
Continued Interest and Controversy: Vitamin D in HIV

Evelyn Hsieh, M.D., Ph.D. and
Section of Rheumatology, Yale School of Medicine, New Haven, CT

Michael T. Yin, M.D., M.S.
Division of Infectious Diseases, Columbia University Medical Center, New York, NY

Abstract

Purpose of Review—Vitamin D (VitD) deficiency is highly prevalent among HIV-infected 

individuals. Given the overlapping risk for several chronic disease and immunomodulatory 

outcomes from both long-standing HIV and VitD deficiency, there is great interest in clarifying the 

clinical role of VitD for this population.

Recent Findings—Recent studies have expanded our knowledge regarding the epidemiology 

and mechanisms of VitD deficiency-associated outcomes in the setting of HIV. Clinical trials 

focusing on VitD supplementation have demonstrated a positive impact on bone mineral density in 

subgroups of HIV-infected individuals initiating ART or on suppressive ART regimens; however 

significant heterogeneity exists between studies and data are less consistent with other clinical 

outcomes.

Summary—Further research is needed to clarify uncertainly in several domains, including 

identifying patients at greatest risk for poor outcomes from VitD deficiency, standardizing 

definitions and measurement techniques, and better quantifying the benefits and risks of VitD 

supplementation across different demographic strata for skeletal and extra-skeletal outcomes.
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Introduction

Vitamin D (VitD) plays an essential role in calcium homeostasis and has historically been 

linked to disorders of bone mineralization [1, 2]. In recent decades, the potential role of VitD 

in a multitude of extra-skeletal health outcomes—including muscle function and falls, 
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immune function and autoimmunity, cardiovascular disease, diabetes, and cancer—has also 

been illuminated [3, 4]. This, compounded by data demonstrating high prevalence of VitD 

deficiency worldwide, has prompted an explosion of interest in VitD and the potential 

benefits of VitD supplementation.

Similar to the general population, studies have shown VitD deficiency is highly prevalent 

among individuals with HIV [5–7]. Chronic HIV infection is associated with increased risk 

for comorbidities including cardiovascular disease (CVD), osteoporosis and fractures, 

cancer, and other conditions classically associated with aging. Given the overlapping risk for 

chronic disease outcomes with those observed in VitD deficiency, and importance of 

immune function in HIV disease progression and susceptibility to opportunistic infection, 

there has been acute interest in clarifying the clinical importance of VitD in this population.

In the present review, we summarize the epidemiology of and risk factors for VitD 

deficiency among individuals with HIV, discuss findings from recent vitamin D 

supplementation studies, and highlight new areas of interest and debate.

Vitamin D Physiology and Metabolism

VitD is available to humans through three principal routes: (1) the majority of VitD is 

synthesized in the skin upon exposure ultraviolet B radiation and subsequent conversion of 

7-dehydrocholesterol to pre-Vitamin D3, which is then rapidly converted to VitD3 (2) a 

smaller proportion of VitD derives from dietary intake of foods naturally containing or 

fortified with VitD2 (ergocalciferol) or D3 (cholecalciferol); and (3) VitD can be obtained 

from dietary supplementation in the form of VitD2 or D3 [3].

In the liver, VitD is converted to 25-hydroxy VitD (25OHD), which has a long serum half-

life (3 weeks); therefore, it is the metabolite upon which clinical evaluation of VitD status is 

based. In the kidney, 25OHD undergoes further hydroxylation by the renal enzyme 1-α-

hydroxylase to the active form of VitD, 1,25(OH)2D, which acts upon target cells by binding 

to the VitD receptor (VDR). During each step of this process, 85–90% of the body’s VitD 

metabolites circulate tightly bound to the carrier protein, VitD binding protein (DBP). The 

non DBP-bound portion, known as bioavailable VitD, circulates less tightly bound to 

albumin, with <1% in the free form [8, 9]. The free form acts upon VDR in target cells in the 

intestine, kidney and bone to maintain calcium homeostasis. It is now appreciated that 

1,25(OH)2D binds to the VDR in a wide range of cell types and non-renal cells are also 

capable of converting 25OHD to 1,25(OH)2D.

The specific terminology and thresholds for defining VitD deficiency and insufficiency 

remain a subject of debate [10, 11]. In the setting of VitD deficiency, decreased calcium 

absorption leads to secondary elevations in parathyroid hormone (PTH) levels, which in turn 

lead to excessive bone resorption [12]. Clinical studies have shown that VitD deficiency is 

linked to decreased bone mineral density (BMD), increased falls, and increased fracture 

rates [13–18, 11]. The Institute of Medicine (IOM) classifies insufficiency as 25OHD levels 

between 12–20ng/mL (30–50nmol/L) and deficiency as levels <12ng/mL (30nmol/L) based 

upon studies of skeletal health outcomes [19]. However, the most commonly accepted 

Hsieh and Yin Page 2

Curr HIV/AIDS Rep. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



definitions—endorsed by the Endocrine Society, International Osteoporosis Foundation, 

among others—defines insufficiency as a 25OHD level between 20–29ng/mL (50–74 

nmol/L), and deficiency at levels <20ng/mL (50nmmol/L), based upon observations that the 

inflection point above which PTH levels nadir and fall risk is reduced lies near 30ng/mL 

[20–22]. Some further define severe deficiency as 25OHD levels <10ng/mL (25 nmol/L) 

because risk for poor bone mineralization and osteomalacia/rickets rise sharply below this 

point.

HIV and Risk for Vitamin D Deficiency

The prevalence of low VitD (insufficiency or deficiency) among HIV-infected patients across 

different geographic regions, climates/latitudes, and age groups ranges from 24% to 72% 

[23–26, 5, 7, 27]. Variability in definitions employed and heterogeneity of study populations 

complicate the ability to aggregate data. Risk factors for VitD deficiency among individuals 

with HIV include traditional risk factors such as age, poor dietary VitD intake and 

malabsorption, decreased sun exposure, darker skin pigmentation, obesity, smoking and 

intravenous drug use, and liver or kidney disease. Several HIV-associated risk factors have 

also been identified, including exposure to specific antiretrovirals, chronic inflammation and 

immune activation, and direct effects of HIV proteins on the enzymes involved in 

1,25(OH)2D production [1, 28].

Studies comparing patients with HIV to healthy control populations have not consistently 

found lower prevalence of VitD insufficiency and deficiency among those with HIV [29, 30]. 

However, there may be reason to believe sustained low VitD levels poses unique risks to the 

health of patients with HIV, including faster HIV progression and severity, lower CD4+ 

counts, increased risk of mortality, and increased vulnerability to mycobacterium 

tuberculosis [31–39].

Vitamin D and Musculoskeletal Outcomes in HIV

Chronic HIV infection and long-term exposure to ART leads to decreased bone mineral 

density (BMD), and increased risk for fracture [40–42]. Data from randomized clinical trials 

have demonstrated that BMD declines 2–6% in the first year of ART [43–45]. Longer-term 

studies have shown that rates of bone loss stabilize thereafter compared with healthy 

controls, however, absolute BMD of those on continuous ART remain lower compared with 

their healthy counterparts [46]. Vulnerable periods for fracture include the first two years 

after ART initiation and after reaching middle age (approximately 50 years), even among 

men [47–49].

Low 25OHD levels have been shown in some but not all studies to be independently 

associated with low BMD [26, 42, 50, 51]. In a cross-sectional evaluation of 444 South 

African HIV-infected adults, higher 25OHD levels were associated with higher BMD at the 

total hip, but not at the lumbar spine. Erlandson et al. found that VitD insufficiency was 

independently associated with lower BMD at the femoral neck in a large Italian cohort of 

men and women with HIV [50]. Atteritano et al. found that among 16 HIV+ patients with 

vertebral fractures, 87% had insufficient VitD levels [26]. Given peak bone mass is built in 
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the first two decades of life and has a significant impact on lifelong risk for fracture, recent 

attention has turned to understanding the relationship between VitD and bone outcomes for 

children and adolescents. Jacobson at al. found that prevalence of low 25OHD (≤ 20ng/ml) 

was 42% among perinatally-infected children with HIV (PHIV), and that children with low 

25OHD had lower total body BMD z-scores and bone mineral content [52].

Several recent trials have explored the ability of VitD supplementation to improve bone-

related outcomes among HIV-infected individuals. Dosing approaches have ranged from 

daily supplements (4000–7000IU) to intermittent high dose boluses (16,000IU weekly to 

200,000 x one time) [53–56]. Most studies have utilized cholecalciferol (VitD3) 

supplements, however protocols employing ergocalciferol (VitD2) and one using calcidiol 

have also been reported. By and large, they have successfully repleted VitD levels at a rate 

and magnitude consistent with healthy individuals. Furthermore, VitD supplementation has 

been shown to decrease BTMs and improve secondary hyperparathyroidism [57, 58]. 

Several VitD supplementation trials evaluating BMD as a primary outcome among adult and 

pediatric populations have also now been published. Havens et al. evaluated the impact of 

50,000IU ergocalciferol monthly plus a multivitamin compared with a multivitamin alone 

among a group of 214 HIV-infected adolescents on stable continuous tenofovir (TDF)-based 

ART, and observed an increase in lumbar spine BMD in the intervention but not placebo 

group [59]. Rovner and colleagues evaluated the impact of 7000IU VitD3 daily vs. placebo 

for 12 months among 58 children and adolescents with HIV on BMD and body composition 

parameters. Despite improvement of 25OHD levels, no change in BMD or body 

composition was observed, however there was notable heterogeneity of duration of HIV 

treatment and cART regimen used, and subjects only achieved mean 25OHD levels of 26.7 

ng/dL [60]. The placebo arms of randomized trials of biosphosphate use in HIV-infected 

individuals have generally included calcium and VitD, and a small beneficial effect in BMD 

has been observed on the order of 1–3.5% [61–67].

In addition, low VitD, particularly <20ng/mL, has been associated impaired muscle strength, 

function, and balance in the general population, which have important implications for falls 

and fracture risk [22, 68, 69]. To our knowledge, only one study has evaluated the potential 

impact of VitD supplementation on neuromuscular outcomes among patients with HIV [70]. 

This study randomized 56 HIV-infected children and young adults to receive 7000IU of 

VitD daily versus placebo over 12 months and measured a battery of neuromuscular motor 

skills including the Bruininks-Oseretsky test of motor performance, jump power and energy, 

and muscular force and strength. The authors observed a mild increase in Bruininks-

Oseretsky test score (β=1.14; P=0.041), but no change in other parameters. Given the small 

size of this sample, further studies are necessary to corroborate these findings and determine 

whether the increase observed yields clinically significant improvements.

Vitamin D Deficiency and ART

With regards to ARTs, studies have focused on whether the increased risk for low BMD and 

fractures observed clinically with certain ARTs may be mediated in part through alterations 

in VitD metabolism.
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Protease inhibitors (PIs), and in particular ritonavir, have been shown to in vivo to strongly 

suppress 25-hydroxylase and 1-a-hydroxylase in a dose-dependent and reversible manner, 

while exerting a milder inhibition of 24-hydroxylase, the enzyme responsible for catabolism 

of 1,25(OH)2D, resulting in a net decrease in overall levels of 1,25(OH)2D [71–73]. Human 

studies have been less consistent. Cervero et al. conducted a cross-sectional study of 352 

Spanish HIV-infected adults, and found risk for VitD deficiency or insufficiency (defined as 

25OHD <30ng/mL) was lower among patients on boosted PIs [23]. Klassen and colleagues 

found that among Austrialian HIV-infected patients with 25OHD <50ng/mL, PI use was 

associated with lower 1,25(OH)2D levels, however not among those with 25OHD >50ng/mL 

[24]. Lerma-Chippirraz et al. conducted an observational study of 300 HIV-infected patients 

who received VitD supplementation, and found that while over 80% of individuals achieved 

replete levels of 25OHD, PI use was associated with not achieving normalization of PTH 

levels [54].

Efavirenz (EFV), a non-nucleoside reverse transcriptase inhibitor (NNRTI), has been 

associated with low plasma 25OHD levels in cross sectional studies, and with decreases in 

25OHD in longitudinal studies [30, 37, 39, 74]. Nylen et al. showed that the prevalence of 

VitD deficiency (<25nmol/L) increased from 27% to 43% at 48 weeks in patients initiating 

EFV-based ART [37]. In vivo studies suggest that concentration-dependent induction of 

cytochromes P450 (CYP) 24 and 3A4 by efavirenz results in increased breakdown of 

1,25(OH)2D and 25OHD to their inactive forms [75, 76]. The influence of EFV on VitD 

may also be modulated by genetic factors [77]. For example, single nucleotide 

polymorphisms of CYP 2B6, such as the G516T allele, have been associated with higher 

plasma EFV concentrations [78–81]. Among HIV-infected patients in Botswana 

supplemented with either 4000IU versus 7000IU VitD3 daily, patients on NNRTI therapy 

(EFV or NVP) sustained a more robust increase in 25OHD levels compared with those on a 

protease inhibitor (22±12, 27±17, vs. 13±10, respectively, p≤0.03) [82]. Other NNRTIs have 

not been similarly singled out as having a deleterious impact on vitamin D levels or bone 

health, although the literature remains limited in this regard. In 2014, Wohl and colleagues 

observed that among 690 patients randomized to receive rilpivirine versus efavirenz once 

daily plus TDF/emtricitabine for 48 weeks, 25OHD levels remained stable among those in 

the rilpivirine group over time, but declined significantly in the EFV-treated group [83].

Finally, tenofovir disoproxil fumarate (TDF), a nucleotide reverse transcriptase inhibitor, has 

received significant attention compared with other ARTs for its independent and slightly 

more pronounced association with alterations in markers of bone and VitD metabolism, 

BMD and in some studies, fractures [44, 84]. The mechanism for bone loss is still uncertain, 

and proposed etiologies have included proximal renal tubulopathy (leading to urinary 

phosphate wasting, alterations of calcium and phosphate homeostasis, and osteomalacia), 

secondary hyperparathyroidism (leading to increased stimulation of bone turnover), and 

potential direct effects of TDF on gene transcription in bone cells. [85–90].

Interestingly, secondary hyperparathyroidism has been observed after initiation of TDF-

containing regimens, independent of renal impairment or VitD deficiency. In HIV-infected 

youths receiving TDF-based ART, VitD3 supplementation led to decreases in PTH levels at 

12 weeks, regardless of baseline 25OHD levels [91]. Several groups have started to 
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investigate potential unique mechanisms behind these findings. One hypothesis suggests that 

increased DBP levels upon TDF exposure decreases bioavailable VitD, thereby leading to a 

functional VitD deficiency and secondary hyperparathyroidism. DBP levels may be 

increased (pregnancy, exposure to exogenous estrogen) or decreased (chronic liver or kidney 

disease, sepsis) in a variety of physiologic and pathophysiologic conditions [92–98]. Havens 

et al. showed that DBP levels increased with successive quintiles of plasma TDF 

concentration among HIV-infected youth stably treated with TDF [99]. A longitudinal study 

among 134 Chinese HIV-infected individuals found that levels of DBP increased steadily 

over 48 weeks after initiation of TDF-lamivudine-EFV, concurrent with a steady increase in 

proportion of patients with secondary hyperparathyroidism (2.2% to 20.1%, p<0.001), 

despite stable creatinine and 25OHD levels [100]. The AIDS Clinical Trials Group (ACTG) 

A5280 Trial randomized 165 HIV-infected individuals initiating TDF-emtricitabine(FTC)-

EFV to receive 4000IU VitD3 and 1000mg calcium daily versus placebo. In both arms, DBP 

increased from baseline, but total 25OHD and bioavailable 25OHD increased only in the 

supplementation group [56]. PTH levels increased significantly in the placebo group but not 

the supplementation group, supporting the concept of a functional VitD deficiency; however, 

BMD changes were not consistently associated with bioavailable VitD [101]. In a small 

study of patients on TDF-FTC-EFV switched to darunavir(DRV)/r, a significant increase in 

BMD and 25OHD levels were observed compared with those continuing TDF-FTC-EFV, 

but no significant change was observed in DBP, PTH, or renal function [102]. No studies to 

date have examined whether TDF exposure impacts hepatocyte production or renal excretion 

of DBP.

Finally, Mingione et al. examined the potential effect of TDF on the calcium sensing 

receptor (CaSR) in the kidney, and found that stimulation of human embryonic kidney cells 

in vitro by CaCl2 with and without TDF revealed a dose-dependent inhibition of CaSR 

activity by TDF, comparable to that observed from known CaSR gene inactivating mutations 

[103]. The authors concluded that the hyperparathyroidism observed with TDF treatment 

may be explained in part by the direct effect of TDF on CaSR.

Immunomodulatory Effects of Vitamin D in HIV

VitD plays a role in both the innate and adaptive immune responses and VDR is expressed 

almost all cells of the immune system; in greatest quantity in CD8+ T lymphocytes, but also 

in CD4+ T lymphocytes, and to a lesser extent, B lymphocytes and cells of the monocyte/

macrophage lineage [104, 105]. Therefore, not only does VitD play a role in response to 

infection, but also in preventing development of autoimmune conditions such as type 1 

diabetes, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and 

inflammatory bowel disease [31, 106].

Several mechanisms have been elucidated and are reviewed in greater detail elsewhere [31, 

106]. In brief, 1,25(OH)2D influences innate immune cell differentiation promoting a 

tolerogenic state and T regulatory lymphocyte development with suppressive activity. In 

addition, pathogen elimination is promoted via increased intracrine 1,25(OH)2D production 

by monocytes and macrophages leading to increased phagocytosis and expression of 

pathogen-recognition receptors. This signaling appears to increase transcription of 
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cathelicidin, which has antimicrobial properties, and defensins, which play a role in both 

antimicrobial and antiviral activities [107–109]. In vitro studies also demonstrate that 

cathelicidin inhibits replication of HIV in CD4+ T cells and macrophages [110]. Finally, 

1,25(OH)2D appears to control transcription of inflammatory cytokines and chemokines 

through actions on NFkB, and via shifts of the T helper response from Th1 to Th2, thereby 

reducing Th1-mediated tissue damage.

In the setting of HIV, key areas of interest have included the role of VitD in disease 

progression and all-cause mortality, response to ART, and co-infection with tuberculosis and 

hepatitis C [38, 111–113, 36, 114, 115]. In two recent cross-sectional studies among HIV-

infected populations, patients with VitD deficiency had greater levels of inflammation (IL-6 

levels) and activated monocyte phenotypes (CX3CR1+ and CCR2+), and higher 

hydroperoxide levels indicating oxidative stress [116, 117].

Several studies examined the effect of VitD supplementation on immune parameters. Fabre-

Mersseman et al found that VitD deficient patients had a slightly increased expression of 

CD38+ among memory CD8+ T cells, which deceased after VitD supplementation [118]. 

Lachmann et al. evaluated the effect of a one-time dose of 200,000IU VitD3 on CD4+ T-cell 

function and found an increase in frequency of antigen-specific T cells producing the anti-

HIV chemokine macrophage inflammatory protein (MIP)-1β, concurrent with a rise in 

actual (MIP)-1β levels and increase in median plasma levels of cathelicidin [119]. Stallings 

et al. randomized 50 HIV-infected children to receive 7000IU VitD3 daily versus placebo, 

and found that after 12 months, the percentage of naïve T cells were significantly higher and 

HIV RNA levels lower. Change in 25OHD levels predicted HIV RNA levels at 3 and 12 

months, and CD4+ T cell percentage at 3 months [120]. Finally, Eckard et al. found that 

among 51 HIV-infected youth receiving 18,000IU, 60,000IU, or 120,000 IU VitD3 monthly, 

CD4+ and CD8+ activation and monocytes decreased significantly in the high dose 

supplementation group [121]. In all protocols, patients tolerated VitD supplementation well 

without adverse outcomes.

Vitamin D and Cardiometabolic Outcomes

HIV-infected individuals are at increased risk for cardiovascular morbidity and mortality, as 

well as cardiovascular risk factors such as hypertension, dyslipidemia, smoking, and 

diabetes [122–129]. HIV-specific factors such as dyslipidemia from PIs or other ARTs, 

chronic inflammation, immune activation, and endothelial dysfunction have been found to 

play a role in enhanced atherogenesis [130–137].

In the general population, several observational studies have demonstrated associations 

between low VitD levels (25OHD <30 nmol/l) and CVD mortality risk [138–140]. While 

associations between low 25OHD levels and carotid intima medial thickness, carotid 

atherosclerosis, and coronary artery calcification scores have been shown in observational 

studies, randomized trials of VitD supplementation have not confirmed these findings 

consistently [138, 141–148]. Furthermore, recent concerns have arisen about a biphasic, or 

U-shaped, effect of VitD on cardiovascular health, suggesting that while deficient VitD 
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carries adverse consequences, high levels of VitD may also be associated with adverse 

cardiovascular outcomes [139].

Among HIV-infected individuals, cross sectional studies have shown vitamin D levels to be 

inversely correlated with carotid IMT, however there is little data on the impact of VitD 

supplementation on cardiac outcomes [130, 131]. Longenecker et al. performed a 12-week 

trial of 4000IU vitamin D3 daily versus placebo among 45 vitamin D-deficient HIV patients 

and found no change in endothelial function as assessed by flow-mediated brachial artery 

dilation [149]. Recently, Eckard et al. investigated the impact of 24 months of standard vs 

high dose VitD3 supplementation in HIV-infected and uninfected youth, and found that 

standard dose VitD3 (18,000 IU monthly) supplementation resulted in a statistically 

significant decrease in carotid bulb IMT among HIV-infected participants (p=0.03) 

compared with higher VitD3 [150].

Both HIV infection and ART initiation have also been associated with altered glycemic 

control, insulin resistance and diabetes [151, 152]. Observational studies have suggested that 

these indices may be associated with vitamin D deficiency, however the degree of 

association has not been consistently robust across studies [153–155]. Furthermore, in the 

small vitamin D3 supplementation trial described above by Longenecker et al., 

supplementation led to increased insulin resistance over 12 weeks among vitamin D 

deficient patients on stable ART [149]. The more recent ACTG A5280 study found that 

supplementation with vitamin D3 plus calcium did not alter insulin resistance (as estimated 

by the homeostatic model assessment) over 48 weeks compared with placebo among 

treatment naïve patients initiating ART [156].

Controversy Regarding Risks of Vitamin D Supplementation

Frank VitD toxicity in the form of hypercalcemia is exceedingly rare and cases have 

occurred only in the setting of ingestion of extremely high doses of VitD supplements for 

extended periods. Concerns regarding a U-shaped risk curve for VitD have arisen, not only 

in the context of cardiovascular disease risk, but also in the context of other important 

outcomes including falls and fracture, mortality and cancer. In the case of falls and fractures, 

this was first illuminated in a few trials utilizing bolus dosing regimens for the prevention of 

falls and fracture among elderly populations (>70 years) with known risk factors for falls or 

fracture, which tested regimens ranging from monthly to annual doses of VitD. 

Unexpectedly, not only was risk for falls and fractures not improved in the high dose groups, 

in one study risk was higher, and appeared to correlate with periods of high 25OHD levels 

during the first 3 months after supplementation [157, 158]. Two recent studies have also 

found that compared with lower dose regimens or daily regimens (equivalent of 400–1000IU 

daily), higher dose regimens (equivalent 2000–3300IU daily) were associated with a higher 

risk for falls [159, 160]. Lower extremity function and fractures were not significantly 

different.

In studies of community-dwelling older individuals without pre-specified risk for fall or 

fracture, the findings have been less conclusive. Trivedi et al. found a reduction in fracture 

rates in adults (age 65–85) from the community treated with 100,000 IU cholecalciferol 
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every 4 months [161]. Smith et al. conducted a randomized trial among postmenopausal 

women with baseline 25OHD<20ng/ml, and evaluated the impact of seven different daily 

doses of VitD compared with placebo. Compared with placebo, no decrease in falls was 

observed with <800 IU daily of VitD. At 1600IU–3200IU daily a significant decrease in 

falls was observed (p=0.02), however this effect was no longer seen at the highest doses 

4000–4800IU daily (p=0.55). While elegant in design, the major weakness of the study was 

the small sample size with only 17–19 patients per group [162]. Zhao et al. recently 

published a meta-analysis of 33 randomized clinical trials involving 51,145 community-

dwelling participants and did not find evidence for reduction in fracture risk with VitD 

and/or calcium supplementation but also did not note increase in risk based upon dose or 

frequency [163]. It has been posited by Grant and colleagues that potential artefactual 

explanations may exist for the observed U-shaped associations. For example, in some 

studies, elevated 25OHD levels >50ng/mL may actually reflect self-administration of VitD2 

supplements to correct a prior VitD deficiency that is actually responsible for the poor 

outcome in question [164].

A range of VitD dosages have been utilized to study skeletal and non-skeletal outcomes in 

HIV participants, and to our knowledge, there have not been reports of increased risk with 

high dose or intermittent bolus dosing regimens; however, HIV-infected patients enrolled in 

such studies are generally younger than the studies in the general population and therefore 

are not at the clinical threshold necessary to observe this increased risk.

Considerations for Clinical Management

The latest version of the European AIDS Clinical Society (EACS) Guidelines (version 9.0) 

recommends VitD screening in patients with history of low BMD, actual or high risk for 

fracture, or one of the following risk factors for VitD deficiency: dark skin, dietary 

deficiency, avoidance of sun exposure, malabsorption, obesity, chronic kidney disease, and 

ARVs associated with low VitD levels as discussed above. VitD deficiency is defined by the 

EACS as 25OHD <10ng/mL, and insufficiency as <20ng/mL. An upper threshold for 

25OHD is not defined as it has not been studied in this population. Those with low VitD 

should have further workup with PTH, calcium, phosphate and alkaline phosphatase to 

identify secondary hyperparathyroidism and osteomalacia. Supplementation is 

recommended for individuals with VitD deficiency or those with insufficiency plus 

osteoporosis, osteomalacia, or secondary hyperparathyroidism to reach the goal of 25OHD 

>20ng/mL [165]. Another guideline, authored by The Osteo Renal Exchange, recommended 

that supplementation be titrated to achieve a goal 25OHD level of approximately 30ng/ml 

using varying doses based upon baseline 25OHD levels, followed by maintenance thereafter 

[166].

These guidelines represent a starting point for HIV providers. Referring to the guidelines 

from the IOM and Endocrine Society, or regional/national specialty societies that may better 

take into account ethnic/regional considerations, can offer additional direction to providers 

in managing specific cases. While many studies are focused on the ability of VitD 

monotherapy to counteract specific VitD-mediated mechanisms of skeletal and extra-skeletal 

outcomes, in practice, it is reasonable to combine VitD supplementation with calcium 
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according to the aforementioned guidelines. Finally, encouraging VitD repletion via non-

pharmacologic approaches remains an important means of preventing VitD deficiency. In 

particular, as sun exposure cannot lead to over-production of VitD, appropriate guidance on 

sun exposure can be an effective intervention in the right patient. Increased intake of VitD 

rich (oily fish, cod liver oil, certain mushrooms) or fortified foods (availability depends on 

country) is also prudent to suggest, although access to such foods may be a challenge for 

many patients.

Conclusions

As with the field of VitD research in the general population, challenges remain in adequately 

quantifying the impact of VitD on HIV and its associated outcomes. These include 

challenges with isolating the impact of VitD versus VitD plus calcium, standardizing 

definitions across studies for deficiency and insufficiency, standardizing assay techniques for 

both VitD and other components of the metabolic pathway, and elucidating the relationship 

between VitD dose and timing on outcomes. Furthermore, the role of genetic variation/race 

and ethnicity on outcomes remains to be elucidated. Finally, the benefits and risk of VitD 

supplementation across different age strata for different skeletal and extra-skeletal outcomes 

remains uncertain and requires further study.
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