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ABSTRACT

Comparing the abundance of one RNA molecule to another is crucial for understanding cellular functions but most sequencing
techniques can target only specific subsets of RNA. In this study, we used a new fragmented ribodepleted TGIRT sequencing
method that uses a thermostable group II intron reverse transcriptase (TGIRT) to generate a portrait of the human transcriptome
depicting the quantitative relationship of all classes of nonribosomal RNA longer than 60 nt. Comparison between different
sequencing methods indicated that FRT is more accurate in ranking both mRNA and noncoding RNA than viral reverse
transcriptase-based sequencing methods, even those that specifically target these species. Measurements of RNA abundance in
different cell lines using this method correlate with biochemical estimates, confirming tRNA as the most abundant nonribosomal
RNA biotype. However, the single most abundant transcript is 7SL RNA, a component of the signal recognition particle.
Structured noncoding RNAs (sncRNAs) associated with the same biological process are expressed at similar levels, with the
exception of RNAs with multiple functions like U1 snRNA. In general, sncRNAs forming RNPs are hundreds to thousands of
times more abundant than their mRNA counterparts. Surprisingly, only 50 sncRNA genes produce half of the non-rRNA
transcripts detected in two different cell lines. Together the results indicate that the human transcriptome is dominated by a
small number of highly expressed sncRNAs specializing in functions related to translation and splicing.
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INTRODUCTION

The study of gene expression is a rapidly growing area of ge-
nomic research (Ozsolak and Milos 2011; Jiang et al. 2015).
The amount of RNA sequencing is expected to surge as the
need for understanding gene function and the identification
of new biomarkers increases (Rabbani et al. 2016). However,
despite the increase in RNA sequencing in the last five years,
establishedmethods for the detection of midsize sncRNAs re-
main elusive (Veneziano et al. 2016). Indeed, RNA ranging in
size between 50 and 300 nucleotides (nt) was termed the
“black hole” of RNA biology due to the lack of sequencing in-
formation (Steitz 2015). Most standard sequencing methods
are focused on the detection of polyadenylated messenger
RNAs with sizes typically larger than 1 kb (Costa et al.

2010; Liang and Zeng 2016). As such, these methods are
not useful for the detection of nonpolyadenylated transcripts,
many of which are shorter than 500 nt (e.g., small nuclear
RNA [snRNA], small nucleolar RNA [snoRNA], transfer
RNA [tRNA], and many long noncoding RNA [lncRNA])
(Veneziano et al. 2016). In addition, selection of polyadenyl-
ated RNA prevents the detection of RNA processing and
maturation intermediates. Current approaches for the se-
quencing of sncRNAs depend on selection techniques that
enrich RNAs based on their size or localization in the cell
(Deschamps-Francoeur et al. 2014; Bai and Laiho 2016).
Recent studies suggest that most of these techniques intro-
duce bias in the relative representation of noncoding RNAs
even for those with similar sizes (Deschamps-Francoeur
et al. 2014; Nottingham et al. 2016).
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Classical estimates of RNA abundance are usually generat-
ed by using targeted in vivo labeling experiments, as in the
case of rRNA, tRNA, snRNA, and snoRNA, or by using mi-
croarrays as in the case of mRNA and miRNA (Waldron and
Lacroute 1975; Wolf and Schlessinger 1977; Bissels et al.
2009). These class-specific estimates of RNA abundance indi-
cate that ∼90% of the human transcriptome by mass is com-
posed of rRNA, while the highest number of molecules per
cell (MPC) is attributed to tRNA (Waldron and Lacroute
1975; Wolf and Schlessinger 1977). Other methods such as
reverse transcription quantitative PCR (RT-qPCR) (Gin-
zinger 2002; Shakeel et al. 2017), digital PCR (dPCR) (Whale
et al. 2012; Hayden et al. 2013; Witwer et al. 2013; Morley
2014; Sager et al. 2015), and in situ hybridization (e.g.,
FISH) (Vera et al. 2016) are also being used for RNA quanti-
fication, but their use remains limited to a relatively low
number of RNAs and they are rarely utilized for comparisons
between different classes of RNA. More recently, trans-
criptome sequencing has become the most frequently used
method for large scale profiling of the transcriptome (Casa-
massimi et al. 2017). However, these techniques are efficient
in comparing the relative levels of transcript abundance with-
in the same class of RNA but they cannot directly compare
between different classes of RNA (e.g., between coding and
sncRNA). Therefore, while the number of different RNA
classes might be established, measurements of their true rel-
ative abundance remain to be verified.
Recently, a new sequencing method using a thermostable

group II intron reverse transcriptase (TGIRT) was developed,
which exploits the ability of this highly processive enzyme to
reverse transcribe full-length, highly structured noncoding
RNAs (Nottingham et al. 2016; Qin et al. 2016). This method
of sequencing (TGIRT-seq) does not require ligation of
adapters to the RNA but instead uses the proficient template
switching activity of TGIRT to couple adapter addition to the
3′ terminal nucleotide of an RNA template. This method
avoids sequence and structure biases in RNA ligation, as
well as interference from the 5′ cap structure of mRNAs
(Nottingham et al. 2016). Sequencing of human reference
RNA samples with external RNA controls consortium
(ERCC) spike-in control RNAs showed that TGIRT-seq has
less bias than the widely used TruSeq method and enables se-
quencing of tRNAs and other sncRNAs together with
mRNAs and lncRNAs (Nottingham et al. 2016; Qin et al.
2016). As such, the method provides a potentially useful
tool for direct comparison of the abundance of different clas-
ses of RNA (Zheng et al. 2015; Nottingham et al. 2016).
In this study, we compare the capacity of different se-

quencing methods including TGIRT-based methods to faith-
fully rank the abundance of different classes of RNA and
depict the overall landscape of the human transcriptome.
The results indicate that sequencing of fragmented ribode-
pleted cellular RNA using TGIRT not only ranks transcripts
of the same class of RNA more accurately than targeted se-
quencing approaches but also provides the most complete

and experimentally supported portrait of the human tran-
scriptome. Using this method, we were able to confirm the
overall conclusions of previous estimates of RNA abundance
showing that tRNA are the most abundant RNA species in
terms of number of molecules. However, unlike previous es-
timates our results show that snRNAs are actually more
abundant than mRNAs and snoRNAs and that in general
sncRNAs are at least 1000 times more abundant than
mRNAs encoding proteins functioning in the same biological
complex. Interestingly, direct comparisons between the cod-
ing and noncoding RNAs participating in the assembly of ri-
bonucleoprotein complexes permitted the identification of
specific components with either regulatory or multiple func-
tions. Together our results indicate that simultaneous detec-
tion of both coding and noncoding RNA by TGIRT-seq not
only increases the number of transcript types analyzed but
also improves the precision of RNA ranking and estimates
of abundance within each class of RNA.

RESULTS

Comparison between the capacities of different
sequencing methods to quantify different components
of the human transcriptome

Most sequencing methods deal with coding and noncoding
RNAs separately (Fig. 1A), providing little information about
the overall landscape of the human transcriptome. To identify
the best approach for an integrated analysis of the human
transcriptome, we evaluated the capacity of different sequenc-
ingmethods to quantify transcripts both within the same class
and between different classes of RNAs. We chose five se-
quencing protocols, three that target a specific class of RNA
as reference for comparison between RNA within the same
class, and two generalmethods targeting all RNA species other
than rRNA. The class-specific methods include (i) size-select-
ed viral reverse transcriptase sequencing (abbreviated SSV),
(ii) TGIRT-seq of unfragmented, ribodepleted whole-cell
RNA (abbreviatedURT), and (iii) fragmented poly(A)-select-
ed viral reverse transcriptase sequencing (abbreviated FAV),
while the general methods include (i) fragmented ribode-
pleted viral reverse transcriptase sequencing (abbreviated
FRV), and (ii) fragmented ribodepleted TGIRT-seq (abbrevi-
ated FRT). These five different approaches cover the most
commonly used methods and test two newly developed tech-
niques (URT and FRT) that use the thermostable group II in-
tron reverse transcriptase, TGIRT-III. TGIRT has high
processivity and strand displacement activity, which makes
it possible to generate cDNA from short highly structured
RNA without size selection (Mohr et al. 2013; Nottingham
et al. 2016; Qin et al. 2016). Two of themethods targeting spe-
cific RNA species used RNA selection steps like size selection
(SSV) or poly(A) tail selection (FAV), while in the remaining
methods (URT, FRT, and FRV), RNAs were ribodepleted and
sequenced without size selection. The RNA was extracted
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FIGURE 1. Sequencing methods permitting simultaneous detection of transcripts with different sizes and structures reveal a human transcriptome
dominated by noncoding RNA. (A) Schematic of the human genome illustrating the predicted size distribution of different classes of RNA (size range
based on Ensembl annotations shown in parentheses). (B) Distribution of RNA in the human transcriptome as detected by different sequencingmeth-
ods. The RNA was extracted from the ovarian cancer model cell line SKOV3ip1 and subjected to different sequencing protocols using different RNA
selection methods and reverse transcriptases including size-selected viral reverse transcriptase sequencing (SSV), unfragmented, ribodepleted RNA
TGIRT-seq (URT), fragmented poly(A) selected viral reverse transcriptase sequencing (FAV), fragmented ribodepleted viral reverse transcriptase se-
quencing (FRV), fragmented ribodepleted RNATGIRT-seq (FRT). The intended target of the different methods is indicated above the method names.
The results are shown in the form of pie charts illustrating the distribution of RNA abundance in counts per million (CPM) or transcripts per million
(TPM). The results are the average of two biological replicates. The percentage of the main classes (≥2%) is indicated. The color legend for the dif-
ferent RNA classes is shown at the bottom. (C) Comparison between the capacity of viral and group II intron-encoded RTs to predict the abundance of
noncoding RNA. The noncoding RNA abundance obtained by the viral RT- or TGIRT-based sequencing methods FRV or FRT was plotted against
established estimates of the number of molecules per cell for each biotype (Tycowski et al. 2006). Pearson and Spearman coefficients are indicated at
bottom. A legend of the different classes of noncoding RNA and the number of genes considered from each type tested is shown in the middle.
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from the model ovarian cancer cell-line SKOV3ip1 and two
biological replicates for each protocol were sequenced to
read depths that vary between 15 and 300 million reads
(Supplemental Table S1). The correlation between the biolog-
ical replicates for each method is indicated in Supplemental
Table S2. In general, replicates for each method were highly
correlated. All comparisons between methods were per-
formed using counts per million (CPM) and transcripts per
million (TPM) to eliminate read depth biases. TPM is pre-
ferredwhen comparing RNAsof different lengths since longer
RNAs generate more fragments, hence more reads. CPM re-
flects themass ofmolecules whereas TPMdepicts the number
of molecules when using a fragmented library.
RNA used for preparing the SSV library was extracted us-

ing amirVana kit but without a gel purification step, enabling
the consideration of all RNA <200 nt in length (Deschamps-
Francoeur et al. 2014). This method is expected to accurately
detect uncapped RNA shorter than 200 nt. As expected, SSV
data sets possessed few reads generated from protein-coding
genes and instead were enriched in reads from noncoding
RNAs (Fig. 1B, left panel). However, the reads generated
from noncoding RNA were not appropriately distributed
among the different classes of noncoding RNA nor within
the same class of RNA. For example, while it is well estab-
lished that tRNA is the most abundant RNA family in the
cell, most reads (61% CPM and 70% TPM) corresponded
to snoRNAs, the vast majority of which were mapped to
box C/D snoRNA, while 6% of the reads originated from
miRNAs, and only 3% originated from tRNAs, which are dif-
ficult for retroviral RTs to reverse transcribe. Bias in the
detection of different RNAs using this method could also
be explained by adapter ligation bias to RNA ends, especially
the 5′ end in the case of capped RNA and by the difficulty of
viral RTs in reverse transcribing sncRNAs. Thus, while size
selection may enrich certain RNA species, its application to
total untreated RNA is not sufficient to accurately detect all
noncoding RNAs shorter than 200 nt.
In contrast, sequencing of total unfragmented ribodepleted

RNA using TGIRT (URT) succeeded in detecting all five clas-
ses of the main noncoding RNAwith lengths between 60 and
700 nt: tRNA, snoRNA, snRNA, 7SL, and 7SK. The majority
of the reads (56%CPMand 59%TPM) corresponds to tRNA,
followed by snoRNA (32% CPM and 33% TPM), while both
long noncoding RNA and miRNA were detected at low levels
(Fig. 1B, second panel). This suggests that unfragmented RNA
sequencing using TGIRT provides a better representation
of sncRNAs than size selection but performs equally poorly
in the detection of long polyadenylated RNAs and very short
RNAs.
Sequencing libraries produced by viral reverse transcriptas-

es after poly(A) selection (FAV) resulted in marked enrich-
ment (95% CPM and 86% TPM) of reads corresponding to
protein-coding RNA and a quasi-absence of noncoding
RNA with the exception of long noncoding RNA, which rep-
resent 10%of the TPMs (Fig. 1B,middle panel). The relatively

large proportion of TPM attributed to long noncoding RNA
suggests that a considerable number of long noncoding
RNAs are polyadenylated.
In contrast, sequencing of fragmented, ribodepleted re-

verse transcribed RNA using standard viral reverse transcrip-
tases (FRV) sampled a much larger number of RNA classes
(Fig. 1B, fourth panel). Most reads were still generated from
coding RNAs (82% CPM and 37% TPM) but 7SL RNA fol-
lowed close behind, generating 29% of the TPMs. Most other
noncoding RNAs (e.g., snRNA, snoRNA, and 7SK) were de-
tected, with the exception of tRNA and miRNA. Therefore,
while sequencing of fragmented RNAs using viral reverse
transcriptases permits the detection of both protein-coding
andmany classes of noncodingRNA, itmisses themost highly
expressed class of nonribosomal RNA in the cell (i.e., tRNA)
and biases the transcriptome composition in favor of protein-
coding RNA.
Strikingly, reverse transcription of fragmented, ribode-

pleted RNA using TGIRT (FRT) permitted the detection of
all classes of coding and noncoding RNA but poorly detects
miRNA, likely due to fragmentation and bead purification
(Nottingham et al. 2016). The distribution of the read counts
generated by FRT indicates that while the majority of reads
(CPM) are produced from protein-coding RNA, tRNA is
the most abundant RNA class (48%) as measured in TPM
(Fig. 1B, right panel). Surprisingly, the secondmost abundant
transcripts are the snRNAs, accounting for 19% of the TPM,
while snoRNAs and 7SL each represent 8% of the TPM (Fig.
1B, right panel). Since FRT efficiently detects tRNA while
poorly detecting miRNA, we conclude that it is best suited
for detection of RNA larger than 60 nt. Most importantly,
FRTwas able to correctly identify all ectopically added (spiked
in) RNA species from the ERCC (Supplemental Fig. S1). The
spike-in, which was added to the RNA extracted from differ-
ent cell lines, consists of a set of polyadenylated transcripts
covering a wide range of transcript lengths (250 to 2000 nt)
and several orders of magnitude in concentration. The
Pearson correlation between the sequencing estimated abun-
dance values and the actual concentration of the spike-in
RNAs added to cellular RNA during library preparation was
0.99, confirming the accuracy of the FRT-seq estimates for
polyadenylated RNAs (Supplemental Fig. S1). Therefore,
FRT appears to be a good tool for the simultaneous detection
of different classes of coding and noncoding RNA longer than
60 nt in a single RNA sample.

Accurate RNA quantification using fragmented
ribodepleted thermostable group II intron reverse
transcriptase sequencing (FRT)

Out of the five sequencing methods, only two, FRV and FRT,
were able to significantly detect both coding and noncoding
RNAs in a single RNA sample. FRV generated a higher pro-
portion of reads from 7SL and 7SK than FRT, while FRT was
the only method to detect both tRNA and protein-coding
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RNA in a single RNA sample. To address the question of
which method most accurately represents the true hierarchy
of RNA abundance in human cells, we first compared the se-
quencing estimates of different species of noncoding RNA to
the number of MPC previously established using immuno-
precipitation of in vivo labeled RNA (Mimori et al. 1984;
Tycowski et al. 2006; Palazzo and Lee 2015). The group of
RNAs considered covers the main classes of sncRNAs, in-
cluding major and minor spliceosome components, 7SK,
7SL, RNase P, RNase MRP, and snoRNA. As most of these
RNAs are encoded by multiple genes we grouped all reads
generated from these repeated genes together to permit com-
parisons with previous biochemical estimates that consider
all transcripts regardless of their origin (Mimori et al. 1984;
Tycowski et al. 2006). Most sequencing methods using a se-
lection step, even those that specifically enrich for short RNA
(<200 nt) like SSV andURT correlated very poorly withMPC
measurements (Supplemental Fig. S2). In contrast, methods
sequencing fragmented, ribodepleted total RNA like FRV and
FRT correlated better with MPC values (Fig. 1C). In general,
FRT was better at detecting transcripts of all sizes while FRV
overestimated longer RNA species and underestimated short-
er RNA species (Supplemental Fig. S3). Indeed, most abun-
dance values produced by FRT strongly correlated with
MPC values with much less variation than FRV.

Strikingly, FRT showed similar amounts of many sncRNAs
of the same class. For example, U4, U5, and U6, which com-
pose themajor spliceosomal tri-snRNP, have almost identical
abundance values using FRT (between 2% and 9% pairwise
difference in abundance), as do minor spliceosome compo-
nents U4atac and U6atac (2% difference in abundance), as
indicated in Supplemental Table S3. Consistently, the minor
spliceosome snRNAs, which have fewer splicing targets, were
less abundant than their major spliceosome counterpart, as
would be expected (Fig. 1C, right panel).

To better understand the differences between bacterial
(FRT) and viral (FRV) reverse transcriptase sequencing
methods, we visually compared these two methods using
splatterplots (Mayorga and Gleicher 2013). As indicated in
Supplemental Figure S4A, in general FRV tended to underes-
timate sncRNAs in comparison with FRT. This FRV bias
was most pronounced in the case of snoRNA and tRNA
(Supplemental Fig. S4B). The bias in the case of snoRNA ap-
peared to include all classes of snoRNA but was most pro-
nounced in the case of box C/D snoRNA (Supplemental
Fig. S5). Together these comparisons clearly indicate that se-
quencing using FRTmost accurately predicts the hierarchy of
sncRNA abundances within total nonfractionated RNA
samples.

We used PCR as an independent test to determine which
sequencing method performed best for the quantification
of the different classes of RNAs. For sncRNAs, we used
dPCR, which accurately counts the number of RNA mole-
cules in a given volume and thus supports the comparison
of the abundance of different molecules from the same sam-

ple. As indicated in Supplemental Figure S6, the selection-
based sequencing methods performed poorly when com-
pared to dPCR, while the ribodepleted sequencing methods
FRV and FRT correlated much better for sncRNAs.
The abundance of different protein-coding RNAs obtained

by sequencing was also compared to RT-qPCR, which gener-
ally showed good correlation for all methods (Supplemental
Fig. S7). However, methods selecting for noncoding RNAs
like SSV and URT did not detect several coding RNAs result-
ing in lower correlation with RT-qPCR than the FAV, FRV,
and FRT methods. Overall, FRV and FRT correlated slightly
better with RT-qPCR than FAV, even though the latter is spe-
cifically enriched in protein-coding genes.
To evaluate the capacity of the different sequencing meth-

ods to detect the ratio of splice variants, we compared the
percent splicing index (PSI) estimated by each method and
quantified by rMATS (replicate multivariate analysis of tran-
script splicing) (Shen et al. 2014) to that generated by the
well-established splice sensitive endpoint PCR technique
(Klinck et al. 2012). As indicated in Supplemental Figure
S8, the best correlation with the endpoint PCR value was ob-
tained by FAV, which enriches for protein-coding RNAs,
while methods selecting for noncoding RNA either failed to
produce PSI values (SSV) or did not correlate well (URT)
due to poor detection of the target mRNA. The total RNA se-
quencing methods FRV and FRT were close seconds after
FAV, producing similarly good correlation values with
PCR. The slightly better correlation (0.04 difference in both
Spearman and Pearson coefficients) of FAV is due mostly
to FRV and FRT producing lower estimates of a few PSI val-
ues, possibly due to the lack of mRNA selection in the case of
FRV and FRT. Overall, while selection for protein-coding
genes through poly(A) enrichment may slightly improve es-
timation of the ratio of splice variants, FRT provides the best
option to evaluate splicing ratio within a sample without los-
ing the ability to detect other classes of RNA.

The transcriptome of model cell lines is defined
by a small number of highly expressed noncoding
genes and a large number of moderately expressed
protein-coding genes

The capacity to accurately rank the abundance of one RNA
molecule relative to another provides a unique opportunity
to probe the composition of the human transcriptome.
Accordingly, we used the sequencing reads generated by
FRT to study the distribution of different coding and non-
coding RNAs in the human transcriptome. To characterize
the origin of the noncoding RNA dominance of the tran-
scriptome, we first classified coding and noncoding RNAs ac-
cording to their different levels of RNA abundance. The
distribution of abundance per gene indicates that most non-
coding genes are poorly expressed (<1 TPM), while most
protein-coding genes are expressed at levels varying from
1 to 10 TPM (Fig. 2A). In contrast, 519 noncoding RNAs
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FIGURE 2. The composition of the human transcriptome is dominated by a small subset of highly expressed noncoding RNA genes and a large num-
ber of moderately expressed protein-coding genes reflecting cellular phenotypes. (A) The abundance of both coding and noncoding gene transcripts
was determined using FRT, separated into bins based on transcript abundance, and the number of genes per bin illustrated in the form of a bar graph.
(B) The genes producing the top 10 overall most abundant RNAs and the top 10 most abundant protein-coding RNAs are shown as a bar graph. The
rank of each transcript based on abundance in transcript per million (TPM) is indicated on top. (C) Interaction map of the most expressed protein-
coding genes in the model ovarian cancer cell line SKOV3ip1. Genes producing RNAs with more than 100 TPM were identified, and their functional,
genetic, and physical interactions obtained from STRING (Szklarczyk et al. 2015) and illustrated as an interaction network. The main gene ontology
annotations for the genes are indicated at bottom right (also see Supplemental Table S6). Open brackets indicate examples of complexes associated with
cancer phenotypes and other established phenotypes of SKOV3ip1 cells.
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have abundances over 100 TPM, 164 of which are above 1000
TPM. Therefore, it appears that the human ribodepleted
transcriptome is dominated by transcripts generated from a
small subset of noncoding RNA genes. Indeed, 50% of the
human transcriptome is produced from only 50 short non-
coding RNA genes (Supplemental Fig. S9). To ensure that
these results are not specific to cancer cell lines, we compared
the results obtained from the ovarian cancer model cell
line SKOV3ip1 to that generated from the immortalized nor-
mal ovarian cell line INOF. As indicated in Supplemental
Figures S10 and S11, the overall hierarchy of RNA abundance
did not change, confirming that most of the transcriptome is
produced by a small number of noncoding RNA. Indeed, the
main differences between the two cell lines are in the amount
of tRNA, which is higher in the INOF and in the order of
abundance of certain mRNAs that reflects the different na-
ture of these two cell lines.

Examinationof the top10most expressedgenes in themod-
el ovarian cancer cell line SKOV3ip1 indicated that after re-
moval of rRNA, the most abundant transcripts are RN7SL2
(>68,000 TPM), which encodes the noncoding RNA compo-
nent (7SL) of the signal recognition particle followed by tRNA
genes, a gene encoding the U2 snRNA (RNU2-2P) and the
RN7SK gene encoding the noncoding RNA 7SK (Fig. 2B). As
expected, seven out of the top 10 most abundant RNAs are
tRNAs, but surprisingly three of these are mitochondrial
tRNAs, with MT-TV, encoding a valine mitochondrial
tRNA, being themost abundant cellular tRNA. This could re-
flect the large number of mitochondria per cell or that mito-
chondrial tRNAs are more stable than their cytoplasmic
counterparts. Interestingly, no single U1 gene figures among
the 10 most expressed non-rRNA genes. Indeed, over a hun-
dred copies of U1 are annotated in the human genome, and
the transcripts of 10 of these copies produced 3000 and 9000
TPM (Supplemental Fig. S12), resulting in an extremely high
overall abundance for U1. Greater than 96% of U1 transcripts
are produced by 10 highly expressed copies, while in contrast
other highly expressed noncoding RNAs such as 7SL and
7SK, although encoded by multiple genes in humans, are
mostly expressed froma single locus in the SKOV3ip1 cell line.

Overall, the top 10 most abundant RNAs are noncoding
RNAs and have relative transcript counts between 15,000
and 85,000 TPM, while the top 10 most abundant protein-
coding RNAs only reach between 400 and 1500 TPM
(Supplemental Table S4). This suggests that the maximum
steady state output of coding and noncoding RNA genes dif-
fers by one to two orders of magnitude and likely reflects a
combination of higher transcription rate and increased
RNA stability. However, it is important to note that the
most abundant protein-coding RNA in this cell line,
EEF1A1, ranks 136th overall and is followed by other noncod-
ing RNAs (Fig. 2B; Supplemental Table S4), suggesting that at
least some protein-coding genes are more expressed than
most noncoding RNAs. Nevertheless, in general the most
abundant RNAs are generated by noncoding RNA genes.

Examination of the function of the genes encoding the top
10 most abundant protein-coding RNAs suggested that the
most highly expressed genes are implicated in nontissue-spe-
cific functions like translation (e.g., EEF1A1 and EEF2), cyto-
skeleton and organelle organization (e.g., TMSB10, TMSB4X,
and AHNAK) (Smart et al. 2010; Davis et al. 2014; Abbas et al.
2015; Zhang et al. 2017). Consistently, analysis of the func-
tional relationship between the most abundant (>100 TPM)
protein-coding RNAs revealed a tight functional network in-
volved in organelle organization, regulation of apoptosis, and
translation (Fig. 2C; Supplemental Tables S5, S6). Notably, al-
most all these genes are ubiquitously expressed in all human
tissues, and many produce some of the most abundant pro-
teins in the human proteome (Ramsköld et al. 2009; Beck
et al. 2011). Comparison between the transcriptome of
SKOV3ip1, an invasive epithelial cell line, and INOF, a mes-
enchymal normal immortalized cell line, revealed a similar
distribution of the RNA biotypes (Supplemental Fig. S10).
The distribution of coding versus noncoding RNAs was also
similar for INOF and SKOV3ip1, with the most abundant
noncoding RNAs being 10 to 100 times more abundant
than the most abundant coding RNAs (cf. Supplemental
Fig. 10C,D to Fig. 2A,B). Once again, the top 10 most abun-
dant RNAs in INOF are dominated by tRNAs and 7SL.
Additionally, the 50 most abundant RNAs in INOF (all non-
coding) represent over 50% of all ribodepleted TGIRT-seq
detected transcripts, as found for SKOV3ip1. However, while
the mRNAs coding for the housekeeping proteins like the
translation factors EEF1A1 and EEF2 were of similar abun-
dance in both cell lines, major differences were found in the
order of the mRNA coding for cancer associated proteins
like ENO1, SOD2, and S100A4. For example, the mRNA of
the enolase 1 gene (ENO1) known to be overexpressed in
multiple cancers (Tsai et al. 2010; Zhang et al. 2010; Yu
et al. 2012, 2014; Principe et al. 2017) was ranked 9 among
protein-coding genes for its expression in SKOV3ip1 and 83
in INOF. Consistently the mRNA coding for the cancer-asso-
ciated calcium binding protein S100A4 (Kikuchi et al. 2006;
Maelandsmo et al. 2009) was ranked 21 in SKOV3ip1 and
10953 in INOF (Supplemental Tables S4, S5). Therefore,
while FRT may detect cell type–specific differences in the
mRNA of protein-coding genes, the overall hierarchy of
RNA abundance remains similar in both normal and ovarian
cancer cell lines. These results support the overall reproduc-
ibility of the FRT-based transcriptome profiling and suggest
that the detected proportions of RNA biotypes could be gen-
eralized to different cell types.

Ribonucleoprotein particles are generated from highly
abundant noncoding RNA and proteins produced
by uniformly less abundant protein-coding RNA

After establishing the accuracy of TGIRT-seq for the compar-
ison among and between different RNA families, we further
interrogated our SKOV3ip1 data sets to characterize the
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relationships between different RNAs. RNAs forming stable
ribonucleoprotein complexes are among the most studied
RNA in cells, yet we know very little about the relative abun-
dance of the noncoding and protein-coding RNAs used in the
biogenesis of the same RNP complex. Examination of the ra-
tio of noncoding and coding RNAs of the main RNP classes
in SKOV3ip1 indicated that on average noncoding RNAs
were 3000-fold more abundant than transcripts encoding
proteins associated with the same complex (Fig. 3A). The
lowest ratio between noncoding and coding RNAs was found
in the tri-snRNP and RNase P, while the highest was found in
the U2 and U1 snRNPs. This suggests that the noncoding
RNA component of RNPs may be more highly transcribed
and more stable than their protein-coding counterparts to
match the translational output of a mostly uniform popula-
tion of mRNAs.
Examination of the relative abundance of different pro-

tein-coding RNAs within each RNP complex indicated that

the mRNAs coding for the protein components of each com-
plex often accumulated at similar levels, except those encod-
ing certain proteins like SRP19 (Fig. 3B–D; Supplemental Fig.
S13). In the case of SRP, the SRP19 mRNA was much less
abundant than the other five protein-coding RNA, suggesting
that this RNA, if translated with the same efficiency as those
for the other proteins, may function as a limiting factor
for this complex (Fig. 3B). Indeed, SRP19 is a key regulator
of 7SL RNA folding and assembly (Maity et al. 2008).
Differences in the abundance of the protein-coding RNA as-
sociated with the same complex could also be offset by differ-
ences in translation levels or in protein stability. However,
genes associated with the same complex generally appeared
to produce similar amounts of protein coding RNA (Supple-
mental Fig. S13). Overall the results indicate that while the
mRNA abundance of certain RNP components might be lim-
iting, most are similarly expressed and dominated by the
noncoding RNA component.

A B

C D

FIGURE 3. Major ribonucleoprotein complexes are generated frommostly uniformly abundant populations of protein-coding transcripts and highly
abundant noncoding RNAs. (A) The ratio of the noncoding and coding RNAs associated with seven established ribonucleoprotein complexes as de-
termined using FRT are illustrated in the form of a bar chart. The dashed line indicates the average ratio of noncoding to coding RNA, which is ap-
proximately 3000:1. The abundance of mRNAs coding for key protein components of SRP (B), tri-snRNP (C), and U2 snRNP (D) complexes are
plotted as a fraction of their respective noncoding RNA. The solid line indicates the average abundance level of the protein-coding RNA of the com-
plex, and the dashed lines indicate 5% and 95% confidence intervals. The standard deviation of two biological replicates is indicated in the form of
error bars.
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snoRNA abundance depends on the type of snoRNA
and the function of the host gene

While tRNAs and snRNAs dominate the nonribosomal RNA
noncoding transcriptome, snoRNAs compose the largest
class by number of genes with distinct transcripts. It is gener-
ally assumed that both methylation and pseudouridylation
snoRNAs are expressed at the same level, given their common
function in ribosome biogenesis (Dieci et al. 2009). However,
this notion has never been directly investigated. Examination
of box H/ACA and box C/D snoRNA abundance indicated
that∼30% of box C/D snoRNA genes do not produce detect-
able amounts of RNA versus 20% of box H/ACA genes in
SKOV3ip1 cells (Supplemental Fig. S14A). Most of the non-
expressed or poorly expressed snoRNA genes are recently
added annotations that exist in Ensembl but not in the man-
ually curated snoRNAbase database (Supplemental Fig. S15).
Overall, there was a higher proportion of H/ACA genes that
generated a detectable quantity of transcripts than C/D genes.
However, for the snoRNAs that are detected, the abundance
of RNAs produced by H/ACA and C/D snoRNA genes was
similar (Supplemental Fig. S14A).

Sincemany snoRNAs in the human transcriptome are pro-
duced from introns of protein-coding genes, we examined the

abundance of these snoRNAs relative to the function and
abundance of their host genemRNAs. Interestingly, the abun-
dance of snoRNAs was found to vary in a subtype-specific
fashion based on the function of the host genes. For example,
H/ACA snoRNAs encoded in the introns of genes coding for
ribosomal proteins, and noncoding RNAs were significantly
more abundant than C/D snoRNAs encoded in introns of
the same type of genes (Supplemental Fig. S14B). In contrast,
C/D snoRNAswere significantlymore abundant thanH/ACA
snoRNAs when they are found in genes implicated in RNA
processing and splicing (Supplemental Fig. S14B). In some
cases, snoRNA abundance exceeded that of the host gene
(Supplemental Fig. S14C) and in general, more H/ACA
than C/D snoRNA were at least 10-fold more abundant
than their host gene RNAs (35% versus 19%).
To better understand the relationship between the impact

of host gene expression and its influence on resident
snoRNA abundance, we compared the host and snoRNA
abundances for each snoRNA and categorized them based
on host gene function. As indicated in Figure 4A,B and
Supplemental Figure S16, there were more C/D than H/
ACA snoRNAs encoded in the introns of ribosomal protein
genes (41 C/D versus 18 H/ACA), and the abundance of the
41 C/D snoRNA varied greatly from 100 times less abundant

A B

FIGURE 4. The abundance of snoRNAs relative to the host mRNA in which they are encoded depends on the type of snoRNA and the function of the
host genes. (A,B) Scatter plots illustrating the relationship between the abundance of box C/D (A) and H/ACA (B) snoRNAs and the protein-coding
RNA produced from their host genes, as determined by FRT. The function of the different host genes is indicated in the legend at the bottom. RP
indicates ribosomal protein. The dashed boxes indicate area with the most visible difference between C/D and H/ACA snoRNA.
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to 50 times more abundant than the host gene mRNA (Fig. 4;
Supplemental Fig. S16). In contrast, only 18H/ACA snoRNAs
were found encoded within introns of ribosomal protein
genes and most were expressed at a level equal to or greater
than their host genes (Fig. 4B; Supplemental Fig. S16). Over-
all, comparison between the abundance of snoRNA and their
host genes indicated that in general there is little correlation
between the abundances of the host and passenger snoRNA
(Supplemental Fig. S14D). We conclude that the abundance
of snoRNA is not obligatorily linked to the expression
level of its host RNA (i.e., a highly abundant snoRNA could
be produced from the same gene as a scarce mRNA).

The abundance of snoRNA depends at least partially on
the nature of the targeted modification sites

Since the most well-characterized function of snoRNA is
guiding RNA modifications, we next examined the relation-
ship between the abundance of each snoRNA and the location
of their target modification site. We compared the abundance
of different snoRNAs modifying rRNA to each other and
to those targeting snRNA including scaRNA (Fig. 5; Supple-
mental Fig. S17). In general, the proportion of H/ACA
snoRNAs targeting a site in the rRNA modification site was
more than that of C/D snoRNAs, while more C/D snoRNAs
targeted snRNA or have no known targets (orphan) than
H/ACA snoRNAs (Fig. 5A). The abundance of orphan
snoRNAs was on average lower than the abundance of
snoRNA with known rRNA targets (Fig. 5B). Indeed, the
most abundant snoRNAs (>1000 TPM) are either involved
in the processing of pre-rRNA (U3/SNORD3 and E1/
SNORA73) or target four specific regions in 28S rRNA and
two regions in 18S rRNA (Fig. 5C–E). The snoRNA targeting
snRNA in most cases had similar transcript levels and were
about 100 times less abundant than their target RNAs
(Supplemental Fig. S17A–E). In contrast, almost all of the
highly abundant snoRNAs (>1000 TPM)were found to target
modifications in the 28S and 18S rRNA structure surrounding
the peptidyl transferase center (PTC), the site immediately ad-
jacent to tRNA binding sites, and themRNA and protein tun-
nels (Fig. 5E).

DISCUSSION

Most approaches for transcriptome analysis and RNA quan-
tification compare RNA levels under different conditions and
in most cases focus on a specific class of RNA (Ozsolak and
Milos 2011). In this study, we show that most current se-
quencing techniques are not suitable for comparing the
abundance of RNA from different classes of coding and non-
coding RNA. Current techniques that use ribodepleted total
RNA and standard viral RTs tend to underrepresent sncRNAs
and in particular tRNA, while techniques enriching for
short noncoding RNAs do not detect protein-coding RNA.
Surprisingly, RNA class-specific sequencing techniques like

size or poly(A) selection-based techniques either do not pro-
vide a particular advantage or simply fail to properly detect
the relative abundance of RNA within the targeted class. In
contrast, the ribodepleted TGIRT-seq technique (FRT)
used in this study shows a more faithful representation of
the distribution of all classes of coding and noncoding
RNA longer than 60 nt in two different human cell lines.
Indeed, FRT accurately predicts the hierarchy of both non-
coding and coding RNA abundance relative to themselves
and each other as compared to both biochemical and RT-
qPCR estimates (Fig. 1; Supplemental Fig. S2–S8). It is now
possible to detect protein-coding RNAs and their regulatory,
nested or associated noncoding RNAs in the same sequencing
reaction.
Using this newly developed technique, we were able to

show that the nonribosomal RNA human transcriptome is
composed mainly of tRNA and snRNA. This is consistent
with previous studies showing that tRNA genes produce the
highest number of transcripts in the cell (Palazzo and Lee
2015). Surprisingly, we found that RNAs representing the
RNA component (7SL) of the signal recognition particle,
mainly produced from two loci (ENSG00000274012 and
ENSG00000265735), constitute 4%–8% of the nonribosomal
RNA transcriptome (Figs. 1, 2; Supplemental Fig. S10). Con-
sistently, examining the number of sequencing reads generat-
ed from different genes indicates that a large number of
noncoding transcripts are generatedmainly from a few highly
expressed genes (Fig. 2; Supplemental Figs. S9, S10; Supple-
mental Table S4), while protein-coding transcripts are gener-
ated from a large number of modestly expressed genes (Fig. 2;
Supplemental Fig. S10; Supplemental Tables S4, S5).
The capacity of a sequencing method to faithfully repro-

duce the natural diversity of a transcriptome depends on its
ability to detect the largest number of RNA classes and tran-
scripts within each class. Based on this feature, FRT appears
to generate the most comprehensive picture as it detects the
largest number of RNA classes and RNA transcripts within a
class (Fig. 1). However, both URT and FRT seem to under-
represent RNAs shorter than 60 nt due to either fragmenta-
tion or difficulty in separating cDNAs of short RNAs from
similarly sized primer-dimers by bead purification (Notting-
ham et al. 2016). Unfortunately, enriching for miRNA using
size selection based methods, while increasing the number of
miRNA detected, would not necessarily provide the correct
ranking between different miRNA and related (e.g., precur-
sor) noncoding RNA. This is evident from the results of
the sequencing methods using selection steps (e.g., SSV and
FAV), which do not enhance their capacity to correctly
rank the RNAs within the selected, presumably due to bias
within the selection process (Fig. 1; Supplemental Figs. S2,
S6). The endpoint PCR determined splicing indexes correlat-
ed well with those determined by FAV and FRT (Supplemen-
tal Fig. S8), suggesting that enrichment of polyadenylated
mRNA is not essential for the ratio of alternative splicing.
Therefore, it appears that the best way forward for miRNA

RNA-seq quantification of coding and noncoding RNA

www.rnajournal.org 959

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.064493.117/-/DC1


A B

C

E

D

FIGURE 5. The abundance of snoRNAs correlates with their function. (A) Distribution of snoRNA by target type. The proportion of expressed box
C/D snoRNAs (dark gray) and box H/ACA (light gray) targeting rRNA, snRNA, or no known target (orphan) is indicated in the form of a bar graph.
(B) Box plot displaying the distribution of abundance of both box C/D (dark gray) and H/ACA (light gray) snoRNAs as a function of their target type.
The abundance of snoRNAs targeting the 28S rRNA, 18S rRNA, snRNA, and those with no known target (orphan) were identified using FRT and the
average value of two biological replicates plotted, with the solid line indicating the median value. (C) Position of the 28S rRNA modification sites
targeted by the most abundant snoRNA. The 28S methylated or pseudouridylated residues were binned according to their position in the molecule,
counted, and then their proportion plotted as a bar graph. The white bars indicate the proportion of all known modified residues found at the in-
dicated position, while the gray bars indicate the proportion of those residues modified by the most abundant snoRNA (>1000 TPM) as determined
by FRT. (D) Position of the 28S (top) and 18S (bottom) rRNA modification sites targeted by the most abundant snoRNA. (E) Three-dimensional
model of the ribosome featuring the modification sites targeted by the most abundant snoRNA. The model was generated by the 3D rRNA modifi-
cationmaps database tool kit (Piekna-Przybylska et al. 2008). The rRNA is shown in dark gray for the 28S large subunit rRNA and light gray for the 18S
small subunit rRNA. A tRNA is shown in the A (light blue), P (purple), and E (pink) sites and the approximate position of the mRNA and nascent
peptide are indicated in blue and orange, respectively. The pseudouridylation and methylation sites targeted by the most abundant snoRNAs are
shown in red and green, respectively. The position of the peptidyl transferase center (PTC) is indicated by the yellow circle.
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would likely be a modified TGIRT-seq method that mitigates
the formation of primer dimers enabling better recovery of
RNAs smaller than 60 nt.
Another way in which to evaluate different methods is how

well these methods rank RNA transcripts relative to one an-
other. This is complicated as it is difficult to ascertain the ab-
solute correct rank of RNA. Spike-in RNAs have been used
previously to compare the abilities of different methods to
discriminate between the abundance of distinct transcripts
(Jiang et al. 2011; Nottingham et al. 2016). According to
this standard of quality the FRT sequencing method per-
forms very well with an almost perfect detection of ERCC
spike-ins pattern (Supplemental Fig. S1). We used three ad-
ditional criteria to evaluate the capacity of a given method to
rank RNA abundance relative to each other. The first com-
parison was between the sequencing results and established
ranks of transcripts determined using quasi-linear detection
techniques like in vivo labeling techniques (Mimori et al.
1984; Tycowski et al. 2006; Ryan et al. 2008). The second
comparison was the correlations with dPCR, RT-qPCR,
and endpoint RT-PCR that compares the abundance of
two splice variants using a single primer pair. In the case of
end-point RT-PCR, we did not compare one amplicon to an-
other but rather between each amplicon and the value ob-
tained from sequencing data. Thirdly, we evaluated the
capacity of each technique to identify the abundance of dif-
ferent classes of RNA. The results indicated that the highest
correlation between methods was found between FRT and
the MPC data obtained using in vivo labeling (Fig. 1C).
Furthermore, there is a good general correlation between
dPCR, RT-qPCR and certain sequencing techniques like
FRT (Supplemental Figs. S6E, S7E). The endpoint RT-PCR
estimates of the ratio of splice variants correlated only slightly
better with FAV, which enriches for polyadenylated RNA.
Most importantly the data obtained from FRT matched the
expected tendency of protein-coding genes with similar func-
tions to be expressed at similar levels (Figs. 1, 3, 4).
Direct comparison between different classes of RNA indi-

cates that the majority of nonribosomal RNA transcripts
(89%–96% according to FRT) are noncoding. This high
abundance of noncoding RNA was previously predicted by
class-specific analyses and would be expected for RNA fam-
ilies with stoichiometric functions like tRNA (Palazzo and
Lee 2015). Indeed, a very high number of tRNAs is required
to deliver the amino acids needed to supply the translation of
all protein-coding genes in cells (Wilusz 2015). However, it
was surprising to detect almost 1.8 times more spliceosomal
snRNAs than protein-coding gene RNAs (Fig. 1B). Given the
catalytic nature of the splicing reaction one might expect a
much lower number of the subunits of the catalytic core of
the spliceosome compared to its protein-coding RNA sub-
strates (Wachtel and Manley 2009). Explanations for the
high abundance of snRNA, could include (i) the previously
suggested cotranscriptional assembly of the splicing complex
prior to synthesis of the 3′ splice site, which may slow the

turnover rate of the spliceosome, (ii) the large number of
splice sites per mRNA that need recognition by matching
number of snRNA, or (iii) some snRNAs serve other nonspli-
ceosomal functions (Blázquez and Fortes 2013; Naftelberg
et al. 2015). Indeed, one of the most highly expressed
snRNAs, U1, was shown to form a stable complex with pro-
tein-coding RNAs to protect it from premature cleavage and
polyadenylation (Kaida et al. 2010; Blázquez and Fortes
2013). Similarly, one might hypothesize that U2 snRNA
may also have an extra-spliceosomal function given its abun-
dance level that almost matches that of U1 (Supplemental
Table S4). Regardless of this possibility, it is clear that the
spliceosome is in high demand since all the spliceosomal
snRNAs are among the most abundant RNAs in the cell
(Fig. 1B; Supplemental Fig. S10; Supplemental Table S4).
The high-abundance of many noncoding RNAs could be

partially explained by the high transcription rate of RNA po-
lymerase III (Arimbasseri et al. 2014). Indeed, RNA Pol III
plays a central role in shaping the transcriptome landscape,
as it is responsible for the transcription of two of the most
abundant gene families, tRNA and 7SL RNA (White 2004).
However, it is now clear that this cannot be the only explana-
tion for the strong abundance of sncRNAs given the relatively
high abundance of snRNA transcribed by RNA polymerase II
(Egloff et al. 2008). The mechanisms controlling RNA abun-
dance are likely a combination of gene multiplication and
rates of transcription and RNA turnover. In the case of
snRNAs, each RNA species is encoded by multiple genes
but not all are expressed. However, those that are expressed
produce many more transcripts than most mRNA genes
(Figs. 2, 3; Supplemental Table S3; Supplemental Figs. S12,
S13; Egloff et al. 2008). Overall, it is clear that most of the hu-
man transcriptome is populated by transcripts originating
from a limited set of highly productive genes.
One obvious advantage of total RNA quantification is the

capacity to study the expression and biogenesis of stable ribo-
nucleoprotein complexes. The data shown in Figure 3 and
Supplemental Figure S13 indicate that while components of
the same RNP complex may have similar transcript abun-
dance there are few exceptions that deviate from this rule.
In some cases, this deviation from the consensus (e.g., Fig.
3B–D) might signal key components that may regulate or en-
sure the overall quality of the RNP biogenesis. For example,
the study of the different components of SRP indicates that
the RNAs coding for the protein components of this RNP
are divided into three subclasses based on their abundance
(Maity et al. 2008). The first includes two highly abundant
mRNAs (SRP14 and SRP9), the second includes moderately
abundant mRNAs (SRP72, SRP54, and SR68) and the third
consists of a single mRNA accumulating at a much lower level
than the others (SRP19) (Akopian et al. 2013). The most
highly abundant mRNAs, SRP14, and SRP9, encode struc-
tural proteins of SRP that are constitutively bound to the
RNA (Fig. 3B; Leung and Brown 2010). In contrast, the pro-
tein encoded by the least abundant mRNA, SRP19, functions
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as an activation signal that restructures the RNA to signal its
nuclear export and the completion of RNP assembly in the
cytoplasm (Fig. 3B; Maity et al. 2008). Therefore, the RNA
abundance in this case appears to be consistent with the bio-
logical function of its encoded protein. In general, the struc-
tural noncoding RNA components of the tri-snRNP, the U1
and U2 snRNPs, the SRP, the 7SK RNP, the MRP and the
RNaseP complexes are one thousand times more abundant
than the mRNAs that encode their protein partners (Fig.
3A). This suggests that on average each single mRNA mole-
cule needs to produce a thousand proteins to meet the de-
mand of its noncoding RNA counterparts.

To date, one of the most difficult RNA classes to detect us-
ing sequencing techniques has been snoRNA (Veneziano
et al. 2016). In general, snoRNAs are much longer than
miRNAs but shorter than most protein-coding genes, mak-
ing their abundances either not detectable or highly variable
using standard sequencing library preparation techniques.
Indeed, we have found that the use of size selection tech-
niques favors the detection of the shorter and less structured
box C/D snoRNA over the longer H/ACA snoRNA (Des-
champs-Francoeur et al. 2014). However, the use of FRT
now permits comprehensive inter-and intra-class compari-
son of snoRNA abundance (Fig. 4; Supplemental Figs. S14,
S16). The results of this comparison presented in Supple-
mental Figure S14 suggest that in general the abundance of
H/ACA and C/D snoRNA is similar as would be expected
from RNA with similar functions in the modification of
rRNA (Dieci et al. 2009; Watkins and Bohnsack 2012). How-
ever, we noticed that there are many more undetectable C/D
snoRNA than H/ACA snoRNA in the SKOV3ip1 transcrip-
tome (Supplemental Figs. S14A, S15). This could be due to
the larger number of orphan C/D snoRNA (those that do
not have an annotated target site), which are expected to
be less expressed than those targeting rRNA (Dupuis-San-
doval et al. 2015). The fact that most of the unexpressed
genes come from annotations in the Ensembl database but
are not included in the carefully curated snoRNAbase sug-
gests that the differences could come from mis-annotation
or a high number of pseudogenes (Supplemental Fig. S15;
Hubbard et al. 2007; Xie et al. 2007). Sequencing of a large
number of tissues and cell lines may better differentiate be-
tween these possibilities. In any case, it is clear that the differ-
ences between snoRNA abundance are not necessarily a
broad class-specific feature. Our study indicates that most
snoRNAs are tightly linked to the expression of their host
gene, which would be expected. However, we found that
many snoRNAs have marked differences in abundance
with their host genes and H/ACA and C/D snoRNA exhibit
different dependencies on their host genes (Fig. 4; Supple-
mental Fig. S14D). For example, H/ACA snoRNA abundance
correlated better with noncoding host genes than C/D
snoRNA. Similarly, the abundance of C/D snoRNAs nested
in genes encoding proteins involved in translation did not
correlate as well as that of H/ACA snoRNAs and their host

translation protein genes (Fig. 4; Supplemental Fig. S14D).
The origin of this variation is not readily clear but could be
explained by differences in the biogenesis or stability of
both H/ACA and C/D snoRNA.With the advent of improved
sequencing methods like TGIRT-based FRT that enable di-
rect comparison of most classes of coding and noncoding
RNA components, we can study the mechanisms of snoRNA
biogenesis and generate a comprehensive model of the inter-
play between the coding and noncoding components of the
transcriptome.

MATERIALS AND METHODS

Cell culture

The ovarian adenocarcinoma SKOV3ip1 and the ovarian immortal-
ized INOF cell line were grown in DMEM/F12 (50/50) medium and
OSE medium (Wisent), respectively. The medium in both cases was
supplemented with 10% fetal bovine serum and 2 mM L-glutamine.
Cell propagation and passaging were as recommended by ATCC
(American Type Culture Collection). Cells were trypsinized and col-
lected in 5 × 106 pellets, resuspended in 700 µL TRIzol (Ambion)
and kept at −80°C until RNA extraction.

RNA extraction and conventional sequencing library
preparation

The RNA used for SSV sequencing was extracted using a lowmolec-
ular weight RNA extraction kit (mirVana, Invitrogen) as previously
described (Deschamps-Francoeur et al. 2014), and from these sam-
ples, cDNA libraries were prepared using the TruSeq Small RNA
Sample Prep Kit (Illumina), which includes adapter ligation, reverse
transcription, and PCR amplification. The RNA used for FAV and
FRV sequencing was isolated and purified from 5 µg DNA-free total
RNA extracted using either a NEBNext Poly(A) mRNA Isolation
Module (New England Biolabs) in the case of FAV sequencing or
Ribo-ZeroGold (Illumina) in the case of FRV, according to theman-
ufacturers’ protocol. Library preparations were performed using the
NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New
England Biolabs) in order to generate an RNA-seq library from
100 ng of purified RNA. In the cases of URT and FRT, the RNA
was extracted using RNeasy Kit from Qiagen.

Construction and sequencing of TGIRT-seq libraries

TGIRT-seq libraries were constructed as previously described
(Nottingham et al. 2016; Qin et al. 2016). ERCC spike-ins (Kralj
and Salit 2013; Tong et al. 2016) were added to selected SKOV3ip1
library and used as control for detection uniformity. Further details
are provided in the Supplemental Methods section.

RNA-seq analysis

All data sets were passed through a quantification pipeline to obtain
CPM and TPM values. Fastq files were checked for quality using
FastQC and trimmed using Cutadapt (Martin 2011) and
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Trimmomatic (Bolger et al. 2014) (with TRAILING:30) to remove
adapters and portions of reads of low quality, respectively. Further
details are provided in the Supplemental Methods section.

Annotation modification

An annotation file in gene transfer format (.gtf) was obtained from
Ensembl (Yates et al. 2016) (hg38, v87). The annotation file was sup-
plemented with tRNA genes from GtRNAdb (Chan and Lowe 2016)
and with snoRNA genes from Refseq (O’Leary et al. 2016) that were
missing in Ensembl annotations (Supplemental Table S7). Further
details are provided in the Supplemental Methods section.

Gene biotype pooling

Gene biotypes as given by the Ensembl annotation files were pooled
for simplicity. The groups “Protein_coding,” “Pseudogene,” and
“Long_noncoding” were obtained by pooling biotypes as recom-
mended by Ensembl (http://useast.ensembl.org/Help/Faq?id=468).
The group “Other” corresponds to any other biotype not listed.

RT-qPCR, end-point RT-PCR, and dPCR analysis

RT-qPCR and dPCR primer design and validation were performed
by the Université de Sherbrooke RNomics Platform (http://rnomics.
med.usherbrooke.ca/) as previously described (Brosseau et al.
2010). (Primers used are listed in Supplemental Tables S8–S10.)
Further details are provided in the Supplemental Methods section.

DATA DEPOSITION

Additional data generated in this study have been submitted to the
NCBI Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.
gov/geo/). The SSV samples are available under the accession num-
ber GSE55946 (sample names SKOV3ip1_WT_1 and SKOV3ip1_
WT_2). The remaining samples were deposited under accession
number GSE99065.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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