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Abstract

Proteins fulfill versatile biological functions by interacting with each other and forming high-order 

complexes. Although the order in which protein subunits assemble is important for the biological 

function of their final complex, this kinetic information has received comparatively little attention 

in recent years. Here we describe a multiscale framework that can be used to simulate the kinetics 

of protein complex assembly. There are two levels of models in the framework. The structural 

details of a protein complex are reflected by the residue-based model, while a lower-resolution 

model uses a rigid-body (RB) representation to simulate the process of complex assembly. These 

two levels of models are integrated together, so that we are able to provide the kinetic information 

about complex assembly with both structural details and computational efficiency.
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1. Introduction

Proteins form high-order complexes to carry out their diverse functions in cells [1,2]. In 

order to maintain the proper functions, natural evolution has developed specific assembling 

pathways for these complexes [3,4]. Any mistake along the pathways of complex assembly 

can lead to severe biological consequences [5]. Moreover, in a crowded cellular 

environment, the assembly of protein complexes is often under kinetic, rather than 

thermodynamic, control [6,7]. Therefore, to study the kinetics of protein complex assembly 

is of paramount importance. Unfortunately, relative to the intensive studies made for the 

structural determination of protein complexes, the dynamic aspects of their assembling 

pathways have just started to be understood. Additional to the recently developed 

experimental techniques such as super-resolution microscopy [8], electron microscopy [9] 

and native mass spectrometry [10], a large variety of computational models have also been 

developed to simulate the association of protein complexes. However, among these models, 

high-resolution methods based on molecular dynamic simulations can hardly approach the 

fully time scale of assembly processes for large protein complexes [11–27]. In contrast, low-
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resolution models fail to provide a quantitative description of the structure and energetics of 

protein complexes [28–35].

In this chapter, we outline a computational framework to simulate the kinetics of protein 

complex assembly. The framework consists of models on two different scales [36]. The 

higher-resolution simulation uses residue-based coarse-grained (CG) models of protein 

structure to evaluate the binding rates between each pair of subunits in a complex, whereas 

the lower-resolution model uses a rigid-body (RB) representation to simulate the process of 

complex assembly. By feeding the binding rates calculated from the residue-based 

simulations into the lower-resolution simulations, two levels of models are integrated 

together so that assembly of specific protein complexes can be studied with both structural 

detail and computational efficiency.

2. Materials

2.1 Information needed as input parameters

The following information is needed as input parameters for simulations.

1. The structure (atomic coordinates) of the entire protein complex in PDB format.

2. The translational and rotational diffusion constants of each subunit in the 

complex. These constants can be obtained by curve fitting to the data that were 

calculated by a precise boundary element method [37,38].

3. The dissociation constants (Kd) which quantify the binding stability for all pairs 

of individual subunits in the complex. For instance, a hetero-trimer that contains 

two types of subunits (A and B) includes two types of binding interfaces (Fig. 

1a). One is between subunit A and B, while the other is between two subunits A. 

The dissociation constants through both AB and AA binding are needed.

4. The on rates (kon) of binding which quantify the kinetics of association for all 

pairs of individual protein subunits in the complex.

2.2 Residue-based model for simulation protein association

2.2.1. Model representation—The atomic structure of proteins was reduced to a 

simplified model in which each residue is represented by two sites [39]. One is the position 

of its Cα atom, while the other is the representative center of a side-chain selected based on 

the specific properties of a given amino acid.

2.2.2. Simulation algorithm—The kinetic Monte-Carlo (KMC) simulation starts from an 

initial conformation in which a pair of proteins was randomly placed. The translational and 

rotational diffusions are then carried out within each simulation step for both proteins in the 

system. Specific boundary conditions are applied after the diffusions. The new binding 

conformation is evaluated by either GO-like potential [40], or a coarse-grained physical-

based energy functions [39]. The probability of acceptance for this new conformation after 

diffusion depends on the calculated binding energy. At the end of each simulation step, the 

distances between all intermolecular interfacial pairs were calculated to determine how 

many native contacts were recovered. When at least three native contacts were recovered, we 
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assumed that the two proteins formed an encounter complex and the current simulation 

trajectory was terminated. Otherwise, the simulation ended when it reached the predefined 

maximal duration (see Note 5).

2.2.3. Boundary condition—Two different boundary conditions are used in our study. 

The first is the periodic boundary condition. In the periodic boundary condition, two 

proteins are initially placed in a three-dimensional periodic box at random positions (Fig. 

1b). During simulation, if one protein exists from one side of the box, it will immediately 

enter the opposite side. In the second boundary condition, a different initial conformation is 

constructed. Specifically, the binding interfaces of two proteins are placed randomly, but 

within the given distance cutoff dc, and the range of their packing angles is within the cutoff 

Θc (Fig. 1c). Consequently, in the following simulation, two molecules either formed an 

encounter complex or separated far away from each other by the end of each simulation 

trajectory.

2.2.4. Energy functions between proteins—The binding between proteins were 

originally evaluated by a GO-like potential [40] which gives scores for all pairs of native 

contact. Any pair of Cα atoms between residues i in one protein and j in the other is defined 

as a native contact if its corresponding distance in the native structure is smaller than 7.5 Ǻ. 

An adjustable parameter μ defines the energy depth of the GO potential. It can be used to 

control the rate of binding.

In our more recent study, the total energy of binding between two proteins is described by a 

simple physics-based potential function consisting of three terms [39]. The first component 

is the electrostatic interaction which was previously used in the Kim-Hummer model 

[41,42]. The second component is the hydrophobic interaction, which is calculated by 

summing the hydrophobic scores of all contact residue pairs. The hydrophobic scores of a 

contact residue pair are taken from a previous study by Kyte and Doolittle [43]. The 

excluded volume effect during protein binding is taken into account as the third component. 

Finally, a weight parameter w which determines the relative contributions between the 

hydrophobic and electrostatic interactions can be used to control the rate of binding.

2.3 Rigid-body model for simulation protein complex assembly

2.3.1. Model representation—In the rigid-body-based model, proteins are simplified as 

spherical rigid bodies with various radii (see Note 4). Multiple binding sites are assigned on 

the surface of each rigid body [44]. The spatial assignment of each binding site depends on 

the quaternary arrangement of the protein complex under study (Fig. 1d).

5The conformational changes are not considered during our study of complex assembly. Previous studies have illustrated that 
conformational changes are important in protein complex assembly. Although the effect of conformational flexibility cannot be 
reflected by the rigid-body model, it can be estimated by our residue-based simulation. For instance, the elastic network model (ENM) 
[47] has been integrated into the current model of our residue-based simulation so that protein conformations can be changed during 
association.
4In current stage of the study, each protein subunit in the lower-resolution simulation is simplified by a spherical rigid body. 
Therefore, our method will not be able to be applied to protein complexes containing subunits of non-globular shapes. In the future, 
our method can be improved by using non-spherical rigid bodies. Furthermore, by applying a domain-based representation in which 
each globular domain is represented by a rigid body, our method can be extended to protein complexes that contain multi-domain 
protein subunits.
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2.3.2. Simulation algorithm—A diffusion-reaction algorithm is developed to simulation 

the assembly kinetics [44]. As the initial configuration, a large number of proteins with all 

species of subunits in the complex are randomly distributed in a 3D simulation box (Fig. 1e). 

The number of subunits and the size of simulation box are determined by the concentrations 

and the stoichiometry of the complex. Followed by the initial conformation, the system is 

evolved by an iteration of diffusion-reaction process. Molecules are first chosen to undergo 

random diffusions with the periodic boundary condition. The amplitude of diffusions for all 

molecules is determined by their corresponding diffusion coefficients. If a complex is 

formed during the process of assembly, its all subunits will move together, with a relatively 

smaller diffusion coefficient. After diffusions, any pair of subunits that fulfill the binding 

criteria has the probability to associate together, by the corresponding on rate. In contrast, 

any associated pair of subunits has the probability to break into separate monomers, by the 

corresponding on rate and binding affinity.

3. Methods

3.1 Calibrate the energy function in residue-based simulations

For each different pair of interacting protein subunits in a complex, following steps of 

operation will be carried out sequentially (Fig. 1b).

3.1.1 104 residue-based simulation trajectories are generated with periodic boundary 

condition, using either GO-like or physics-based potential functions. The default 

value of μ in the GO-like potential or w in the physics-based energy function is 

used as initial condition.

3.1.2 The on rate kon is derived by counting how many complexes are associated from 

these simulation trajectories.

3.1.3 The calculated kon from the simulation is compared with the experimentally 

measured value. The value of μ or w is adjusted accordingly, if the calculated kon 

is either weaker or stronger than the corresponding experimental value.

3.1.4 The 1st step is repeated using the adjusted value of μ or w, so that the new kon is 

calculated.

3.1.5 The procedure from the 1st to the 4th step is iterated until the calculated kon fits 

reasonably well with the experimental value. Consequently, the calibrated 

parameter μ or w is used to derive the association rate rass in 3.2.

If no experimental kon is available for a specific pair of protein subunits, 3.1 will be skipped. 

The association rate rass for this pair of subunits is directly calculated in 3.2 by using the 

physics-based energy function with the default value of weight constant w (see Note 3).

3As we mentioned in 3.1, if no experimental kon is available for a specific pair of protein subunits, the association rate for this pair of 
subunits is directly calculated by using the physics-based energy function with the default value of weight constant w. On the other 
hand, if no experimental dissociation constants is available for a specific pair of protein subunits, computational methods can be used 
to predict either the absolute values of wild-type binding affinity, such as PPEPred [45]. Other computational methods such as 
BindProfX [46] can predict the relative changes of binding affinity due to mutations at the binding interfaces.
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3.2 Derive the association rate rass for all pairs of subunits in the complex

The rass in the rigid-body-based model is the rate of association between two interacting 

proteins under given binding criteria. It is a specific parameter resulting from the coarse-

grained nature of rigid-body-based model and depends on the choice of different binding 

criteria, such as the distance and orientation between two proteins. For each different pair of 

interacting protein subunits in a complex, we can derive rass using the specific calibrated 

energy functions described above. In detail, following steps of operation will be carried out 

sequentially for each pair of subunits in a complex (Fig. 1c).

3.2.1 104 residue simulation trajectories are generated with the second type of 

boundary condition, in which the initial conformation is constructed by placing 

two proteins within the given distance cutoff dc, and the range of their packing 

angles within the cutoff Θc (see Note 1). Either GO-like or physics-based 

potential functions can be used with the calibrated parameter μ or w from 3.1. 

The maximal length of each trajectory equals ΔtRB, which is the simulation time 

step of the rigid-body-based model (see Note 2).

3.2.2 The dimerization probability between protein subunits ρ is calculated by 

counting how many complexes are associated from these simulation trajectories.

3.2.3 The association rate rass can be calculated as rass=ρ/ΔtRB. The values of rass for 

all pairs of interacting protein subunits in a given complex are derived for the 

simulation of complex assembly which will be introduced in 3.3.

3.3 Simulate the complex assembly by rigid-body-based model

Based on calculated rass for all pairs of subunits in the complex, following steps of rigid-

body simulation will be carried out to study the kinetics of complex assembly (Fig. 1e).

3.3.1 The diffusion constants for all protein subunits in the complex are calculated by 

a precise boundary element method.

3.3.2 The off rate koff which characterizes the kinetics of dimer dissociation is 

calculated for all pairs of protein subunits in the complex using the equation 

koff= kon×Kd, in which kon is the on rate and Kd is the dissociation constant for a 

corresponding pair of protein subunits.

3.3.3 The radii of rigid bodies for all subunits are determined by the given three-

dimensional structure of the complex.

1In the second boundary condition of the residue-based simulation, the binding interfaces of two proteins are initially placed within 
the given values of the distance cutoff dc, and the range of packing angles Θc. The same values of distance cutoff and range of packing 
angles should be used in the rigid-body simulations as criteria for binding in order to pass the calculated value of rass from the higher-
resolution model to the lower-resolution model.
2To derive the association rate rass for all pairs of subunits in the complex (3.2), the maximal length of each simulation trajectory 
should be equal the time step of the rigid-body-based simulation. By the definition of rass and ΔtRB, if two molecules that meet the 
binding criteria, association will occur at the probability of rass×ΔtRB within each time step of rigid-body simulation. To estimate the 
value of ras, residue-based simulations should be carried out with the same time scale. Consequently, each trajectory of residue-based 
simulation consists of n steps so that the total length of simulation time for each trajectory satisfies ΔtRB =n×Δt, in which Δt is the 
time step of residue-based simulation.
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3.3.4 The number of binding sites for each subunit and their relative positions are 

assigned on the surface of its corresponding rigid body based on the quaternary 

organization of the protein complex.

3.3.5 After determine the size of simulation box, the initial conformation of the rigid-

body simulation is constructed by randomly placing rigid bodies for all types of 

subunits in the box. The number of rigid bodies for each type of subunit is 

determined by the concentrations and the stoichiometry of the complex.

3.3.6 The simulations are carried out by giving the desired number of trajectories and 

the length of simulation time for each trajectory.

3.3.7 Collect information from the simulation trajectories and analyze the simulation 

result, such as the number of protein complexes and different intermediate states 

formed along simulation time.

Using above framework of multi-scale simulation procedure, we can study how mutations 

affect the kinetics of protein complex assembly (see Note 6) and evaluate how protein 

complex assembly can be regulated by solvation effect (see Note 7).
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Figure 1. 
There are two levels of models in the schematic framework of our multiscale simulation 

method. The structural details of each protein subunits in a complex can be reflected by the 

residue-based model (a). We first adjust the parameters in the energy functions of residue-

based simulation to reproduce the experimentally measured values of kon for each pair of 

subunits (b). Given the same energy parameter, the rate of association rass for each pair of 

subunits is then estimated by the same residue-based model, but with a different boundary 

condition (c). Finally, the derived values of rass, together with the diffusion constants and 

binding affinities of interacting subunits, are used to guide the simulation with a rigid-body-

based representation (d). The rigid body simulations which contains a large number of 

protein subunits in the system are able to provide the kinetic information about complex 

assembly, such as how many final complexes or kinetic intermediate are formed along 

simulation time (e).
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