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Summary

Numerous well-defined classes of retinal ganglion cells innervate the thalamus to guide image-

forming vision, yet the rules governing their convergence and divergence remain unknown. Using 

two-photon calcium imaging in awake mouse thalamus, we observed a functional arrangement of 

retinal ganglion cell axonal boutons in which coarse-scale retinotopic ordering gives way to fine-

scale organization based on shared preferences for other visual features. Specifically, at the ~6 μm 

scale, clusters of boutons from different axons often showed similar preferences for either one or 

multiple features, including axis and direction of motion, spatial frequency, and changes in 

luminance. Conversely, individual axons could “de-multiplex” information channels by 

participating in multiple, functionally-distinct bouton clusters. Finally, ultrastructural analyses 

demonstrated that retinal axonal boutons in a local cluster often target the same dendritic domain. 

These data suggest that functionally-specific convergence and divergence of retinal axons may 

impart diverse, robust and often novel feature selectivity to visual thalamus.
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In brief

Functional arrangement of retinal ganglion cell axonal boutons may help explain how visual 

tuning in thalamic neurons can be sharp despite dense convergence of many retinal axons onto a 

single thalamic neuron.

Introduction

Axons of sensory neurons converge on target cells to combine information, and diverge to 

share information among targets. Using these simple operations, a limited number of 

neurons can give rise to robust and parallel representations of key aspects of the sensory 

world. For example, diverse visual information is relayed from retina to primary visual 

cortex (V1) via the visual thalamus (dorsolateral geniculate nucleus, dLGN). Compared with 

downstream nodes in this pathway, a relatively small number of retinal ganglion cell (RGC) 

inputs converge on a target dLGN neuron to efficiently drive postsynaptic spiking responses 

(Cleland et al., 1971; Usrey et al., 1998; Litvina and Chen, 2017a). This provides a unique 

opportunity to infer the anatomical and functional rules underlying ‘feedforward’ 

transformations of sensory inputs.

In the mouse, RGCs are sensitive to a rich array of visual features, such as stimulus location, 

direction and/or axis of motion, changes in luminance, and spatial frequency (Baden et al., 

2016). This information is carried by at least 15 distinct types of dLGN-projecting RGCs 

that each tile the retina (Dhande et al., 2015). Mouse dLGN cell bodies exhibit similarly 

diverse and sharp tuning for a wide range of visual features (Grubb and Thompson, 2003; 

Marshel et al., 2012; Scholl et al., 2013; Zhao et al., 2013; Piscopo et al., 2013; Suresh et al., 

2016).

Early studies across a number of species suggested that dLGN neurons often inherit their 

tuning from one or a few RGC inputs of the same type, consistent with a labeled-line model 

of transmission (Figure 1A; Kaplan and Shapley, 1984; Cleland et al., 1971; Litvina and 
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Chen, 2017a). However, recent studies in mice using genetic tools (Hammer et al., 2015), 

electron microscopy (EM, Morgan et al., 2016), rabies tracing (Rompani et al., 2017), and 

optogenetics (Litvina and Chen, 2017b) suggest that up to tens of RGC axons – including 

inputs from morphologically-distinct RGC types – can converge on a dLGN neuron. 

Moreover, at a scale of ~10 μm, boutons from multiple RGCs often form synaptic clusters 

on individual dLGN dendrites (Figures 1B and 5; Morgan et al., 2016). To understand the 

functional implications of this fine-scale convergence for the transmission and integration of 

visual information, we asked whether or not nearby boutons from different RGCs share 

similar tuning preferences (Figure 1C).

We addressed this question using a combination of methods. First, we mapped visual 

responses of hundreds of individual RGC boutons in the dorsal ‘shell’ region of dLGN 

(Grubb and Thompson, 2004; Cruz-Martín et al., 2014), using high-resolution, chronic two-

photon calcium imaging in awake mice. We ensured that comparisons of visual tuning 

preferences were restricted to boutons from different RGC axons by axon classification 

based on inter-bouton correlations in spontaneous activity. At the scale of ~2–6 μm, pairs of 

boutons from different RGCs often exhibited similar feature preferences. In particular, 

groups of nearby boutons could exhibit similar preferences for either a single feature or for 

multiple features, suggesting the presence of ‘combination-mode’ or ‘relay-mode’ 

convergence, respectively (Rompani et al., 2017). New analyses of a large-scale EM dataset 

confirmed that RGC boutons spaced 2–6 μm apart frequently synapse onto a common target 

dendritic domain. Together, these data suggest rules by which thalamic dendrites may 

integrate information from within and across specific classes of RGCs.

Results

Retinotopic mapping of dLGN cell bodies and retinal axons in awake mice

To visualize the organization of tuning properties in dLGN, we developed methods for 

chronic implantation of a cranial window and cannula over dorsal thalamus (Figure 2A). The 

benefits of this approach as compared to acute imaging studies (Marshel et al., 2012; Hillier 

et al., 2017) include improved image quality and an absence of anesthesia, which can affect 

visual responses (Durand et al., 2016). We first mapped visually-evoked bulk 

epifluorescence responses from GCaMP6f-expressing cell bodies. We observed retinotopic 

maps in dLGN, lateral posterior thalamus, superior colliculus, and other areas (Figure 2B–

C). Injection of an anterograde tracer into the contralateral eye near the end of an experiment 

further confirmed dLGN location (Figure 2B, red).

We then mapped retinotopic preferences at cellular resolution using two-photon calcium 

imaging of dLGN shell neurons. We presented a vertical or horizontal bar containing band-

passed spatiotemporal noise (bar width: 5°; Video S1; Niell and Stryker, 2008) at several 

locations in visual space. In 3 fields of view (FOV) from 2 mice, we observed large-scale 

maps of retinotopy across visual axes of elevation (ventral-to-dorsal) and azimuth (nasal-to-

temporal; Figure S1B).

While previous studies showed that dLGN inherits a coarse topographic map of visual space 

from retina (Pfeiffenberger et al., 2006), the fine-scale limit of retinotopic organization 
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across RGC boutons is unknown. We recorded the calcium activity of hundreds of RGC 

boutons in the upper 20–90 μm of the dLGN (80–150 μm below the surface of the optic 

tract; STAR Methods). We used a similar imaging approach as for cell body recordings, 

except that AAV-GCaMP6f was injected into the contralateral eye (Figure 2A2, D). Single-

trial evoked responses from individual boutons were robust across multiple presentations of 

the same stimulus (e.g. Figure 2E). RGC boutons exhibited a coarse-scale retinotopic 

organization (Figures 2F and S1D; background pixels indicate smoothed population 

retinotopic preference; Video S2; N=15 FOV from 3 mice). We observed an approximately 

two-fold expansion in the spatial representation of retinotopic locations along the visual axis 

of elevation vs. azimuth, similar to dLGN cell bodies (Figure S1E–F). However, the 

retinotopic map was disordered at the level of neighboring boutons (Figure 2F, right), 
indicating fine-scale retinotopic ‘scatter’ (Figure S1G). Notably, this scatter of ~20 μm in 

azimuth and ~40 μm in elevation corresponded to average retinotopic displacements of only 

~2° — less than the size of most RGC receptive fields (Baden et al., 2016).

Diverse yet sharp feature tuning across cell bodies and retinal axons in dorsal dLGN

Given that RGC boutons are not arranged according to retinotopic preferences at the 20 μm 

spatial scale, we asked whether nearby RGC boutons were organized according to 

preferences for other visual features (Figure 1C). A first clue came from imaging of cell 

bodies in dLGN shell, a region known to process visual motion and other features (Grubb 

and Thompson, 2003; Marshel et al., 2012; Piscopo et al., 2013; Suresh et al., 2016). Locally 

broad or homogeneous feature tuning of dLGN neurons might imply random retinal 

convergence onto dLGN targets. In contrast, we found that feature tuning (e.g. for axis of 

motion, Figure S1H) could be diverse yet sharp across nearby dLGN neurons.

RGC inputs to the same region of dLGN shell exhibited a high degree of functional 

diversity, sufficient to give rise to this diverse tuning of nearby dLGN neurons. Visual 

response profiles of individual RGC boutons, and their stability across recording sessions, 

are illustrated in Figure 2G. Boutons were categorized (Figure S2A–C and STAR Methods) 

as either responsive to one direction of motion (direction selective, ‘DS’), responsive to 

opposite directions of motion along the same axis (axis selective, ‘AS’, also known as 

‘orientation selective’, Dhande et al., 2015), broadly responsive across all directions 

(broadly tuned, ‘BrT’), or suppressed (‘Sup’; Rodieck, 1967; Tien et al., 2015). We observed 

relatively similar proportions of boutons in each of these categories in a map of 961 boutons 

from one FOV, and across 19 FOV from 5 mice (Figure 2H). Further, boutons within each 

category exhibited diverse feature preferences (e.g. for different directions or axes of motion, 

Figure S2B), and thus belonged to distinct RGC types (Sanes and Masland, 2015). In 

addition, responses to luminance increments/decrements (‘OnOff’), to gratings of different 

spatial frequencies (‘SF’), and to different stimulation locations revealed diverse preferences 

and receptive field sizes across boutons in each category (Figure S2D–H). Together, these 

data revealed sharp and diverse visual feature tuning across neighboring RGC boutons in 

dorsal dLGN.
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Identifying RGC boutons from the same axon

To assess whether nearby bouton pairs exhibit similar visual feature preferences (Figure 1C), 

it was critical that we avoid analyzing pairs belonging to the same axon. Bouton pairs were 

assigned to the same axon if they showed high correlations in spontaneous activity during 

long periods of uniform luminance (Petreanu et al., 2012). As illustrated in Figure 3A, the 

spontaneous activity of neighboring bouton pairs could be uncorrelated, while pairs of 

boutons spaced far apart could be highly correlated. We assigned correlated groups of 

boutons to the same axon by selecting a very conservative threshold based on hierarchical 

clustering, thereby restricting subsequent analyses to bouton pairs clearly belonging to 

different axons (Figures 3B, S3A–B and STAR Methods, Axon identification). Analyses of 

stimulus-evoked responses – epochs not used for classification – confirmed highly similar 

visual tuning of boutons assigned to the same axon (Figure 3B). This approach yielded ~100 

distinct axons per FOV, with 1–79 imaged boutons per axon (median: 4 boutons/axon; 

Figure S3F).

Nearby RGC boutons prefer a similar axis of visual motion

We tested if nearby RGC bouton pairs exhibit similar or random preferences for axis of 

motion (Figure 1C). Figure 4A shows neighboring boutons from three different axis-

selective (AS) axons with similar preferences for gratings drifting either upward or 

downward along the vertical axis (Axons 1–3; Figure 4B1). Each of these axons exhibited 

distinct OnOff responses (Figure 4B2), further confirming that these responses originated 

from distinct axons. Similarly, neighboring boutons from four different direction-selective 

(DS) axons also preferred a similar axis of motion (Axons 4–7; Figure 4C1), despite 

exhibiting distinct OnOff responses (Figure 4C2).

We quantified the absolute difference in axis preference between pairs of boutons belonging 

to distinct axons (including AS and DS boutons, all of which had a well-defined axis 

preference; Figure S2A–B). Figure 4D shows the difference in axis preference between two 

boutons as a function of inter-bouton distance, for one FOV. The mean absolute difference in 

axis preference of boutons spaced ~2–6 μm apart was substantially less than chance (STAR 

Methods, Functional clustering of bouton pairs), indicating that they preferred similar axes 

of motion. In contrast, similar effects were not observed for boutons spaced farther apart 

(e.g. 50–60 μm apart).

We obtained similar results when combining data from all 1,024,626 eligible bouton pairs 

imaged across 19 FOV from 5 mice (Figure 4E). Similar axis preferences (<10° apart) were 

especially common for nearby pairs spaced 2–6 μm apart (Figure S4B). To evaluate the 

consistency of this functional clustering across experiments, we converted differences in axis 

preference into a pairwise similarity index (0: chance similarity; 1: identical feature 

preference; STAR Methods). We found that the increased similarity in axis preference for 

nearby bouton pairs was remarkably robust, as it was evident in each of 19 FOV from 5 mice 

(Figure 4E, inset; Figure 4F). Importantly, this fine-scale increase in similarity of axis 

preference was not strongly sensitive to the threshold used to assign two boutons to the same 

axon (Figure S4C).
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The observed increase in pairwise similarity in axis preference persisted when restricting 

analysis either to pairs of AS boutons or to pairs of DS boutons (Figure 4F), suggesting that 

a similar clustering rule exists for functionally-distinct categories of boutons. Interestingly, 

we also observed above-chance similarity in axis preference for across-category pairs 

consisting of one AS and one DS bouton (Figure 4F). As elaborated below, these results 

have important functional implications for selective convergence of inputs within and across 

RGC types.

Functional clustering of RGC boutons preferring similar or opposite directions of motion

The similarity in axis preference in nearby pairs of DS boutons could be driven by boutons 

with near-identical direction preferences (thereby reinforcing direction tuning in a target 

dendrite), and/or by pairs with near-opposite direction preferences (thereby creating motion 
axis or orientation tuning). Examples of nearby pairs of DS boutons with similar or opposite 

direction preferences are shown in Figures 4C, G and S4D. When considering all pairs of 

DS boutons with preferences differing by less than 90° (i.e. by acute angles), we observed 

functional clustering of similar direction preferences for pairs spaced ~2–6 μm but not for 

those spaced 50–60 μm apart (Figure 4H–I, red). Next, we considered all pairs of DS 

boutons with preferences differing by greater than 90° (i.e. by obtuse angle s). We observed 

significant fine-scale functional clustering of pairs with near-opposite direction preferences 

(Figures 4H–I, blue, and S4E). Thus, a judicious arrangement exists whereby neighboring 

DS boutons demonstrate functional clustering for similar or opposite direction preferences, 

possibly contributing to direction tuning or axis tuning of target dLGN neurons, respectively 

(Marshel et al., 2012; Zhao et al., 2013; Scholl et al., 2013; Dhande et al., 2015; Suresh et 

al., 2016).

Generality of fine-scale functional clustering across multiple visual features

Next, we asked whether similar functional clustering also existed for OnOff or SF 

preference, and for OnOff response sustainedness. We first characterized sensitivity to full-

field changes in luminance. Most boutons, regardless of functional category, were also 

responsive to luminance increments, decrements, or both (corresponding to OnOff 

preference index values of 1, −1, or 0, respectively; Figures 4B2, C2 and S2E). Figure S5A–

C shows a group of nearby boutons from different axons, all ‘On’ sensitive and broadly 

tuned for motion direction. As with axis preference and direction preference, we observed a 

sharp increase in similarity of OnOff preference for bouton pairs spaced 2–6 μm apart that 

was evident in every FOV (Figure S5D–E). This functional clustering persisted even when 

restricting analyses to pairs of boutons both belonging to a specific functional category 

(Figure S5F). In addition, we observed fine-scale functional clustering of bouton pairs with 

similar response dynamics (i.e. transient or sustained responses) during changes in 

luminance (Figures S5A–C, S2F and S5G), and of bouton pairs with similar SF preferences 

(Figures S2G and S5H–J). Thus, a similar spatial scale of functional clustering of RGC 

boutons in dLGN exists across multiple visual feature preferences (Figure 4J).

Nearby RGC boutons often target the same dLGN neuron dendritic domain

What is the likelihood that pairs of RGC boutons spaced ~2–6 μm apart converge on the 

same dLGN neuron, and specifically onto the same dendritic domain (e.g. Figure 1B)? To 
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address this question, we analyzed an existing EM volume of dLGN (Morgan et al., 2016), 

focusing on a 30 μm × 40 μm region in dLGN shell, roughly matching the region imaged in 
vivo. We identified all RGC boutons in this region (N=100) and labeled them according to 

the thalamocortical cells they innervated. Critically, we found that 52.3% (182/348) of all 

bouton pairs spaced less than 6 μm apart targeted the same dLGN neuron. This percentage 

was much higher than expected by chance, and dropped rapidly with increasing inter-bouton 

distance (Figures 5B and S6A–B). These tight local clusters of converging RGC boutons 

often reflect glia-encapsulated structures referred to as synaptic glomeruli (Figure 5C; 

Famiglietti and Peters, 1972). A 3D reconstruction of a dLGN neuron dendrite illustrates 

how RGC boutons densely cluster and extend along the dendritic shaft and protrusions 

(Figure 5D; Video S3). Analysis of the EM plane in Figure 5A revealed that, for all pairs of 

boutons spaced 2–6 μm apart that shared a common target neuron, over 95% contacted the 

same dendritic domain (topological distances along the dendrite were <18 μm; Figures 5E–F 

and S6C). Rarely, however, two boutons spaced ≤6 μm apart (Euclidean distance) could each 

target a different dendrite of the same neuron (and were therefore separated by a large 

topological distance, Figure 5E, bottom).

We also analyzed a large number of RGC axon segments from the dLGN core region of the 

EM volume, the majority of which likely originated from distinct RGCs (Morgan et al., 

2016). We found a similarly high level of pairwise synaptic convergence for bouton pairs 

spaced ≤6 μm apart, even when restricting to pairs in which each bouton belonged to a 

distinct RGC axon. Specifically, 51% of these bouton pairs (1278/2528 pairs from 84 

different axons) shared a common target neuron (Figure S6D). Together, these data support 

the hypothesis that bouton pairs spaced ≤6 μm apart and with similar functional preferences 

typically converge onto a common dLGN neuron dendritic domain.

Convergence of groups of nearby boutons

The above results demonstrate that nearby RGC bouton pairs often possess similar feature 

preferences when each feature is considered separately. In practice, however, the same RGC 

can be tuned for multiple features (e.g. axis and OnOff preference), thereby multiplexing 

distinct channels of visual information. Local similarity of individual feature preferences 

may reflect a ‘relay mode’ of axonal convergence (Figure 6A), in which nearby boutons 

from different RGC axons are mostly of the same functional type, thus sharing multiple 
feature preferences in common. Alternatively, a ‘combination mode’ of convergence may 

exist in which some preferences are matched while others are not (Figure 6A). The names of 

these two modes are adopted from a recent anatomical study (Rompani et al., 2017) 

suggesting that some dLGN neurons receive inputs from one or two morphologically similar 

RGC types, while others receive inputs from many distinct types which may nevertheless 

share some feature preferences in common.

Further analyses provided evidence for the existence of both modes. For example, consistent 

with combination-mode convergence, we observed functional clustering of axis preference 

even when analysis was restricted to bouton pairs with dissimilar OnOff preferences (Figure 

6B; see also Figure 4A–C). Consistent with relay-mode convergence, we also observed 

functional clustering of axis preference when restricting analyses to pairs of boutons with 
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similar OnOff preferences. This was also evident when separately analyzing bouton pairs 

with either similar or dissimilar OnOff sustainedness, or with similar or dissimilar SF 

preferences. Analysis of local pairwise similarity in OnOff preferences yielded similar 

results (Figures S7A and S5A–C), suggesting the presence of distinct combination-mode 

bouton clusters for either axis or OnOff preference.

Thus far, we have focused on analyses of pairs of RGC boutons. We next assessed whether 

larger groups of nearby boutons (Figures 1B and 5A, C–E) share similar preferences for one 

or multiple features. Examples of nearby groups of boutons with similar preferences for 

motion axis, OnOff preference, or SF preference are illustrated for a subregion of one FOV 

(Figure 6C). To directly assess groupwise similarity in feature preferences of nearby 

boutons, we first selected all pixels in the FOV that were located within 6 μm of a group of 

boutons (typically 3–7 boutons) that mostly belonged to distinct axons (Figures 6D and S7B; 

for full criteria, see STAR Methods, Functional clustering of local groups of boutons). In 

order to assess similarity in feature preferences of nearby groups of boutons, we generated a 

normalized groupwise similarity index for each valid pixel (index of 1: identical feature 

preference in all boutons in the group; 0: chance level of similarity, estimated after shuffling 

bouton preferences). Maps of groupwise similarity index for the group of nearby boutons 

surrounding each pixel in Figure 6C are shown in Figure 6E. A scatter plot of the degree of 

similarity in axis preference vs. OnOff preference for valid pixels revealed local groups of 

boutons with significant groupwise similarity in preferences for only one visual feature, 

corresponding to ‘combination-mode’ clusters (Figure 6F). We also observed groups of 

boutons with significant similarity in preferences across multiple visual features, 

corresponding to ‘relay-mode’ clusters, possibly consisting of boutons from RGC cells of 

the same type (Rompani et al., 2017). This finding was further illustrated by combining data 

from the three maps in Figure 6E into a single pseudocolor map (Figures 6G and S7C).

Combination-mode bouton groups with similar axis or OnOff preference, and relay-mode 

groups with similar axis and OnOff preferences, were present in nearly all fields of view 

across 5 mice (Figures 6H and S7D; we also observed extreme ‘relay-mode’ groups with 

above-chance similarity in axis, OnOff and SF preference). The presence of groupwise 

similarity did not depend strongly on the number of boutons in the group (Figure S7E). 

Finally, we did not observe a bimodal distribution of groupwise similarity for any tuning 

preferences (e.g. Figure 6F), suggesting that convergence across groups of RGC boutons 

may lie on a continuum between combination and relay modes.

Divergent boutons from the same RGC axon may ‘de-multiplex’ visual information 
channels

RGC axonal arbors often diverge to participate in several bouton clusters targeting different 

dLGN neurons (Morgan et al., 2016). We wondered whether the same RGC axon could 

contribute different boutons to functionally distinct clusters. Figure 7A illustrates a 

hypothetical situation involving one axon (blue) selective for motion along the horizontal 

axis and for luminance increments. Different boutons from this axon might participate either 

in a cluster of similarly On-responsive boutons or in a cluster with similar motion axis 

preference. Indeed, the majority of imaged axons contained multiple boutons that each 
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participated in distinct combination-mode clusters exhibiting preferences for different visual 

features (Figure 7B, left two bars; Figure S7F; STAR Methods). We also observed cases 

where different boutons from the same axon participated in either combination-mode or 

relay-mode clusters. As discussed below, such axonal divergence may provide an efficient 

means by which the same RGC can contribute to the creation and robustness of distinct 

tuning properties across different target neurons.

Discussion

We have discovered a fine-scale organization of RGC axonal boutons, revealing a functional 

logic underlying bouton clusters that typically converge onto the same thalamic dendrite. 

Our findings suggest a set of rules underlying dendritic pooling of visual information from 

within and across specific subsets of RGC cell types. Below, we discuss the potential 

benefits of this pooling for promoting high sensitivity, functional diversity, and context-

invariant feature tuning of dLGN neurons.

A common spatial scale for convergence of axons with similar visual feature preferences

The spatial scale of functional bouton clustering (~6 μm) was surprisingly similar across 

visual feature preferences (Figure 4J). This scale is comparable to the local clustering of 

functionally-similar synapses, identified by imaging nearby dendritic spines of neurons in 

visual cortex (Wilson et al., 2016; Iacaruso et al., 2017). Synaptic clustering on a local 

region of dendrite may facilitate transmission of sensory information, including via 

nonlinear dendritic integration (Wilson et al., 2016; Gökçe et al., 2016). Notably, the relative 

synaptic strengths of individual boutons in a cluster will also influence dendritic integration 

(Litvina and Chen, 2017b).

Convergence of inputs within and across RGC functional categories and cell types

Electrophysiology (Grubb and Thompson, 2003; Piscopo et al., 2013; Tang et al., 2016) and 

imaging (Marshel et al., 2012; Figure S1H) studies suggest that dLGN neurons – even 

neighboring neurons – can show sharp yet diverse tuning for distinct visual features. Our 

findings suggest that sharp feature tuning may arise, in part, via selective presynaptic 

convergence of clusters of axonal boutons from one or multiple RGC types that all share a 

common preference for at least one visual feature (Figure 6A, right). Notably, we found that 

bouton clusters can integrate across RGC types belonging to different categories (e.g. DS 

and AS) or to the same category (e.g. for RGC boutons with opposite direction preferences 

but with a common preference for axis of motion, reviewed by Dhande et al., 2015).

Our definition of ‘relay mode’ is based on the presence of at least two shared feature 

preferences. Interestingly, we even found a subset of groups of RGC boutons with similar 

preferences for AS, OnOff and SF, suggesting the presence of ‘extreme relay-mode’ tuning, 

consistent with a labeled-line model. We speculate that relay-mode convergence may allow 

target neurons to inherit RGC type-specific feature tuning with increased signal-to-noise 

(Martinez et al., 2014; Jeanne and Wilson, 2015) and/or increased contrast sensitivity 

(Rathbun et al., 2016). Indeed, both relay- and combination-mode convergence may 

decrease the effects of trial-to-trial variability and/or adaptation in the responses of 
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individual RGC inputs, and could increase the efficacy of weaker RGCs that might not drive 

postsynaptic responses when activated in isolation.

Combination-mode convergence may bestow dLGN neurons with the property of invariance, 
more commonly studied in cortical neurons. For example, complex cells in cat visual cortex 

show phase-insensitive responses to a sinusoidal grating, likely due to integration of inputs 

from many phase-sensitive ‘simple cells’ (Hubel and Wiesel, 1962). We propose that a 

similar logic applies to combination-mode RGC bouton clusters targeting individual dLGN 

dendrites, which could pool information from shared bouton preferences for one feature 

while integrating diverse preferences for other features. As the shared feature preference will 

differ across combination-mode clusters, the thalamus is poised to create robust, ‘all-

purpose’ feature detectors of local luminance changes, motion direction, motion axis, or 

other visual features. For example, a cluster of ‘On’ RGC boutons synapsing on a dLGN 

neuron could promote tuning for local luminance increments irrespective of the axis of 

motion or spatial frequency of the stimulus (Figure 7A, middle). Future studies could assess 

whether this logic underlying pre-synaptic functional clustering of different information 

channels in the mouse dLGN shell is generalizable to other mouse thalamic regions (e.g. 

dLGN core), to other species (e.g. the C laminae of cat dLGN, Stanford et al., 1981), and to 

brain regions beyond the thalamus.

Technical considerations

Caveats involving calcium imaging in axons are unlikely to alter our main findings. First, the 

relationship between spiking and calcium activity in axons, while not necessarily linear, is 

nevertheless monotonic, and thus unlikely to affect estimates of peak response preferences 

(e.g. preferred direction of motion). Second, tuning estimates in nearby boutons could suffer 

from common contamination from surrounding neuropil. However, GCaMP6 expression was 

sparse, surrounding neuropil response magnitudes were relatively small, and neighboring 

boutons often showed completely non-overlapping tuning curves.

We were unable to record from deeper RGC boutons in the dLGN ‘core’ region. 

Interestingly, bouton clusters are larger and more common in dLGN shell than core 

(Hammer et al., 2015), and dLGN neurons in shell may receive inputs from a 

morphologically more diverse set of RGC types than in core (Rompani et al., 2017). Future 

studies could use advanced imaging approaches (e.g. Sun et al., 2016) to assess whether 

functional clustering of RGC boutons is more common and/or more biased to combination 

mode in dLGN shell vs. core. Answers to this question could help clarify the contributions 

of dLGN shell vs. core to the emergence of cortical selectivity for features including motion 

direction, which has been shown to involve both retinal and extra-retinal contributions 

(Hillier et al., 2017). It is possible that direction-tuned dLGN shell neurons projecting to 

superficial layers of V1 (Cruz-Martín et al., 2014) mainly receive combination-mode RGC 

input (and thus more invariance to stimulus context). In contrast, direction-tuned dLGN 

projections to layer 4 of V1 (Sun et al., 2016) may receive heavier relay-mode RGC input, 

thereby transmitting information primarily from a single RGC type.
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Functional organization of boutons can explain the ‘fuzzy’ logic of anatomical connections

A large-scale EM study of dLGN showed that morphologically distinct sets of RGC axons 

made specific connections on different sets of target neurons (Morgan et al., 2016). At the 

same time, these distinct sets of RGC axons all converged onto an additional set of mixed-

input thalamocortical neurons. Our findings provide a functional explanation for this ‘fuzzy’ 

anatomical logic: we commonly observed different boutons from the same axon 

participating in functionally-distinct clusters. As illustrated in Figure 7A, two RGC axons 

might each participate in separate bouton clusters that matched each axon’s distinct 

preference for motion axis, while both axons might also participate in a third combination-

mode cluster of boutons that matched their common preference for luminance increments. 

This selective divergence provides an elegant and efficient means for single RGC axons in 

dLGN to ‘de-multiplex’ information regarding different visual features, thereby enhancing 

parallel information channels across different target neurons (Alonso et al., 2006) via 

feature-specific functional clustering.

Perspectives and future directions

Fine-scale functional clustering of presynaptic axons has been described in fly visual 

projection neurons (e.g. Keleş and Frye, 2017), and in mouse and fly olfactory receptor 

neurons, where developmental guidance cues and activity-dependent refinement both play 

key roles (Imai et al., 2010; Wu et al., 2017). In contrast, functional clustering of presynaptic 

axons has received relatively little attention in studies of mammalian visual circuitry (but see 

Kremkow et al., 2016). Our demonstration of fine-scale organization of retinotopy and other 

features in adult mouse RGC axonal boutons points to a profound role for developmental 

refinement. Future studies can delineate the role of molecular mechanisms and of activity 

(e.g. correlated firing of similarly-tuned RGC inputs, Meister et al., 1995) in sculpting this 

exquisite axonal organization (Huberman et al., 2008; Hong and Chen, 2011).

Our results involving ‘combination-mode’ organization of certain bouton clusters suggest 

the existence of rich subthreshold receptive fields in dLGN neurons. Additional richness 

could arise from integration of functionally similar or distinct bouton clusters targeting 

separate dendrites or dendritic domains of the same dLGN neuron (Figures 5E and S6C; 

Morgan et al., 2016). Such richness could support both rapid, context-dependent dynamics 

and longer-term synaptic plasticity. For example, changes in the weights of different inputs 

could rapidly alter the tuning of relay neurons (Moore et al., 2011). Our chronic imaging 

approach in awake mice should facilitate studies of functional organization, behavioral 

modulation and experience-dependent plasticity of local bouton clusters in the dLGN and 

other hitherto inaccessible thalamic areas.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to, and will 

be fulfilled by, the Lead Contact, Mark L. Andermann (manderma@bidmc.harvard.edu).
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All animal care and experimental procedures were approved by the Beth Israel Deaconess 

Medical Center Institutional Animal Care and Use Committee. Animals were housed with 

standard mouse chow and water provided ad libitum. Male C57BL/6 adult mice (2–6 months 

old) were used in this study.

METHOD DETAILS

Viral injections—To label retinal ganglion cell axons, 1.2 μl of 

AAV2/2.CAG.GCaMP6f.WPRE.SV40 (Chen et al., 2013; Boston Children’s Hospital Viral 

Core) was gently injected intravitreally into the right eye after the mice were anesthetized by 

isoflurane in 100% O2 (induction, 3%–5%; maintenance, 1%–2%). Care was taken to 

minimize bleeding and to prevent cataract formation during the injection procedure, and 

infection of RGCs was confirmed histologically. To label neurons in the dLGN, mice were 

anesthetized with isoflurane in 100% O2 (induction, 3%–5%; maintenance, 1%–2%), and 

100 nl of AAV2/1.CAG.GCaMP6f.WPRE.SV40 (Penn Vector Core) was stereotaxically 

injected into the left dLGN, at 2.25–2.3 mm lateral and 2.3–2.75 mm posterior to Bregma, 

and 2.55–2.85 mm ventral to the dura, respectively. In a subset of experiments, we instead 

injected 75 nl of AAV2/retro.hSyn.Flex.GCaMP6s (BCH Viral Core; Tervo et al., 2016) into 

the left V1, at 2.5–3.1 mm lateral and 3.8 mm posterior to Bregma, and 0.2 mm below the 

dura, respectively, and 100 nl of AAV2/1.hSyn.Cre.WPRE.hGH was stereotaxically injected 

into the left dLGN in the same animal, at 2.25–2.3 mm lateral and 2.3–2.75 mm posterior to 

Bregma, and 2.55–2.85 mm ventral to the dura. As we did not observe a difference in the 

labeling of dLGN neurons using the two viral injection methods, we pooled these datasets 

together.

Headpost and cranial window implantation—A headpost and cranial window were 

implanted 2–3 weeks after viral injection. Mice were given 0.03 ml of dexamethasone 

sodium phosphate (4 mg/ml, i.m.) roughly 3 hours prior to surgery in order to reduce brain 

edema. Mice were anesthetized using isoflurane in 100% O2 (induction, 3%–5%; 

maintenance, 1%–2%) and placed on a heating pad (CWE) in a stereotaxic apparatus 

(KOPF). Ophthalmic ointment (Vetropolycin) was applied to the eyes. Using procedures 

similar to those described previously (Goldey et al., 2014), a two-pronged headpost was 

affixed to the skull, centered roughly 2.7 mm lateral and 1.9 mm posterior to Bregma over 

the left hemisphere, tangential to the curved skull surface. The head was then tilted to secure 

the headpost in custom clamps (Thorlabs, Standa) that aligned the headpost precisely 

parallel to the platform of the stereotaxic apparatus. A 3-mm diameter craniotomy was 

performed at the center of the headpost. The underlying cortical and hippocampal tissue was 

carefully aspirated until reaching the surface of the thalamus. The thalamic surface and optic 

tract was kept intact. A 3 mm × 3.4 mm (diameter × height) stainless steel cylindrical 

cannula (MicroGroup) was inserted stereotaxically into the craniotomy, perpendicular to the 

plane of the headpost. A 3-mm diameter coverslip (glued to the bottom of the cannula prior 

to surgery using UV-cured Norland Optical Adhesive 71) was lowered approximately 2.75 

mm below the skull where it pressed slightly on the surface of the thalamus. The cannula 

was affixed to the skull with Vetbond (3M) followed by C&B Metabond (Parkell), to form a 

permanent seal. To create a low-profile adaptor to accommodate the water-immersion 
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objective and light shielding, a neodymium ring magnet (Indigo® Instruments, outer 

diameter, inner diameter, height: 7.5 mm, 5 mm, 1 mm) was positioned around the cannula 

and glued to the skull. During two-photon imaging sessions, this ring magnet held the light 

shielding in place by contact with a 8 mm × 0.3 mm (diameter × height) spring steel round 

shim (McMaster) attached to the blackout fabric (Thorlabs). Meloxicam (0.5 mg/kg, s.c.) 

was administered and the mouse was allowed to recover.

Epifluorescence and two-photon calcium imaging—To initially map thalamic areas, 

we used epifluorescence calcium imaging to measure changes in calcium signals in response 

to visual stimulation in awake mice. Epifluorescence calcium videos were acquired using a 

custom microscope with a 4×, 0.28 NA objective (Olympus). A blue LED light source (470 

nm center, 40 nm band, Chroma) was used for excitation, and the green fluorescence was 

passed through a 500 nm long-pass emission filter and collected using an EMCCD camera 

(Rolera). Images (251 × 250 pixels) were recorded using the Image Acquisition Toolbox 

(MATLAB) at 4 Hz.

Two-photon calcium imaging was performed using a resonant-scanning two-photon 

microscope (Neurolabware). All images were acquired using a 20×, 1.0 NA, 5.6 mm WD 

objective (Zeiss) at 4.7× (~160 × 210 μm2) digital zoom. Light shielding around the 

objective was used to block light emitted from the LCD screen We concentrated on imaging 

fields of view (FOV) at depths of 80–150 μm below the surface of the optic tract (roughly 

corresponding to the upper 20–90 μm of the dLGN shell; high-quality images could be 

obtained throughout the upper ~140–150 μm of the dLGN, data not shown), using a 

Ti:Sapphire laser (80 MHz; MaiTai HP DeepSee, prechirped) at 960 nm. The functional 

clustering in Figure 4E and the distribution of boutons belonging to each functional 

categories was not sensitive to imaging depth within this range (not shown). Laser power 

measured at the front aperture of the objective was 30–65 mW, likely a substantial 

overestimate of actual power reaching the sample via the cannula. Images were collected at 

15.5 frames/s, 686 × 512 pixels/frame, using ScanBox (Neurolabware). Each imaging run 

lasted approximately 30 min, and 4–5 runs were performed during each imaging session. 

Occasionally, the imaging depth in between runs was adjusted slightly to account for slow 

drifts in the z-plane. For a given mouse, each FOV imaged in a given session was at least 20 

μm above or below any FOV imaged in another session. Epifluorescence and two-photon 

imaging experiments were typically performed between one week and one month after 

headpost and cranial window implantation.

Visual Stimulation—Visual stimuli were generated using Psychtoolbox (Brainard, 1997), 

and displayed on a luminance-calibrated LCD monitor (Dell, 17″,1280 × 1024 pixels, 60 Hz 

refresh rate) placed 22 cm from the mouse’s right eye and spanning 80° × 70° of visual 

space (azimuth: 5° – 8 5°; elevation: −13° – 57°).

To measure large-scale retinotopic organization using epifluorescence imaging, local 20° 

Gabor-like circular patches containing square-wave drifting gratings (80% contrast) were 

presented at 9 retinotopic locations for 2 seconds (180°, 0.08 cycles/degree, 2 Hz), followed 

by 4 seconds of uniform mean luminance, with 30 repeats per stimulus location. To measure 

retinotopy with high spatial resolution during two-photon imaging, we used a binarized 

Liang et al. Page 13

Cell. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



version of a bandpass-filtered noise stimulus with a spatial frequency corner of 0.05 cycles 

per degree, a cutoff of 0.32 cycles per degree and a temporal frequency cutoff of 4 Hz (Niell 

and Stryker, 2008). The noise stimulus was presented within 5° × 40° bars, presented 

vertically at one of 8 azimuth locations and horizontally at one of 8 elevations. For imaging 

of retinal ganglion cell axons or of dLGN cells, stimuli were presented for 2 seconds each, 

with a 2-second inter-stimulus interval (mean luminance) for retinal ganglion cell axons, and 

a 6-second inter-stimulus interval for dLGN cells. Visual stimulation also included a blank 

condition (mean luminance). Stimulus order was randomized within a single repeat 

(consisting of a single presentation of each stimulus condition), and 30 repeats (for RGC 

axons) or 15 repeats (for dLGN cells) were presented during one run. We performed 1–2 

runs of retinotopic mapping per imaging session.

To measure visual tuning properties during two-photon imaging, we presented full screen 

sine-wave drifting gratings (80% contrast) at one of eight directions of motion spaced 45° 

apart, at spatial frequencies of 0.02, 0.08 and 0.32 cycles per degree and a temporal 

frequency of 2 Hz. The visual stimulation paradigm also included periods of full-screen 

mean luminance (gray, blank trials) or periods of luminance increments or decrements (‘On’ 

or ‘Off’ trials, respectively, 80% contrast). All stimuli were displayed for a 2-second 

duration. The inter-stimulus interval (mean luminance gray) lasted 2 seconds (for retinal 

ganglion cell axons) or 6 seconds (for dLGN cells). A single repeat involved presentation of 

the set of all of the above stimuli (one presentation of each direction/spatial frequency, three 

presentations of ‘On’, ‘Off’, and three or six presentations of ‘blank’ stimuli, in random 

order). A single run usually consisted of 10–14 repeats (for retinal ganglion cell axons) or 6–

8 repeats (for dLGN cells). We recorded 3–5 runs per imaging session, each with a different 

randomization of trial order.

Image processing

Image preprocessing: To correct for x–y motion along the imaged plane, a series of image 

registration and data cleaning steps were applied. The movies taken on each imaging day 

were first registered to a common average field-of-view using efficient subpixel registration 

methods (Bonin et al., 2011). The registered movies were then spatially downsampled by 2, 

temporally downsampled by 5, and denoised using principal component analyses (PCA). 

PCA was computed from the concatenated movies across the entire imaging session. The 

spatial principal components with highest eigenvalues typically contained pixels with signal 

variations across time beyond those due to photon shot noise. Each image could be 

characterized by a weighted sum of these principle components. We used only the first 400 

principle components (highest eigenvalues) out of ~30,000 total to reconstruct the registered 

and downsampled movie while removing shot noise (Burgess et al., 2016). Note that this 

PCA de-noising was employed only for purposes of improving the image warping 

coregistration steps, below. A local image normalization method (http://bigwww.epfl.ch/

sage/soft/localnormalization/) was applied to each frame to normalize the fluorescence 

intensity across boutons and to increase the contrast between boutons and neuropil. After 

normalization, image warping using the imregdemons.m function (MATLAB) was 

implemented to align all images to a new common average field of view. The pixel-wise 

displacement resulting from the imregdemons function was spatially upsampled by 2 and 
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then applied to the original, subpixel-registered movies (in the absence of PCA de-noising). 

A second round of image de-noising, local normalization and warping was then applied to 

the full-size processed movies. The newly computed pixel-wise displacement was then 

applied to the aligned movies from the first round of image warping. After these image 

registration and warping steps, no obvious x-y motion was observed. As a final step, PCA 

de-noising was performed a third time. Importantly, while the PCA de-noising did increase 

signal-to-noise and therefore yield of usable boutons or cells, the observed results did not 

depend on use of this operation (data not shown).

Bouton mask identification: To identify boutons and extract masks for further signal 

processing, we established an automated image segmentation algorithm. First, an average 

image of absolute ΔF/F was calculated for each trial type by averaging single condition 

evoked response maps across all N repetitions of that trial type (|mean((Fi−Fi0)/Fi0)|, i=1..N, 

where Fi is the mean fluorescence during the stimulus presentation and Fi0 is the average 

baseline fluorescence during the 1 second prior to each stimulus onset). We used the 

absolute value of ΔF/F in order to include boutons that were strongly suppressed by visual 

stimuli, corresponding to negative values of ΔF/F. A bouton identification procedure was 

then independently applied to each of these projection images. First, local normalization was 

applied (subtraction of local mean and division by local variance across pixels), with the 

local mean estimated by isotropic filtering of the image using a Gaussian kernel (with 

standard deviation, sigma = 3 μm). The local variance was estimated using a larger Gaussian 

filter (sigma = 50 μm).

Morphological filters were then applied to identify connected sets of pixels that together 

resembled the size and shape of a typical RGC bouton, as follows: first, small pixel gaps 

were filled by interpolation using a square-shaped structuring element of 1.3-by-1.3 μm. We 

then removed all small unconnected structures via an ‘opening’ operation using the same 

structuring element. To obtain candidate masks, we first binarized the above images by 

setting to ‘1’ all pixels with values above 10% to 15% of the maximal pixel amplitude after 

filtering, and setting all other pixels to ‘0’. A Euclidian distance transform was then applied 

to these binary images (MATLAB function ‘bwdist.m’). The built-in MATLAB watershed 

transform (Meyer, 1994) was used to finalize the segmentation. The results from the distance 

transform and the watershed transform from the individual ΔF/F images were combined by 

summing the distance transform across conditions and normalizing this value by the bouton 

count obtained by the watershed transformation. A final watershed transformation was 

applied to this normalized distance image to increase the accuracy of the procedure and to 

reduce the risk of false positives in the bouton identification procedure. In addition, to 

remove residual calcium signals not originating from the bouton itself, we estimated 

neuropil masks as circular annuli of 3 μm width, with the inner edge located 2 μm beyond 

the edge of a corresponding bouton mask. Pixels from adjacent bouton masks were excluded 

from these neuropil masks.

dLGN cell mask identification: Masks for dLGN cell bodies were automatically extracted 

using custom implementation of a previously developed cell sorting procedure that combines 

independent component analysis and image segmentation (Mukamel et al., 2009; Burgess et 
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al., 2016). To avoid signal contamination in a minority of cases involving dendrites situated 

proximal to a cell body, masks for dendritic segments were also extracted using the same 

custom procedure, and the overlapping areas were subtracted from the masks for dLGN cell 

bodies. In addition, to remove background calcium signals not originating from the cell 

body, we estimated neuropil masks as circular annuli of 9 μm width, with the inner edge 

located 7 μm beyond the outermost edge of a corresponding cell body mask. Pixels from 

adjacent cell body masks and from dendritic segment masks were excluded from these 

neuropil masks. Calcium activity timecourse extraction and visual response analysis of the 

dLGN cells were carried out using the same methods as for RGC boutons, as described 

below.

Timecourse extraction and correction: To obtain raw fluorescence traces for bouton 

masks and neuropil masks, the fluorescence intensity value of a bouton at each time point 

was defined as the average fluorescence across the pixels belonging to the mask.

To account for photobleaching during imaging sessions, a bleaching correction method was 

established. Raw bouton and neuropil traces were first smoothed using a sliding filter (30th 

percentile of a 5-minute sliding window). Then, the filtered traces were fitted using a 

decaying exponential, where the amplitude and the offset were independently estimated for 

each bouton and each neuropil ring, while the time constant was fixed to an experimentally 

defined constant value of 75 minutes, which was in agreement with time constants other 

groups have determined for the photobleaching of GCaMP6f using two-photon imaging at 

similar excitation wavelengths and laser power (Harris lab/Photophysics, https://

www.janelia.org/lab/harris-lab-apig/research/photophysics/two-photon-fluorescent-probes). 

To correct for photobleaching in each trace, the fitted offset value was first subtracted from 

the raw trace, then the resulting trace was multiplied by the inverse of the exponential of the 

fixed decay time constant before adding back the offset value.

To account for neuropil signals which may contaminate signals in the bouton trace, neuropil 

correction was applied by subtracting a scaled version of the corresponding neuropil trace 

(0.6 × neuropil trace) from each bouton trace before adding back the mean neuropil 

fluorescence (temporally-averaged across the neuropil trace) (Kerlin et al., 2010).

We also corrected baseline fluorescence F0 to remove the decay in fluorescence from 

activity evoked during the previous visual stimulus presentation. Due to slow decay 

dynamics in vivo (as a result of calcium buffering and GCaMP6f buffering) after stimulus-

evoked calcium activity, the bouton fluorescence did sometimes not fully return to baseline 

during the 1 second after the offset of a previous stimulus presentation and persisted in the 1 

second used to calculate F0 for the following stimulus period. Therefore, a baseline 

correction was introduced that modeled this exponential decay of previously evoked 

GCaMP6f calcium activity, using an experimentally determined fixed time constant of 1 

second (in agreement with previously determined GCaMP6f dynamics in vivo; Storace et 

al., 2015). This fitting procedure was independently carried out for each bouton and each 

single trial.

Liang et al. Page 16

Cell. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.janelia.org/lab/harris-lab-apig/research/photophysics/two-photon-fluorescent-probes
https://www.janelia.org/lab/harris-lab-apig/research/photophysics/two-photon-fluorescent-probes


To assess the fractional change in fluorescence, ΔF/F(t), following each visual stimulus 

presentation, the fitted, exponentially decaying contribution from the previous trial was first 

subtracted from F(t) during the 1-second interval prior to and the 2-second interval during 

visual stimulus presentation. Then, the corrected baseline was used as the new baseline F0 to 

compute ΔF/F(t). Single response values during a given trial were obtained by averaging the 

ΔF/F(t) response during the 2-second stimulus window.

Estimation of visual tuning preferences in RGC boutons

Estimation of boutons with significant visual responses: We define single condition 

response as the average from all the trials of a given stimulus condition. Visually-evoked 

responses were corrected by subtracting the average response across blank trials. There were 

approximately 30 repeats for each of the retinotopic conditions, 60 trials for each 

combination of direction and spatial frequency (SF), 180 trials of luminance increments and 

decrements (‘On’ and ‘Off’) and 360 blank trials. Different boutons had differing response 

dynamics, and we attempted to minimize bias in which boutons were deemed significantly 

visually responsive. Thus, we assessed, for each bouton and each stimulus condition, if the 

evoked response was significantly different from noise, by requiring the amplitude of ΔF/

F(t) during the response window to exceed 2.5 standard deviations above or below the mean 

baseline activity (computed using the 1-second window prior to stimulus onset) for at least 

10 out of the 31 time points (15.5 Hz frame rate × 2 sec stimulus presentation). For 

assessment of significant On and Off responses, we only required the ΔF/F(t) amplitude to 

exceed this threshold for at least 5 of the 31 time points, as a substantial proportion of 

boutons exhibited transient On and/or Off responses. These criteria were confirmed to be 

highly conservative, thereby including only highly robustly visually responsive boutons.

To assess if a given bouton exhibited a significantly positive response at a particular spatial 

frequency, we required that at least 3 out of the 8 directions at this spatial frequency evoked 

significantly positive responses according to the criteria described above. A similar approach 

was used to determine if a bouton exhibited a significantly negative response to a particular 

spatial frequency. Note that all boutons contributing to the main results (e.g. clustering of 

direction and axis selectivity) underwent additional quality controls (see below), further 

protecting against inclusion of any noisy boutons in our analyses.

Direction tuning curve fitting: For each bouton showing a significantly positive response at 

a given spatial frequency, a direction tuning curve was computed. The direction tuning 

curves were initially sampled in steps of 45°. In order to obtain a more precise estimate of 

the preferred axis and direction, a fitting approach was used to estimate the preferred 

direction. Tuning curves were fitted with a two-peaked Gaussian with offset (Sun et al., 

2016):

R(θ) = R1e
−

θ − θpref
2

2σ2
+ R2e

−
θ − θpref − 180° 2

2σ2
+ Roff
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R(θ) was the ΔF/F response for stimulus direction θ. This model assumed that the peaks of 

the two Gaussians were 180° apart. θpref was defined as the preferred direction evoking the 

strongest ΔF/F response, R1. R2 was the amplitude of the second peak located at θpref 

+ 180°. It was also assumed that both Gaussians shared a common standard deviation, σ. 

The fifth fitted parameter was a constant amplitude offset, Roff.

Several steps were taken to improve the reliability of the fitting of direction tuning curves 

and to optimize the accuracy of estimation of preferred direction of motion. To increase the 

number of input points for the fitting procedure from 8 to 25, a heuristic method of 

interpolation and extrapolation was implemented. First, a ninth point was added at 360°, 

which was identical to the one at 0°. Then, the number of input point s was doubled from 9 

to 17 by linear interpolation of the 9-point direction tuning curve. For the interpolated data 

point between the two most strongly driven initial directions (out of 9), we further adjusted 

the interpolated amplitude so that its value became a close approximation of that predicted 

point from a Gaussian curve fit through the rest of the points, thus reducing the error 

introduced by linear interpolation given the expected continuity of the curves. To this end, 

we applied a following empirical formula as described below. Note that our results were 

largely unchanged if this additional adjustment to the linear interpolation was omitted (mean 

difference in preferred direction: 2°, median difference: 1.2°). However, this additional peak 

adjustment resulted in significantly smaller residual values between the fitted curve and the 

initial 8-direction tuning curve.

The interpolated amplitude between the two most strongly driven initial directions was 

calculated as follows. RS1 was defined as the strongest response out of all 8 directions and 

RS2 as the stronger of the two responses for directions ± 45° adjacent to RS1. RS3 was 

defined as the weaker of the two responses adjacent to RS1. RS4 was defined as the response 

adjacent to RS2, at 90° from RS1. The interpolated ΔF/F response RS12 between RS1 and RS2 

was defined as: RS12 =
RS1 + RS2

2 + 1
6 1 −

RS1 − RS2
RS1 − RS3

RS1 − RS3 + RS2 − RS4 . This method 

compared the slope between RS1 and RS2 with the slope between RS1 and RS3. If the peak 

was flat, a maximum amount of 1
6 RS1 − RS3 + RS2 − RS4  was added, corresponding 

roughly to the expected value of a Gaussian peak. If the absolute values of the slopes 

between RS1 and RS2 and between RS1 and RS3 were identical (and therefore RS1 was the 

real peak of the Gaussian), this corresponds to 1 −
RS1 − RS2
RS1 − RS3

= 0 in the above equation, 

therefore resulting in no additional value added to the interpolation method. A similar 

method was used to interpolate negative peaks.

To further improve the stability of the fitting procedure and to better approximate the 

direction tuning curve, we added two shadow-copies of the two-peaked Gaussian function, 

circularly shifted by +360° and −360°:
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R fit (θ) = R1 e
−

θ − θpref
2

2σ2
+ e

−
θ − θpref − 360° 2

2σ2
+ e

−
θ − θpref + 360° 2

2σ2

+ R2 e
−

θ − θpref − 180° 2

2σ2
+ e

−
θ − θpref − 540° 2

2σ2
+ e

−
θ − θpref + 180° 2

2σ2
+ Roff

This addition of the shadow-copies increased the range to [−90°, 450°], and thus extended 

the fitted tuning curve by 4 additional directions (at 22.5° spacing) on either end. While the 

adjusted linear interpolation and the addition of the shadow copies improved the fitting 

procedure, similar results were obtained using the basic 17-point linearly interpolated tuning 

curve (data not shown).

A bootstrapping method involving random sampling of trials from each condition was then 

implemented to fit the tuning curves. Specifically, for each of 100 iterations, the tuning 

curve was initially computed by randomly sampling (with replacement) and averaging 

responses from 60 trials sampled from each of the 8 directions. These 8-point tuning curves 

were then interpolated, extended and finally fitted using the method described above. The 

final parameters used were the mean of the fitted parameters across the 100 sampling 

iterations.

To determine if the fitting procedure yielded a high-quality fit, a combination of criteria was 

used. Each iteration of the fitting procedure yielded a coefficient of determination, r2, 

defined as the explained variance using least-squares regression to fit the data. As a second 

control step, a combined coefficient of determination, rcomb
2 , was computed by comparing 

the original direction tuning curve with the fitted curve derived using the average of each 

fitting parameter (across 100 iterations). To assess both the quality and the reliability of the 

fitting procedure, we introduced a heuristic goodness of fit, Gfit: 

G fit = r2 1 − IQR r2 rcomb
2  where IQR was defined as the interquartile range – the 

difference between the 75th-percentile and the 25th-percentile (of r2 values across 

iterations). A bouton was considered to have a well-fit direction tuning curve at a given 

spatial frequency if the goodness of fit, Gfit, was greater than 0.66. The threshold was chosen 

based on examination of a large proportion of example boutons, and values in the range of 

0.5 to 0.9 yielded similar results. The complete direction curve fitting procedure was 

separately run for each of the three spatial frequencies employed, and therefore each bouton 

was attributed up to three sets of fitting parameters.

Axis and direction selectivity: For each bouton, we calculated a ‘vector sum’ axis 

selectivity index (ASI; i.e., selectivity for a motion along a given axis) on each interpolated 

direction tuning curve (Kerlin et al., 2010). This index was calculated by projecting the ΔF/F 
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response for each of the 16 directions in the range between 0° and 360° onto a circle with 2i 
progression and estimating the magnitude of the normalized vector sum, which ranged from 

0 to 1 (maximum selectivity): ASI =
∣ ∑

n = 1

16
R θn e

2i ∗ 2πθn
360° ∣

∑
n = 1

16
∣ R θn ∣

. Opposite directions contributed in 

an additive fashion, while orthogonal directions canceled each other out. The ASI 

computation was iterated 100 times by bootstrapping and averaged for each spatial 

frequency. To obtain a final ASI estimate for a given bouton (Figure S2C2), the mean ASI 

was computed across all spatial frequencies for which we observed a significantly positive 

evoked response.

In a similar manner, we computed a ‘vector sum’ direction selectivity index (DSI), by 

projecting the 16 directions onto a circle with 1i progression: DSI =

∑
n = 1

16
R θn e

1i ∗ 2πθn
360°

∑
n = 1

16
R θn

. As 

with ASI, the DSI estimate was repeated with the bootstrapping method and a final DSI 

estimate was computed as the mean DSI across all spatial frequencies for which we 

observed a significantly positive evoked response.

Preferred direction of motion and preferred axis of motion: The preferred direction was 

defined for direction selective boutons (see Section 8, ‘Bouton type classification’) by taking 

the circular average of the fitted θpref values across spatial frequencies with significant 

responses, and for which goodness of fit exceeded the defined threshold and DSI exceeded 

the defined threshold. Estimates of preferred direction ranged from 0° and 360°.

The preferred axis of motion was defined in a similar fashion, for both axis selective and 

direction selective boutons, by averaging the fitted estimate of preferred axis across spatial 

frequencies with significant responses. Estimates of preferred axis of motion ranged from 0° 

and 180°.

Preferred spatial frequency: For simplicity of presentation, we converted relative spatial 

frequency of stimulation to integer numbers (with two-octave spacing between integers) 

using the formula SFn = log4
ω

0.02 + 1, with ω being defined as the spatial frequency in 

cycles per degree. SF1, SF2 and SF3 respectively corresponded to actual stimulus spatial 

frequencies of 0.02, 0.08 and 0.32 cycles/degree. For a given bouton, we estimated the 

preferred spatial frequency evoking the strongest ΔF/F response, using a modified version of 

the center of mass method:

SFpref =
R SF1 − min R SFn + 2 R SF2 − min R SFn + 3 R SF3 − min R SFn
R SF1 − min R SFn + R SF2 − min R SFn + R SF3 − min R SFn
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R(SF1), R(SF2) and R(SF3) correspond to the average ΔF/F responses across all eight 

directions at 0.02 cycles/degree, 0.08 cycles/degree and 0.32 cycles/degree, respectively. 

Note that, in the above equation, the minimal ΔF/F response across spatial frequencies, 

min(R(SFn)), was subtracted from each of the three responses before computing the center 

of mass. SFpref ranges from 1 to 3 and was converted back to cycles/degree by ωpref = 0.02 × 

4SFpref−1.

For boutons with suppressed responses to stimulation in all directions of motion (see below), 

the preferred spatial frequency was defined as the frequency with the strongest suppression 

and therefore a slightly modified formula was used for consistency. Specifically, the mean 

ΔF/F response at a given spatial frequency was calculated as Rsupp(SFn) = −R(SFn), n=1,2,3.

OnOff preference index: An OnOff preference index was calculated using the averaged 

response traces to luminance increments (On stimulus) and to luminance decrements (Off 

stimulus). A positive response to On only, to Off only, or a positive response of equal 

magnitude to On and Off corresponded to index values of 1, −1 or 0, respectively. Boutons 

lacking both a significant On response and a significant Off response (see Subsection 6.1, 

‘Estimation of boutons with significant visual responses’) were not considered. In addition, 

boutons that were significantly suppressed by an On stimulus were defined as Off-

responsive, while boutons that were significantly suppressed by an Off stimulus were 

defined as On-responsive.

In order to take into account the dynamics of the evoked On and Off responses, a weighted 

OnOff preference index was introduced as follows:

OnOff pref =
Ont − Off t · On t + Off t

On t + Off t
2

Ont and Offt were defined as the On and Off response timecourses during the 2-second 

response window. In this equation, the term (Ont − Offt) determines the sign of the index at 

each timepoint. The dot product of this term with (|On|t + |Off|t) was used to assign a relative 

weight to each timepoint according to its summed response magnitude. Then the numerator 

was normalized to obtain a single preference index between −1 and 1.

For suppressed boutons, the same formula was used. As suppressed boutons sometimes 

exhibited a positive rebound after a transient suppression (Mastronarde, 1985; Tien et al., 

2015), the positive values in On and Off response traces from those boutons were set to zero 

prior to estimating OnOff preference.

OnOff sustain index: An OnOff sustain index, ranging from 0 for transient responses to 1 

for sustained responses (e.g. responses that do not attenuate over time during the 2-second 

stimulus presentation), was calculated from the average trace across trials as follows:

OnOff sustain =
On t + Off t

prct On t + Off t, 95

Liang et al. Page 21

Cell. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In this equation, the mean value across the 2-second stimulus period of the sum of the 

absolute On and Off traces, 〈|On|t + |Off|t〉, is divided by the 95th percentile value (prct)of the 

sum of these rectified traces (Piscopo et al., 2013). In suppressed boutons, any positive 

response values were set to zero before calculating the index.

Estimation of retinotopic preferences in RGC boutons

Retinotopic tuning curve fitting: Two retinotopic tuning curves, which were independently 

fitted for each bouton, were established, respectively, for tuning along the azimuth and along 

the elevation axes. Both curves consisted of eight evenly spaced values, each consisting of 

the average response across trials for a given location in visual space of the oriented bar 

containing binarized spatiotemporal noise (see above). Tuning curves were approximated 

using a Gaussian function:

R(x) = R1e
−

x − xpref
2

2σ2
+ Roff

The ΔF/F response, R(x) varied as a function of the retinotopic stimulus location, x. The 

maximum response, R1 + Roff, was evoked at xpref, the preferred retinotopic location. The 

standard deviation σ of the Gaussian was proportional to the receptive field size along this 

axis. To increase the number of points for fitting from 8 to 15, an interpolation method 

similar to the one used for direction tuning curves was implemented. As responses were very 

reliable and well fit, no bootstrapping method was implemented. Fitting was considered 

significant if 2 out of the 8 directions showed a significant response (see Subsection 6.1, 

‘Estimation of boutons with significant visual responses’), if the absolute correlation 

coefficient r2 exceeded 0.8, and if the fitted peak amplitude was confirmed to be positive or 

negative for non-suppressed and for suppressed boutons, respectively.

Retinotopic responses of neuropil surrounding RGC axonal boutons: Retinotopic tuning 

curve fitting was also implemented for the neuropil rings surrounding each bouton, to 

estimate the local retinotopic preference in the field of view. Each pixel in the field of view 

was attributed a preferred retinotopic location by first assigning the center of each neuropil 

ring with a value corresponding to the preferred retinotopic location of that neuropil ring, 

then dilating by a disk of 10 μm radius from each neuropil center respectively and averaging 

the preferred retinotopy across overlapping disks. The final pixel-wise estimates of 

retinotopic preference were obtained by spatial smoothing using an isotropic two-

dimensional Gaussian filter with a standard deviation of 3 μm.

The rate of change of retinotopy along the field of view (which was tangential to the surface 

of dLGN) was measured along the axis for which the retinotopic map changed the fastest. To 

compute this spatial axis, we first calculated the two-dimensional pixel-wise gradient: 

∇Ret x, y = ∂Ret x, y
∂x i + ∂Ret x, y

∂y j . The spatial axis was defined as the normalized mean 

gradient vector across pixels, ∇Ret
∇Ret

. The smoothed retinotopic map was then projected 

onto the normalized mean gradient vector (i.e., onto the unit vector along the direction of 
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maximal change in retinotopic preference). For each pixel, we derived its projected location 

along this new spatial axis as: x∼ = x, y · ∇Ret
∇Ret

. The relationship between the preferred 

retinotopic location and x̃ was modeled according to a linear function with offset: Retfit(x̃) = 

ax ̃ + b. The fitted parameter a (units: deg/μm) indicated the progression rate of the smoothed 

retinotopic map. We computed the normalized mean gradient axis and the scale factor, a, 

both for maps of azimuth and for maps of elevation.

Fine-scale retinotopic scatter: Fine-scale retinotopic scatter (‘deg scatter’, Figure S1F) was 

estimated as the absolute retinotopic deviation, Sret (units: degrees of visual space): Sret = |

Retpref(x̃B) − (ax̃B + b)|. Here, Retpref(x̃B) denoted the preferred retinotopic location of a 

given bouton, while (ax̃B + b) gave the predicted receptive field center based on the neuropil 

estimate, according to the projected location x̃B along the mean gradient axis. We also 

calculated the absolute deviation in spatial distance from the fitted spatial progression in the 

field, Sspa (‘distance scatter’, Figure S1F; units: μm): Sspa = x∼B −
Retpref x∼B − b

a . This value 

is equivalent to the distance that a bouton would need to be moved along azimuth or 

elevation in order to obtain a perfectly smooth map.

Bouton type classification—A bouton was classified as direction selective if, for at least 

one of the three spatial frequencies used, (i) it had a significant positive response, (ii) the 

tuning curve was successfully fit (as estimated by goodness of fit criteria), (iii) the direction 

selectivity index (DSI) exceeded 0.2 (a value equivalent to 0.33 if direction selectivity was 

calculated as DSI =
Rpref − Ropp
Rpref + Ropp

, where R pref was the response at the preferred direction and 

Ropp was the response at the opposite direction). Additionally, for all spatial frequencies 

which showed a significant positive response, we also required the DSI at each of these 

spatial frequencies to exceed 0.15 (to ensure that group assignment was not sensitive to the 

vagaries of which spatial frequencies were used). Finally, we verified that boutons in this 

group did not show any significantly negative responses for any spatial frequency.

A bouton was defined as axis selective (i.e., most strongly responsive to motion along two 

opposite directions constituting a single axis of motion) if (i) it had at least one significantly 

positive response for at least one of the three spatial frequencies, (ii) the fitting procedure 

was reliable, and (iii) the axis selectivity index (ASI) exceeded 0.15 (a value equivalent to 

0.33 if axis selectivity was calculated as ASI =
Rpref − Rorth
Rpref + Rorth

, where Rpref was the response at 

the preferred direction and Rorth was the mean response at the two directions orthogonal to 

the preferred one). We distinguish the term axis selectivity from orientation selectivity, as 

the latter is often used even for responses to stationary (i.e., non-drifting) oriented gratings – 

a stimulus not examined in this study. It is possible that certain axis selective boutons may 

not be strongly driven by stationary gratings. For all spatial frequencies for which we 

observed a significant positive response, we further required that the DSI was less than 0.2 

and that the ASI was greater than 0.1. If these conditions were not met or if the bouton 
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showed any significant negative response at any spatial frequency, the bouton was removed 

from this group.

A bouton was defined as ‘broadly tuned’ if (i) it exhibited a significant positive response for 

at least one of the three spatial frequencies and (ii) the ASI and DSI were below 0.15 and 

0.2, respectively, for all significant spatial frequencies. We also removed boutons that 

exhibited any significant negative responses at any spatial frequency.

Boutons having significant negative responses for at least one spatial frequency and no 

significant positive response at any spatial frequency were defined as ‘suppressed’. Two 

subpopulations of suppressed boutons were included in this group: (i) ‘suppressed-by-

contrast’ (SBC) boutons, defined as those boutons generally suppressed by all types of 

visual stimuli, including horizontal and vertical bars containing spatiotemporal noise (used 

for retinotopic mapping). To be defined as SBC, a bouton needed to be significantly 

suppressed by at least 2 out of the 8 retinotopic conditions in at least one of the two 

stimulation axes. If no retinotopic mapping stimulus evoked a significant response, or if the 

response to one or both retinotopic stimulation axes was significantly positive, the bouton 

was classified as ‘suppressed’, but not as part of the subcategory of ‘SBC’ boutons. For 

analyses involving boutons’ preferred spatial frequency, OnOff preference index and the 

preferred retinotopic location, only the SBC subcategory of suppressed boutons was 

considered.

Boutons which showed a significant visually-evoked response but were not classified into 

any of the above conservatively-defined categories, were labeled as ‘unclassified’ boutons 

and were not included in subsequent analyses.

Finally, a small proportion of candidate bouton masks were not significantly driven by any 

of the presented visual stimuli. These were classified as ‘unresponsive’ and not considered 

further.

Axon identification—Axon identification – the process of assigning boutons imaged in a 

field of view to the same axon – was carried out on data from blank trials (up to 360 trials 

per session) to avoid assessment of pairwise correlations during periods of visual stimulus 

presentation. We made the assumption that boutons from the same axon would share 

spontaneous calcium events with substantially higher frequency than pairs of boutons not 

belonging to a common axon. To identify spontaneous calcium events, the activity 

timecourses of all blank trials were first concatenated to obtain a single ‘spontaneous’ 

activity trace for each bouton (15–30 minute duration). We focused on periods containing 

significant spontaneous events for each bouton, as these periods were robust to sources of 

noise. To this end, we thresholded each spontaneous trace by 3 standard deviations above 

and below the mean activity. To identify entire events including the baseline before event 

onset, time points in an interval of 700 milliseconds before and 700 milliseconds after each 

thresholded event were included. Finally, for each bouton, we concatenated these peri-event 

timecourses of spontaneous activity. All boutons exhibited some significant spontaneous 

activity and were thus included in the axon classification procedure.
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The concatenated timecourse of spontaneous events for a given bouton were then cross-

correlated with the timecourse of all other boutons during the same epochs. In this way, we 

created a matrix of Pearson correlation coefficients between all pairs of boutons in the field 

of view. To obtain a sparse matrix only populated by large values, the original matrix was 

further thresholded: the correlation coefficients for a given bouton were maintained if the 

coefficients were larger than 0.7 or if they exceeded 2.5 standard deviations above the mean 

value of all the coefficients between this bouton and all others. If neither of these conditions 

were met for a given bouton pair, the associated correlation coefficient was set to 0. The 

cosine similarity between every pair of boutons was then computed from the thresholded 

matrix of Pearson correlation coefficients. Each bouton in a pair has an associated vector of 

rectified spontaneous activity pairwise correlation coefficients with all other boutons in the 

field of view, and the cosine similarity between two boutons reflected the cosine of the angle 

between these two vectors of correlation coefficients (Figure 3B). This step is important: if a 

small minority of pairwise correlation coefficients are low due to noise, while most other 

coefficients are high for other pairs of boutons belonging to the same axon, this procedure 

will help ensure that all boutons are nevertheless properly assigned to the same axon. We 

next classified bouton clusters using agglomerative hierarchical clustering based on the 

pairwise distance, computed as ‘1 – cosine similarity’. We defined ‘correlation similarity’ as 

‘1 - cluster distance’, where the cluster distance is the distance between two groups, each 

consisting of one or more bouton. This distance was calculated using the weighted-pair 

group method with arithmetic means (WPGMA) algorithm. We chose a cutoff threshold of 

correlation similarity to classify two groups of boutons as belonging to a common axon. 

Specifically, two groups of boutons with a correlation similarity exceeding a threshold of 

0.15 were assigned to the same axon. This threshold was highly conservative, as it erred on 

the side of combining groups together. Thus, this procedure minimized the likelihood that 

pairs of boutons that actually belong to the same axon would be assigned to two different 

axons, and would thereby be included in subsequent pairwise analyses in Figures 4, 6 and 7. 

On average, the mean Pearson correlation coefficient increased monotonically with 

correlation similarity as defined above, and the correlation similarity threshold of 0.15 

corresponded to a mean Pearson pairwise correlation coefficient of 0.34. The choice of 

correlation similarity threshold did not affect the main results: when the correlation 

similarity threshold was varied from 0.05 to 0.95 for clustering boutons into different axons, 

the axis preference similarity index for nearby boutons changed smoothly, subtly, and 

without any obvious inflection point (Figure S4C).

Inter-bouton feature comparison—The absolute preferred difference in axis preference 

ranged from 0° and 90° and was computed for pairs of boutons from the same categories 

(AS/AS and DS/DS pairs) and across categories (AS/DS pairs).

The absolute difference in preferred direction of motion ranged between 0° and 180° and 

was only computed for DS/DS pairs.

The absolute difference in the logarithm (base 4) of preferred spatial frequency ranged from 

0 to 2 (i.e. from 0 to log4
0.32 cpd
0.02 cpd ), and was computed for all bouton pairs, within and 

across categories, if both boutons had a well-defined preferred spatial frequency.
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The absolute difference in OnOff preference index ranged from 0 to 2 and was computed for 

all bouton pairs, within and across categories, if both boutons had significant On and/or Off 

responses.

The absolute difference in OnOff sustain index ranged from 0 to 1 and was computed for all 

bouton pairs, within and across categories, if both boutons had significant On and/or Off 

responses.

Functional clustering

Functional clustering of bouton pairs: Functional clustering of bouton pairs was assessed 

by plotting the inter-bouton feature differences versus spatial distance between boutons, and 

considering only pairs of boutons for which each bouton belonged to a different axon. A 4 

μm sliding average was applied at 0.25 μm steps to these plots. The standard error of the 

mean was calculated by considering all pairs in a given 4 μm bin. We also computed the 

chance level, estimated after randomly permutating the feature differences across all bouton 

pairs spaced from 2 μm to 150 μm in the field of view while maintaining their spatial 

distances. This randomization was repeated 10 times. The standard error of the mean 

estimate for the permutated data was calculated for each randomization and then averaged 

across the 10 randomizations.

To normalize the above curves for comparison across different fields of view, we used a 

pairwise similarity index (SI) that compared the degree of actual similarity to the ‘null’ 

estimate of similarity using the above permutation procedure, as follows: 

SI = −
FDTrue − FDNull

FDNull
. Here, the null functional distance (FDNull, the average absolute 

difference in feature preference across all pairs between 2 μm and 150 μm) was subtracted 

from the true functional distance (FDTrue, the average absolute difference in feature 

preference across all pairs with inter-bouton distances in a defined range), followed by 

normalization. A similarity index value of 0 corresponded to similarity at chance levels, 

while an index value of 1 indicated identical feature preferences. Negative clustering indices 

were obtained if pairs were less similar than expected by chance. Clustering effects on a 

short spatial scale were assessed for pairs spaced 2 μm to 6 μm apart, while pairs spaced 50 

μm to 60 μm apart served as a control for any large-scale similarity or global bias.

Functional clustering of local groups of boutons: To quantify functional clustering of 

nearby groups of boutons for each visual tuning feature, we computed a group similarity 

index for each visual feature, and included all boutons within a vicinity of each given pixel 

in the image, assuming the local group of boutons met certain topological and other criteria: 

(i) the group of boutons within a 6 μm radius of the pixel must contain at least 3 AS or DS 

boutons which exhibited well-defined motion axis preferences, OnOff preferences, and 

spatial frequency (SF) preferences; (ii) the group of boutons must belong to at least two 

axons, with no more than 67% of the boutons belonging to any given axon. Pixels satisfying 

these topological criteria usually contained 3 to 12 acceptable boutons within the 6 μm 

radius. We then computed the group similarity index for motion axis preference, OnOff 

preference and SF preference, respectively, among well-defined boutons near each pixel. To 
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compute this group similarity index (SI), we first calculated (1 - standard deviation of OnOff 

preference indices), (1 - standard deviation of SF preference indices), or the magnitude of 

the mean of polar unit vectors along preferred axes – a measure of groupwise circular 

variance in axis preference. We then normalized these values with the corresponding 

averages from 1000 shuffles according to (real SI - shuffled SI)/(1 - shuffled SI), where we 

shuffled triplets of preference values (motion axis preference, OnOff preference, and SF 

preference) among axons across all fields of view that contained the same number of 

boutons. A normalized similarity index was defined to be significant if it was larger than 

95% of indices derived from shuffled data. For a group of boutons surrounding a given pixel 

to be considered as part of a combination- or relay-mode cluster, the similarity index for the 

corresponding visual feature (or features, for relay mode) had to be significant. For example, 

a group of boutons surrounding a given pixel was considered to be in an Axis-OnOff relay 

mode cluster if both of its Axis similarity index and OnOff similarity index were significant. 

A group of boutons surrounding a given pixel was considered to be in an Axis combination 

mode cluster if the axis similarity index was significant but the OnOff similarity index was 

not. A group of boutons surrounding a given pixel was considered to be in a 3-feature relay 

cluster if Axis, OnOff and SF similarity indices were all significant.

To compute the frequency of each type of functional cluster, we calculated the number of 

unique pixels (i.e. number of unique groups of boutons within a circle of 6 μm radius) 

belonging to each type of cluster, and divided by the total number of unique pixels satisfying 

the aforementioned topological criteria. Quantification of these percentages for each type of 

cluster used the number of unique groups of boutons, as neighboring pixels could ‘double-

count’ the same unique group of boutons.

To quantify divergence of axons with boutons participating in more than one distinct, 

functionally-similar bouton cluster, we implemented a conservative approach, as described 

below. First, we only considered different boutons from the same axon that participated in 

distinct bouton clusters. We accomplished this by excluding from this analysis all boutons 

from a divergent axon that were less than 12 um apart (i.e. within a common group of 

boutons, defined above as within a circle of 6 μm radius). To this end, for each axon, we 

created a list of usable boutons, by sequentially adding additional boutons (from top left to 

bottom right of the FOV) to the list only if those boutons were not within 12 μm of any 

previous bouton already added to the list. The boutons in this subselected list were also 

required to be within a 6 μm radius of a pixel that had significant groupwise similarity 

indices for at least one of the 3 visual features (axis preference, OnOff preference, and SF 

preference). An axon was considered to be ‘divergent’ if it contained at least two boutons in 

this subselected list. Results in Figure 7B were qualitatively similar if we randomly 

permuted this bouton order for every axon. The diverging boutons were classified into those 

participating in an Axis combination mode cluster, an OnOff combination mode cluster, or 

an Axis-OnOff relay mode cluster, according to the criteria defined above. We then 

classified each divergent axon into subcategories according to whether it was involved in at 

least one combination-mode and/or relay-mode cluster of each type, and quantified the 

percentage of divergent axons in the same FOV that were part of each of these subcategories.
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Electron microscopy methods and analyses—The EM images were taken from a 

publicly available postnatal day 32 mouse LGN EM image volume published in (Morgan et 

al., 2016; https://software.rc.fas.harvard.edu/lichtman/LGN/). This EM volume spans a 600 

× 400 × 300 μm3 region of LGN. Sections are 30 nm thick and were imaged at 4 nm pixel 

size.

The current bouton convergence analysis (Figure 5) was performed on a 4× downsampled 

(x,y) version of the LGN dataset using VAST (Kasthuri et al., 2015; https://

software.rc.fas.harvard.edu/lichtman/vast/) manual segmentation software. To calculate the 

probability of nearby boutons converging on the same thalamocortical cell, we first 

identified all the RGC boutons (N = 100) that intersected a single ~45 μm × 45 μm region of 

a single coronal section from the dLGN shell. The presynaptic boutons were confirmed to be 

RGC boutons by identifying their characteristic pale mitochondria within the three-

dimensional volume of the bouton. We then identified the target dendrite innervated by each 

bouton and traced the dendrite back to the cell body. A pair of boutons had a convergence 

probability of ‘1’ if they both targeted to the same neuron, or ‘0’ if they targeted different 

neurons. The mean convergence probability in Figure 5B was calculated using a running bin 

(6 μm width, 0.25 μm steps) across inter-bouton spatial distances. This way of calculating 

the mean convergence probability was similar to the calculation, for a given range of inter-

bouton distances, of the fraction of bouton pairs targeting the same neuron (of all possible 

pairs; see in Figure S6B–C). We also randomly permutated the convergence probability 

across bouton pairs while maintaining a constant distribution of spatial distances between 

pairs of boutons, and calculated the mean convergence probability for the permutated data 

set. We repeated this procedure 10 times to obtain the mean distribution of the permutated 

data. The 95% confidence intervals of both the real data and permutated data were estimated 

according to simple asymptotic method with continuity correction.

Cell renderings were performed in Matlab (Mathworks). Distances between boutons were 

measured in two ways: (i) Euclidian distance, and (ii) a topological measure of distance 

along the dendrite. The topological distance between two boutons was measured as the 

shortest path along the postsynaptic dendritic arbor that connected the two boutons (Figure 

5E, red overlay). To find this path, volume tracings were first skeletonized into a node-edge 

representation as previously described (Morgan et al., 2016). Paths through the skeleton 

were simplified into a series of ~1.1 μm line segments to prevent overestimation of length 

due to small kinks in the dendrite.

Similar analyses of convergence were performed in Figure S6D by estimating convergence 

fractions for a second set of boutons from different reconstructed RGC axons within the 

same 3D EM volume. While these axons could only be reconstructed back to the edge of the 

EM volume, the vast majority of these likely belong to distinct RGCs (Morgan et al., 2016). 

This set of traced axons constitute the set of all axons that synapsed onto one of 4 ‘seed’ 

neurons previously selected for analysis from within the 3D EM volume (Morgan et al., 

2016); located in dLGN core). All pairs of boutons belonging to distinct RGC axons from 

this set were included in Figure S6D (other than boutons directly targeting seed dLGN 

neurons, which were excluded from this analysis to avoid biasing the results; see Morgan et 

al., 2016). These data demonstrated a similar relationship of probability of pairwise 
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convergence onto a common target vs. inter-bouton distance as that observed in the analysis 

in Figure 5B (which was generated from RGC boutons within a single EM section in dLGN 

shell in Figure 5A, and which included all pairs of RGC boutons from that section, 

regardless of their axon of origin).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical tests were conducted using MATLAB. Non-parametric tests were used for 

comparing two independent groups (Mann-Whitney-Wilcoxon test), two related groups 

(Wilcoxon signed-rank test), and multiple groups (Kruskal-Wallis test with Bonferroni 

correction). p<0.05 was considered significant. Additional details on sample sizes, statistical 

test, significant levels for each experiment can be found in figure legends, Results and 

METHOD DETAILS. All acquired data were included for analyses.

DATA AND SOFTWARE AVAILABILITY

Requests for analyses and raw data on calcium imaging results may be made to the Lead 

Contact, Mark L. Andermann, manderma@bidmc.harvard.edu

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Chronic imaging reveals diverse visual tuning of mouse retinothalamic 

boutons

• Clusters of boutons can share one or several visual feature preferences in 

common

• Functional clustering of boutons occurs at a canonical spatial scale of ~6 μm

• One axon can innervate multiple clusters specialized for different visual 

features
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Figure 1. Models for convergence of retinal axons in dLGN thalamus
A. Labeled-line model: all or most retinal boutons contacting a dLGN neuron proximal 

dendrite (dark gray) arise from a single RGC axon (light gray).

B. Electron microscopy reconstruction demonstrates boutons from multiple RGC axons 

(different colors) contacting the same dLGN neuron dendritic domain. Adapted from 

Morgan et al., 2016.

C. Different axons contacting the same dLGN neuron could exhibit the same visual feature 

preference (left; arrows indicate common preference for axis of motion) or random 

preferences (right).
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Figure 2. Retinotopic scatter and diverse feature tuning of retinal axons in dLGN of awake mice
A. A1: schematic of imaging setup. A2: schematic of mouse brain coronal section and 

implanted cannula for high-resolution imaging of cell bodies or RGC axonal boutons.

B. Epifluorescence image through the cranial window. Green: AAV-GCaMP6f infection of 

thalamus. Red: CTB-Alexa594 fluorescence in RGC axons following contralateral eye 

injection. Outlined thalamic nuclei: LD, lateral dorsal nucleus; dLGN, dorsal lateral 

geniculate nucleus; LP, lateral posterior nucleus; APN, anterior pretectal nucleus; NOT, 

nucleus of the optic tract; OP, olivary pretectal nucleus; SC, superior colliculus.

C. Top: Bulk GCaMP6f response of different thalamic nuclei (right) to presentation of a 

focal visual stimulus (left). Bottom: Pseudocolored image of retinotopic azimuth preferences 

(right) for stimuli presented at three horizontal locations (left).
D. Two-photon image of visually-evoked responses across RGC boutons in dLGN (sum of 

maximum- and minimum-response projections across multiple stimulus conditions). ΔF/F: 

fractional change in fluorescence. Inset: image of raw fluorescence from the same FOV, 135 

μm below the surface of the optic tract.

E. Reliable single-trial responses of an individual RGC bouton to repeated presentations of 

the same visual stimulus.

F. Left: map of bouton retinotopic preferences. Colors within bouton masks indicate 

preferred azimuth location. All other pixels contain a smoothed estimate of neuropil 
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retinotopic preferences. Middle: zoom-in illustrating substantial scatter of retinotopic 

preference in neighboring boutons. Right: normalized azimuth tuning curves of neighboring 

boutons (mean ± s.e.m.).

G. Boutons were classified into functional categories according to their responses to 2-sec 

presentation of drifting gratings (gray bars). Left: example mean response timecourse for 

one bouton in each category. Right: normalized mean response tuning curves. Tuning was 

stable across 3 consecutive days.

H. Example FOV with bouton masks labeled by category (STAR Methods). Lower colorbar: 

proportion of boutons in each category across 19 FOV from 5 mice (N = 14,794 boutons; 

DS: 20%; AS: 27%; BrT: 18%; Sup: 18%). Rarely, masks were responsive but not classified 

(Unc: 13%) or were not significantly responsive to any stimuli (Unr: 4%).

See also Figures S1, S2, and Videos S1, S2.
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Figure 3. Assignment of RGC boutons to the same axon
A. Boutons with high correlations in spontaneous activity were assigned to the same axon 

(e.g. Axon A, green, or Axon B, blue). Inset: an example pair of boutons assigned to the 

same axon (Bouton 2 vs. 3) had highly correlated spontaneous activity (Pearson correlation 

coefficient: 0.62) despite being ~100 μm apart, while nearby or distant boutons assigned to 

different axons showed lower pairwise correlations (Bouton 1 vs. 2: 0.07; 1 vs. 3: 0.04).

B. Top: matrix of pairwise cosine similarity in spontaneous activity (a measure of similarity 

in correlation coefficients between each bouton in a pair and all other boutons in the FOV; 

STAR Methods) for boutons imaged in A, sorted using hierarchical clustering. Four distinct 

blocks of boutons assigned to four different axons are highlighted. Bottom: peak-normalized 

direction tuning curves for all boutons from these four axons. Red: polar plots of boutons 

from a suppressed axon. Inset: increased similarity in evoked response tuning curves 

(including all 26 stimulus types, Figure S2D) for pairs of boutons from the same axon 

(black) or different axons (gray). N = 19 FOV, 5 mice.

See also Figure S3.
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Figure 4. Fine-scale functional organization of visual feature preferences in RGC boutons
A. RGC boutons from a subregion of an example FOV, each colored according to its 

preferred motion axis (gray: no preference).

B–C. Average direction tuning curves (top) and normalized response timecourses during 

full-field luminance increments (bottom) for AS (B) and DS (C) axons numbered in panel A. 

These nearby axons preferred similar directions of motion (Axons 4–7) and/or similar axes 

of motion (Axons 1–7). Nevertheless, Axons 1 and 5–7 had ‘On’ responses at stimulus 

onset, while Axon 3 had an ‘Off’ response at stimulus offset and Axons 2 and 4 had both On 

and Off responses. Timecourses are mean ± s.e.m. across boutons from each axon.

D. Left: schematics illustrating calculation of difference in axis preference for a pair of 

boutons. Right: average absolute difference in motion axis preference vs. inter-bouton 

spacing (red, mean ± s.e.m., 4 μm sliding window) for an example FOV (generated from 

87,827 pairs for which both boutons had well-defined axis preferences and belonged to 

different axons). Gray: same analysis following random permutation of differences in axis 

preference across all bouton pairs spaced 2–150 μm apart. Inset: zoomed-in scatter plot of 

pairs spaced 2–10 μm apart.

E. Same as D, but including all bouton pairs (from 19 FOV, 5 mice). Inset: functional 

clustering of axis preference for nearby boutons was evident in every FOV. SI: axis 

preference similarity index (1: perfect similarity; 0: chance similarity).

F. Mean axis preference similarity index for pairs of boutons spaced 2–6 μm apart (hollow 

bars; # of pairs: all pairs: 3258; AS/AS: 1383; DS/DS: 1066; AS/DS: 809) and 50–60 μm 

apart (solid bars; all pairs: 70,522; AS/AS: 28,736; DS/DS: 18,525; AS/DS: 23,261). AS/DS 
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pairs are composed of one AS and one DS bouton. ***p < 0.001; Mann-Whitney-Wilcoxon 

test.

G. Example FOV and direction tuning curves (inset) for boutons from two DS axons (green 

and purple) with opposite direction preferences. Inter-axonal bouton pairs were often in 

close proximity (white circles).

H. Two forms of clustering of DS/DS bouton pairs. For pairs with preferences differing by 

<90° (i.e. by acute angles: N=159,282 pairs, 19 FOV, 5 mice), nearby pairs tended to prefer 

similar directions (red: mean absolute difference in direction preference). For pairs with 

preferences differing by >90° (i.e. by obtuse angles: N=64,487 pairs), nearby pairs tended to 

prefer opposite directions (blue). Gray: same analysis following permutation of differences 

in direction preference across pairs spaced 2–150 μm apart. Error bars, s.e.m.

I. Mean direction preference similarity index for all DS/DS bouton pairs with preferences 

differing by <90° (red; 1: identical direction preferences; # pairs 2–6 μm apart: 884; 50–60 

μm apart: 13,241) and by >90° (blue; 1: opposite direction preferences; # pairs 2–6 μm 

apart: 182; 50–60 μm apart: 5,284). **p < 0.01; ***p < 0.001; Mann-Whitney-Wilcoxon 

test.

J. Direct comparison of pairwise similarity indices across feature preferences.

See also Figure S4.
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Figure 5. Nearby RGC boutons often target the same dLGN neuron dendritic domain
A. New analysis of a 3D EM volume of mouse dLGN (Morgan et al., 2016), focusing on a 

dorsal subregion of a coronal section through dLGN shell. All 100 RGC boutons in this 

subregion were identified, and those targeting the same dLGN neuron were assigned the 

same color.

B. The fraction of bouton pairs sharing a common target dLGN neuron (blue) decreased 

with increasing distance between boutons, with a falloff similar to Figure 4J. Gray: 

permutated data. Errorbars: 95% confidence intervals.

C. Zoom-in of yellow box in A, illustrating many RGC boutons (green) decorating the same 

postsynaptic dendritic shaft or protrusions (violet), with all RGC boutons in this 

‘glomerulus’ surrounded by common glial ensheathment (yellow). See Video S3.

D. The dLGN dendrite from the zoomed-in area in C (yellow shaded square in D) was traced 

back to its cell body, together with all apposing RGC boutons (green). Blue regions: 

terminations of reconstruction.

E. Projection images of two additional example neurons contacted by RGC boutons 

(semitransparent orange balls) contained in the EM subregion in A. Most nearby pairs of 

boutons in A targeted the same dendritic domain (e.g., top neuron, contacted by a cluster of 

5 RGC boutons from A; see also Figure S6D). However, in 1/32 neurons (bottom) contacted 
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by RGC boutons from A, boutons that were nearby in space sometimes targeted different 
dendrites. To distinguish between these distinct bouton arrangements, we quantified the 

shortest trajectory (red line) along the dendrite(s) between any pair of boutons (topological 

distance).

F. Cumulative distribution of topological distances between all boutons pairs (N = 182) that 

were 2–6 μm apart in space (Euclidian distance in the EM subregion in A) and that contacted 

the same target neuron. Most pairs had short topological distances (dashed lines: median: 

7.49 μm; 95%: 17.53 μm), and nearby boutons only rarely targeted different dendrites 

(arrow).

See also Figure S6.
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Figure 6. Relay-mode and combination-mode convergence of nearby RGC boutons
A. RGC axons often multiplex information (e.g. motion axis and OnOff). Nearby boutons 

from different axons could exhibit similar preferences for all features (‘relay mode’, left) or 

for a single feature (‘combination mode’, right).
B. Bouton pairs 2–6 μm apart with either similar or dissimilar preferences for OnOff, OnOff 

sustainedness, or SF all exhibit similar motion axis preference. N’s, from left to right: 3,258; 

70,522; 2,004; 32,916; 391; 13,075; 2,042; 39,071; 422; 12,639; 2,635; 49,163; 578; 18,498. 

All bar plots: mean ± s.e.m. ***p < 0.001; Mann-Whitney-Wilcoxon test.

C. Left to right: maps of boutons in an example subregion, colored by bouton preferences 

for motion axis, OnOff or SF, respectively. Gray boutons lack well-defined preference 

estimates.

D. Schematic illustrating analyses of ‘groupwise’ functional similarity. Analyses were 

restricted to pixels (black squares) that contained groups of 3 or more boutons (gray discs) 

within a concentric circle of 6 μm radius (blue dotted circles). In addition, we required that 

these boutons have well-defined preference estimates for motion axis, OnOff and SF, and 

that <67% of boutons in the group belong to any single axon (see also Figure S7B). Bouton 

numbering denotes axon identity.

E. Pixel maps of groupwise similarity index for motion axis (left), OnOff (middle), and SF 

preferences (right), for the subregion in C. Pixels with significant similarity index values 

(exceeding 95% of shuffled estimates) are colored, while other valid pixels are gray and 

invalid pixels are black. Dashed cyan circles in C and E illustrate an example of a pixel 
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surrounded by a local group of boutons with similar preferences for axis (left) but not for 

other features (middle and right).
F. Groupwise similarity indices for motion axis preference and OnOff preference (as in 

Figure 6E), plotted for valid pixels (same FOV as C, E). Bouton groups could exhibit similar 

preferences for motion axis only (‘Axis preference combination mode’, red), for OnOff only 

(‘OnOff preference combination mode’, green) or for both features (‘Axis-OnOff relay 

mode’, yellow). Other groups additionally demonstrated significant groupwise similarity for 

SF preference (‘3 feature relay’, black). Gray circles indicate groups that did not exhibit 

significant groupwise similarity (i.e. greater than 95% of shuffled estimates) for either 

feature preference.

G. Pseudocolor image illustrating various modes of convergence for groups of boutons in an 

example FOV (gray square, subregion shown in E). Red, green and blue: combination-mode 

groups with similar preference for only one feature (motion axis, OnOff, or SF, 

respectively). Yellow, purple, cyan, white: relay-mode bouton groups with similar 

preferences for two or more features.

H. Percentages of valid groups of nearby boutons with significant similarity in preference 

for only axis or OnOff preference (combination mode), for axis and OnOff preference (relay 

mode), or for all three feature preferences (3 feature relay mode), for each of 19 FOV. The 

percentages of unique bouton groups of each mode were consistently higher than expected 

by chance (shuffled data, gray bars).

See also Figure S7A–E.
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Figure 7. Different RGC boutons from the same axon often participate in distinct functional 
clusters
A. Schematic illustrating three combination-mode bouton clusters that exhibit similar 

preferences for either horizontal motion (left), On (middle), or vertical motion (right). An 

axon selective for horizontal motion and On (blue) could participate in the first two clusters, 

while an axon selective for vertical motion and On (orange) could participate in the last two 

clusters.

B. Percentage of divergent axons in each FOV (blue dots) that contain boutons innervating 

different types of functional clusters (combination-mode clusters with common axis 

preference or OnOff preference, or relay-mode clusters that share both preferences). Mean ± 

s.e.m.

See also Figure S7F.
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