NUM), and 

identifying the current month (ORIENT_MON) as well as current city (ORIENT_CIT). 

Similarly, in the SPPB, we see that the chair stand (PBSCHST) plays a significant role in the 

participants’ performance in the overall balance score (PBTBSCORE). However, the most 

interesting observation here was the dependency between the MOCA and SPPB. The 

participants’ performance in the abstraction task affected their performance in the chair sit-

to-stands. It is not surprising that there is a relation between physical and cognitive 

performance in older adults; in [26], Won et al. found that a decline in cognitive 

performance corroborated with a poor physical performance measure. However, this analysis 

points to the causal relationship between the cognitive measurements of the older adults with 

their physical performance. The main point that this feature analysis highlights is that based 

on our study, the demographic features do not have a strong relationship with the cognitive 

or the physical performance measures. This may suggest that the current validation study 
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using the wearables could generalize across older adults of both genders, ages 65 and above, 

as well as different physical characteristics such as width of girth, height, body weight, etc. 

In the next section, we describe the validation of the physiological measurements collected 

using a promising new commercial wearable sensor, the Hexoskin vest.

4. SENSOR DATA ANALYSIS (COMPARISON AGAINST THE GOLD 

STANDARD MEASURES)

In this section, we validate the Hexoskin vest using our 31 participants of age 65 and above. 

Specifically, we describe our preliminary work in validating the parameters extracted from 

one of the most popular wearable sensors, Hexoskin [7]. We originally chose N=40 

participants as a recruitment goal based on pilot funding constraints and feasibility of 

completing data collection in in a timely manner with available resources. Power 

calculations indicate that with N=40 we would have power to detect a significant correlation 

of 0.31. With N=31 participants, we were powered to detect a significant correlation of 0.36. 

Based on these values, our current sample size is more than sufficient to detect relatively 

weak agreements (and strong agreements) between the sensor and gold standard measures.

Five parameters were measured: heart rate (HR) in beats per minute (BPM), respiration rate 

(RR) in BPM, minute ventilation or exhaled volume (VE) to detect the volume of gas 

inhaled or exhaled by the lungs in lungs per minute (LPM), cadence in number of steps per 

minute (Cadence), as well as the activity level (A) on a scale of 0 to 1 using accelerometers 

in the X, Y, and Z directions (resolution of 0.004g) [7]. As compared to other commercially 

available sensors, the Hexoskin has the added benefit of being worn as an under-shirt by the 

person with dementia, instead of wearable bracelets like the Fitbit that patients may find 

confusing, and can easily discard. Moreover, the Hexoskin vest is Bluetooth enabled with 

over 14 hours of battery life and can locally store more than 150 hours of recording [7]. 

Each of these measures is compared against the gold standard metric corresponding to that 

measure. Each of these metrics are described in the corresponding physiological sensor 

section below. Cadence is discussed in Section 4.1, breathing rate and minute volume in 

Section 4.2, heart rate in Section 4.3 and Activity in Section 4.4.

4.1 Cadence

We assess the accuracy of the number of steps per minute (Cadence). The gold standard 

metric is our gait laboratory’s motion capture system, consisting of 6 Osprey cameras from 

the Motion Analysis Corp., with retroreflective markers placed according to the Helen 

Hayes marker system, and Cortex software used for spatiotemporal data collection and 

processing [16]. Participants performed the Short Physical Performance Battery (SPPB) [17] 

test for gait performance; in this section, the gait component of the SPPB was utilized for 

Cadence validation.

4.1.1 Initial Results (Without Signal Processing)—From our preliminary comparison 

of Cadence with the motion capture system data, we found that Cadence from the vest was 

consistently lower than Cortex values. Furthermore, we computed the correlation between 

the two measures. Correlation is a statistical measure of the linear relation between the two 
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variables. The magnitude of the correlation coefficient indicates the strength of the linear 

relationship between the two variables. However, a high correlation between two variables 

does not necessarily imply that the two methods have strong agreement [18]. This is 

particularly true if the variables share a non-linear relationship. Similarly, the coefficient of 

determination measures the magnitude of variance shared by the two variables and measures 

the precision of the measurement between the two quantities of comparison. Initially, using 

the proprietary Hexoskin software, we found that the Pearson’s correlation (r) was equal to 

0.42 between the two measures Cadence (vest) and the Cortex. Since this was a moderate 

correlation which we believed to be affected in part by the manner in which the vest’s 

software converted signal to final output numbers. Therefore, we re-analyzed the agreement 

between the Hexoskin and the motion capture system’s Cadence data by using the raw 

accelerometer data from the vest and extracting signal processing features to compute our 

own Cadence metric for comparison with the gold standard system.

4.1.2 Cadence Extraction (With Signal Processing)—We computed the magnitude 

of the acceleration of the x, y, and z measures, and then subtracted the mean from the signal. 

We extracted the peaks or local maxima of the signal that are of height of at least one 

standard deviation of the signal to indicate the number of steps present in the signal. Finally, 

we computed the number of steps per minute by multiplying the number of steps by 60 and 

dividing by the time duration to normalize the value. Figure 3 a) shows a sample number of 

steps (red inverted triangles) from the magnitude signal. The p-value of the relationship 

between a gold standard and Hexoskin measure was calculated with respect to the null 

hypothesis that there is no association between the two measures. We used the 0.05 alpha 

level for statistical significance. We therefore used a p-value below 0.05 to indicate that there 

was sufficient evidence in the data to establish that changes in the Hexoskin measure are 

associated with changes in the corresponding gold standard measure.

Using our cadence extraction technique, we obtained a much higher correlation of 0.79 (p < 

0.0001). We also computed the coefficient of determination or r2 which was equal to 0.63. In 

1983, Altman and Bland [19] proposed a method of plotting the difference between two 

variables against their average as a means of analyzing the agreement between two different 

variables that measure the same parameter or property; in this case the Cadence. In Figure 3 

(c), we computed the Bland Altman plot of the two measures of Cadence from the vest and 

the motion capture system. We see the bias or the average of difference is close to 0 (bias 

less than +1). The red lines above and below the bias line indicate +/−1.96s (s = standard 

deviation) that describes the region representing 95% of the area under the normal 

distribution from the mean value.

4.2 Breathing Rate and Minute Ventilation

We analyzed the pulmonary readings for the respiration rate (RR) and the exhaled volume 

(VE). In our earlier study [5], we found the pulmonary readings to match well when 

compared with the other measures from the vest on a healthy participant cohort for gait 

specific activities. For our validation test, resting minute ventilation (VE) and respiratory 

rate (RR) were measured using a metabolic cart (SensorMedics VMax) in accordance with 

American Thoracic and European Respiratory Societies’ Guidelines [12]. Participants were 
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seated quietly, with the breath-by-breath data collection for 5 minutes. The 20-second 

averages from the final two minutes of data collection were used for analyses and reporting.

For VE, we obtained a weak positive correlation of 0.2 (Figure 4 a)) that was not significant 

at alpha level of 0.05 (p = 0.28). We also computed the coefficient of determination which is 

equal to 0.04.

From the Bland Altman plot in Figure 4, we saw the bias or the average of difference is 

close to 0 (bias < +0.5).

The readings for the RR obtained were much more promising. We obtained a much higher 

correlation of 0.52 (p < 0.005) as seen in Figure 5 a). We also computed the coefficient of 

determination or which is equal to 0.28.

From the Bland Altman plot, we saw the bias or the average of difference is almost 0, 

indicating that the measurement error in this case is low.

4.3 Heart Rate

We assessed the agreement between two quantitative measures of heart rate (HR): via 

palpation at the radial artery for one minute using the Polar Heart rate monitor and the 

Hexoskin vest simultaneously while at rest. In this case, we saw that there is a strong 

positive correlation between the two variables using the Pearson’s correlation [18] with 

r=0.80 (p < 0.05). We also computed the coefficient of determination or r2 which is equal to 

0.64.

The Bland Altman (Figure 6 b)) plot of the two measures obtained the bias or the average of 

difference that was close to 0 (bias = −3).

4.4 Activity Level

We assessed the agreement between two quantitative measures: the motion capture system 

already described above in the Section 4.1 [16], and the Hexoskin vest. Specifically, we used 

the motion capture system to compute the magnitude of the acceleration in the x, y, and z 

directions of the retroreflective marker placed on the right anterior superior iliac spine 

(ASIS) of the pelvis, to compare with the accelerometer magnitude readings from the vest 

sensor. We specifically chose this marker since the accelerometer unit in the vest is located 

anatomically closest to that marker. From Figure 7 b), we saw that there was a weak negative 

correlation of −0.13, not significant at the alpha level of 0.05 (p=0.51) between the two 

variables. Furthermore, the coefficient of determination r2 = 0.0169 was very low for the two 

variables.

We plotted the Bland Altman measured for the two measured for the activity level. Ideally, 

95% of the points should lie within +/− 2*(standard deviation of the mean difference). In 

this case, we saw the bias was very close to 0 (< 0.01).
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4.5 Overall Sensor Data Evaluation

We shared the summary of our overall findings in Table I. The correlation between measures 

was calculated as the standardized regression coefficient of the Hexoskin measure with 

respect to the gold standard. The p-value of the correlation was calculated as the significance 

of this standardized coefficient (B/SEB (i.e. slope/standard error of slope), t-distributed with 

n-2 degrees of freedom) [29]. The three measures HR, RR and Cadence perform 

significantly well in our current validation study. The other measures do not fare as well in 

the current study design, but as mentioned in the earlier exploratory analysis conducted in 

[5], the pulmonary measure VE, as well as the activity level performed well across the 

diverse age group (including older adults) for activities of longer duration. One thing to note 

here is that the long-term goal of our project is to use sensing modalities for long-term 

physiological monitoring of older adults with potential cognitive conditions. This implies 

that while the raw sensor values themselves may not be useful, relative changes in the sensor 

readings across different activities over different time periods in the daily lives of the older 

adults might yet provide important information.

5. DISCUSSION

In Figure 2, we discussed the Fels study cohort and the relationships between the different 

physical and cognitive measures within the cohort. One interesting point raised in this 

evaluation was the relatively homogeneous nature of the cohort: all the participants belonged 

to the same ethnicity and their age, gender, economic and physical differences did not play a 

role in their performance in the SPPB and MOCA tests. From the statistics shared by the 

Alzheimer’s Association [27], we see that these factors do have a relationship with dementia 

behaviors, which could affect their performance in the MOCA tests. However, given the 

limited (31) participant size of our current sample, further investigation needs to be done 

before determining any relationships between the demographic features, as well as the 

cognitive and physical performance scores.

5.1 Cadence

For the Cadence measure extracted directly from the vendors, one possible cause for the 

poor performance could be that in order to remove noise from the data, the manufacturers 

cleaned the signal such that if the number of steps for a given walk sequence was less than 7 
strides, it was discarded. Given that this study involved an older cohort and more than half 

the participants were slow walkers, this indicated that parts of the SPPB walk sequences 

were discarded by the system from the Cadence measure computed by Hexoskin. It is 

important to be aware of the issues of using processed sensor data from commercial devices 

as some of the signal processing techniques used by the vendors may not be appropriate for 

the desired application. In such cases it is better to process the raw sensor data. Moreover, 

proprietary signal processing steps are not always described in detail by the commercial 

vendors, further justifying the need for the user to develop his or her own methods of 

processing the raw data.

After using signal processing (Figure 3), we obtained a much higher correlation of 0.79 (p < 

0.0001) and a coefficient of determination 0.63. This indicates that 63% of the total variation 
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in Cadence from the motion capture system was explained by the vest sensor. From the 

Bland Altman plot, we see that all the points are within the 95% data distribution region. 

This indicated that the Hexoskin did not consistently over or under estimate the gold 

standard estimates of the cadence readings indicating a lack of bias in the sensor readings for 

Cadence. We also obtained a standard error of the estimate for Cadence of 5.6. This 

indicated that if the vest measures number of steps per minute to be 70, the true value will be 

between 64.4 and 75.6 steps/minute with 68% confidence. From this estimate, we see that 

while precise measurements within the standard error value cannot be done using this sensor 

with the older population, a difference in number of steps of around 10 can be detectable, 

and a larger difference of 20 will be certainly detectable. Since we are exploring the utility 

of the measurements for continuous monitoring, this finding is of particular use as we want 

to detect changes in older adults’ activity behavior over months to detect variations in their 

daily movement patterns. Based on this analysis, and our previous study [5], we conclude 

that the Cadence measure from the vest can be used as a measure for detecting activity (as 

well as changes in activity) in the older population, our target cohort. The measure can also 

be used to detect physical decline over a longer time period (i.e. a change from an active to a 

sedentary lifestyle) that could indicate a change in the person’s cognitive and physical state.

5.2 Breathing Rate and Minute Ventilation

For VE, we obtained a weak positive correlation of 0.2 (Figure 4) that was not statistically 

significant at alpha level of 0.05 (p = 0.28), with a coefficient of determination of 4%. This 

indicated that most of the information from the gold standard is missing from the vest 

readings for the current cohort. From the Bland Altman plot in Figure 4 b), we see that all 

but two points are within the 95% area of the data distribution (between the red lines) with a 

very low bias of approximately 0.5. One possibility for the low accuracy reading of the vest 

is that the Hexoskin is not meant to be used when a person is completely still (the position of 

rest when the pulmonary data are collected). Thus, when the pulmonary testing is done with 

the subjects sitting, the stretch receptors in the vest may have gotten displaced, producing 

odd signals for changes in thoracic and abdominal volumes, from which the vest ultimately 

estimates changes in lung volume and thus ventilation. Variation in body composition, as 

well as body height are other inter-individual factors that can further affect how well the vest 

functions in a sitting position. From this analysis, we conclude that while the vest may be a 

reliable instrument for certain gait-related activities in the healthy population [5], the VE 

measure may not be suitable for measuring different activity states in the low activity older 

adult population for continuous activity monitoring.

The readings for the RR obtained are more promising. We obtained a much higher 

correlation of 0.52 (p < 0.005) as seen in Figure 5 a). We also computed the coefficient of 

determination or r2 which is equal to 0.28. This indicates that 28% of the total variation in 

the gold standard system is explained by the vest sensor. From the Bland Altman plot 

(Figure 5b)), we saw the bias was almost 0, indicating that the measurement error in this 

case is low. We also saw that all but two points (one above, one below) were within the 95% 

area of the data distribution which further indicated that the data are fairly normally 

distributed for the current measure.
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One factor that could affect these readings is potential systematic error in collecting the 

pulmonary measures using the metabolic cart; however daily machine calibration is 

performed to specifications, tests are performed to clinical standards, and any systematic 

error would be borne out in the Bland-Altman plots. Hence, we see that while the position of 

rest still confounds the RR readings, the data are significantly correlated, although not as 

strongly correlated as the cadence measure. We also found the standard error of the estimate 

for RR to be 2.9. This indicates that if the vest measures RR to be 25, the true value will be 

between 22 and 28 BPM with 68% confidence. To further clarify this, consider a case where 

a patient’s respiration goes higher, to say 28 bpm when he is agitated as part of his dementia 

behavior. However, his normal respiration rate is 20 bpm. Since the standard error as 

measured by our validation of the RR is 2.9, if we look at the extreme cases, the sensor may 

measure the normal respiration rate greater than or equal to 22.9 bpm (at 68% confidence) at 

the upper confidence level, and for the agitated condition if we look at the lower confidence 

level for the RR, the value will be 25.1 bpm (again at 68% confidence). We see here that 

there is no overlap between the lower confidence level of the higher RR and the lower 

confidence level of the baseline RR. This would indicate that RR may be useful in 

distinguishing between the dementia behavior and the normal condition. However, if on the 

other hand, if the normal RR was 20 but his RR while agitated was 25, this physiological 

measure would not be sufficient to detect the differences between the dementia and normal 

behaviors. While the difference may be critical for certain clinical diagnoses, the RR has 

shown promise in this study cohort. In fact, the RR sensor from the vest can be used for 

continuous activity monitoring for extended time periods across different activities including 

walking, as well as sitting [5], as well as may be useful in detecting different emotional 

states (such as agitation). Hence, we conclude that we can utilize the RR measure for 

longitudinal activity monitoring in the older adult population; especially to distinguish 

between the different activity states over long durations such as walking and resting.

5.3 Heart Rate

We see that there was a strong positive correlation between the two variables using the 

Pearson’s correlation [18] with r=0.80 (p < 0.05) as well as a coefficient of determination of 

0.64 as seen in Figure 6. This shows that there was a strong relationship between the two 

measures. While the variance is not very high, given the fact that the heart rate is measured 

in resting state across a population of 31 participants with different health conditions as well 

as cognition states; the results are quite promising. Also, the performance for this measure is 

much higher than our earlier study [5] which could be due to the improved vest fitting; in 

our earlier study, we used a single vest for all the female participants, and another vest for all 

the male participants. In this study, we use the participants’ shirt sizes to determine their vest 

size for the female as well as male participants. This allows better placement of the ECG 

leads for each body size that led to increased accuracy in our current study design. From the 

Bland Altman plot of the two measures, we obtain the low bias value of −3. From this, we 

gathered that the measurement error in this case is low. Within the 95% region of the data 

distribution (red lines in Figure 9), all but one point are within this region. This indicates that 

the Hexoskin does not consistently over or under estimate the gold standard estimates of the 

Polar monitor. We also found the standard error of the estimate for HR to be 5.2. This 

indicates that if the vest measures HR to be 90, the true value will be between 84.8 and 95.2 
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BPM with 68% confidence. Again we see that a change from 80 to 90 BPM will be a 

detectable change, and from 60 (resting pulse) to 100 (very active or agitated) will certainly 

be detected using the HR sensor. From this analysis we conclude that HR can substitute for 

the gold standard; especially if it is measuring continuous heart rate over an extended time 

period across different activities including walking, as well as sitting. We can further utilize 

this measure for longitudinal activity monitoring in the older adult population, especially to 

distinguish between different activity states over long durations such as walking and resting, 

as opposed to comparing differences in the same activity state across different individuals.

5.4 Activity Level

From Figure 7, we see that there was a weak negative correlation of −.13, not significant at 

the alpha level of 0.05 (p=0.51), between the two variables which indicated poor accuracy 

values. Furthermore, the coefficient of determination of 0.02 is very low for the two 

variables. From the Bland Altman plot, we see the bias was very close to 0 (< 0.01) 

indicating that the Hexoskin did not consistently over or under estimate the motion capture 

estimate for the activity level.

One drawback of the current validation scheme rose from the limited spatial range of the 

motion capture system that restricted the length of the walk as well as the duration of the 

activity: the actual gait sequence evaluated for this measure was only a few seconds. Our 

prior study evaluated gait activities lasting at least 10 minutes [5], but in this case, the sensor 

values were not precise enough to capture the activity magnitudes due to the smaller 

duration of the activity. From this analysis, we conclude that the activity measure may not be 

precise enough to use for longitudinal data analysis in the older adult cohort, at least for 

smaller time periods. That said, the measure may still be applicable for longer duration 

activities; especially to measure larger differences across activities. However, this will need 

to be explored in a further validation study.

CONCLUSION

The present study undertaken by an interdisciplinary team comprising computer scientists, 

biostatisticians, kinesiology expert, and geriatric researcher reports the results of a validation 

of the Hexoskin vest, a promising commercially available sensor for long term monitoring of 

older adults. Specifically, we validated the system in a target cohort of older adults with and 

without cognitive and physical impairment. Each Hexoskin parameter was directly 

compared to data collected using corresponding clinical gold standard methods. To our 

knowledge, previous studies have not investigated multiple sensor parameters in a specific 
cohort with ground truth comparison for sensor validation. Three of the five parameters 

measured by the sensor (cadence, respiration rate, and heart rate) showed strong correlations 

against the gold standard measurements. This indicates the need to proceed cautiously when 

making clinical decisions using such sensors, and suggests that users should focus on the 

three strongly correlated parameters for further analysis, at least in the older population. We 

also computed the standard error associated with the strongly correlated parameter measures 

that further highlights the type of applications that can use these devices for precision 

medicine applications. The use of physiological measurement devices such as the Hexoskin 
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may eventually become a non-intrusive way to continuously assess physiological measures 

in older adults with dementia who are at risk for distressing behavioral and psychological 

symptoms. While we focus on the Hexoskin, this study will provide a model for validation 

of the many other wearables on the market today and in the future.

FUTURE WORK

The present study has highlighted the validity of the Hexoskin vest for use in the older adult 

population. Future work involves testing the sensor over longer time periods with a larger 

sample of older adults, both with and without cognitive impairment. The Hexoskin has 

continued to show promise as a sensor platform for detecting changes in activity and 

behavioral patterns. Additional research is required to study the efficacy of these 

physiological parameters as predictors for behavioral change in people with dementia as a 

means of quantifying the sensed data’s role for clinical assessment. The derived 

understanding can be used to alert caregivers and physicians so that appropriate measures 

can be taken to ensure the safety and well-being of both the people with dementia, as well as 

the caregivers.
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Fig. 1. 
Block Diagram of the overall dementia management system. Wearable sensors will be used 

to measure activity and sleep in persons with dementia, as well as the caregivers to enable 

dementia management, as well as corroborate the dementia symptoms with caregiver stress.
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Fig. 2. 
Bayesian Network obtained through structure learning to understand the relationship 

between different variables measured in the Fels study cohort.
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Fig. 3. 
Cadence Plots with a) showing the magnitude of acceleration with the number of steps 

highlighted using red inverted triangles. Fig. 3 b) shows plot of the Cadence gold standard 

(Y-axis) vs the Cadence measured by the Hexoskin after signal processing (X-axis). (R = 

0.79; P<0.0001). Fig. 3. c) Bland Altman Plot of the Difference (Y-axis) vs the Average (X-

axis) for the gold standard and the Cadence measured by the Hexoskin (X-axis).
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Fig. 4. 
a) Plot of the Volume Exhaled VMax gold standard (Y-axis) vs the VE measured by the 

Hexoskin (X-axis). (R = 0.2; P=0.28). Fig. 4. b) Bland Altman Plot of the Difference (Y-

axis) vs the Average (X-axis) for the gold standard VE and the VE measured by the 

Hexoskin (X-axis).
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Fig. 5. 
a) Plot of the Respiration Rate gold standard VMax (Y-axis) vs the Respiration rate 

measured by the Hexoskin (X-axis). (R = 0.52; P=0.004). Fig. 5. b) Bland Altman Plot of 

the Difference (Y-axis) vs the Average (X-axis) for the gold standard RR and the RR 

measured by the Hexoskin (X-axis).
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Fig. 6. 
a). Plot of the palpated HR gold standard (Y-axis) vs the heart rate measured by the 

Hexoskin (X-axis). (R = 0.8; P<0.0001). Fig. 6 b). Bland Altman Plot of the Difference (Y-

axis) vs the Average (X-axis) for the gold standard HR and the Hexoskin (X-axis).
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Fig. 7. 
a). Plot of the Right Asis (RAsis) marker using the motion capture (Y-axis) vs the activity 

level measured by the Hexoskin (X-axis). (R = −0.13; P=0.51). Fig. 7 b). Bland Altman plot 

Difference (Y-axis) vs the Average (X-axis) for the gold standard Motion Capture and the 

Hexoskin (X-axis).
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Table I

Summary of Physiological Measures Using the Hexoskin Sensor.

Physiological Measures R p-value R-sq. (r2)

HR 0.80 <0.0001 0.64

RR 0.52 0.004 0.27

VE 0.20 0.28 0.04

Cadence 0.79 <0.0001 0.63

Activity −.13 0.51 0.016

(HR= Heart Rate, RR=Respiration Rate, VE=Volume Exhaled)
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