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ABSTRACT
Background. Ganoderma lucidum, a valuable medicinal fungus, is widely distributed
in China. It grows alongside with a complex microbial ecosystem in the substrate. As
sequencing technology advances, it is possible to reveal the composition and functions
of substrate-associated bacterial communities.
Methods. We analyzed the bacterial community dynamics in the substrate during the
four typical growth stages of G. lucidum using next-generation sequencing.
Results. The physicochemical properties of the substrate (e.g. acidity, moisture, total
nitrogen, total phosphorus and total potassium) changed between different growth
stages. A total of 598,771 sequences from 12 samples were obtained and assigned to
22 bacterial phyla. Proteobacteria and Firmicutes were the dominant phyla. Bacterial
community composition and diversity significantly differed between the elongation
stage and the other three growth stages. LEfSe analysis revealed a large number of
bacterial taxa (e.g. Bacteroidetes, Acidobacteria and Nitrospirae) with significantly
higher abundance at the elongation stage. Functional pathway prediction uncovered
significant abundance changes of a number of bacterial functional pathways between
the elongation stage and other growth stages. At the elongation stage, the abundance
of the environmental information processing pathway (mainly membrane transport)
decreased, whereas that of the metabolism-related pathways increased.
Discussion. The changes in bacterial community composition, diversity and predicted
functions were most likely related to the changes in the moisture and nutrient
conditions in the substrate with the growth ofG. lucidum, particularly at the elongation
stage. Our findings shed light on theG. lucidum-bacteria-substrate relationships, which
should facilitate the industrial cultivation of G. lucidum.

Subjects Agricultural Science, Biodiversity, Biotechnology, Microbiology
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INTRODUCTION
Ganoderma lucidum belongs to the phylum Basidiomycota, and its growth mainly depends
on lignin as a carbon source (Mizuno et al., 1995). The fruiting bodies and spores of
G. lucidum are highly appreciated as health products in China for their richness in
polysaccharides and triterpenoids, which are demonstrated to strengthen the immune
system and inhibit tumor formation (Wang et al., 2002; Sakamoto et al., 2016). Because
of its high medicinal value, the planting area of G. lucidum is expanding. G. lucidum has
become the main economic pillar in some places due to the advantages of its cost-effective
production management, e.g., requiring a small investment, having a short life cycle and
yielding benefits fast (Boh et al., 2007). Like other edible fungi, the growth of G. lucidum
depends on many environmental factors (e.g., temperature, enzyme activity and microbial
community), which likely induce changes in the content of nutrients such as polysaccharides
and microelements in its fruiting bodies (Stajic et al., 2002; Tanaka et al., 2016). Li et al.
(2014) demonstrated that the nutrient content in different tissues of G. lucidum changed
with its growth and that it attributed to the extracellular enzyme activities. Significant
growth-related differences were present in crude polysaccharides and triterpenes in the
fruiting bodies of most of the G. lucidum strains that were tested (Fu et al., 2008). A greater
number of trace elements and heavy metals were found in the mycelia than in the fruiting
bodies or spores of G. lucidum (Xing et al., 2001). Studies have characterized the subtle
changes of various substances in the body of G. lucidum during its growth; however,
changes in microbial community in the surrounding cultivating environment or in the
substrate have seldom been studied.

As previously reported, bacteria in the surrounding soil or the culture media were
likely to change into endophytic bacteria, and play an important role in the growth of
edible fungi (Gagne et al., 1987; Elvira & Van, 2000). The endophytic bacteria assist their
host with nitrogen fixation, growth promotion and disease resistance (Mano & Morisaki,
2008; Zhang, 2010; Wang, Chen & Peng, 2016). Qiu et al. (2011) revealed that a variety
of microorganisms existed in the mushroom substrate and significantly affected the host
development. In particular, tiny changes inmicrobial communities in the culture substrates
may impact the growth and development of edible fungi (Cho et al., 2003). Ma, Chen &
Chen (2016) characterized the significant allelopathic effects of the dominant microbes
(mainly molds and bacteria) on the growth of G. lucidum in a continuous cropping
soil using culture-based methods and demonstrated that bacteria such as Clostridium,
Alkaligenes and Bacillus had stronger allelopathic effects on G. lucidum. In addition,
pollution rates were associated with changes in microbial communities in the industrial
production of Pleurotus eryngii (Lin et al., 2010).

The DNA-based community-fingerprinting methods, such as DGGE and T-RFLP
(Székely et al., 2009), are cost-effective ways to explore the changes in microbial community
structure in the environment. Nevertheless, these methods lack a clear description of the
microbial taxonomy and tend to underestimate microbial diversity with a relatively low
resolution. Currently, next-generation sequencing technology has overcome these issues
and is widely utilized to explore the distribution of microorganisms in diverse ecological

Zhang et al. (2018), PeerJ, DOI 10.7717/peerj.4975 2/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.4975


conditions, including freshwater lakes, marine water, agriculture soil, forest soil, thermal
vents and even in some valuable herbs (Patel & Jain, 2015; Gigliotti et al., 2015; Xia et al.,
2016;Meier, 2016; Ávila et al., 2016; Su et al., 2017).

Previous studies onG. lucidumwere mainly related to the cultivation technology and the
active components in fruiting bodies. There have been few reports on the dynamic changes
in microbial communities in the substrate at different growth stages of G. lucidum. In this
study, next-generation sequencing of the V3–V4 region of bacterial 16S rRNA gene was
used to determine the composition and diversity of bacterial communities and to predict
the potential functions of the dominant microorganisms in the substrate during the four
growth stages of G. lucidum (hyphal stage, budding stage, elongation stage and mature
stage).

MATERIALS AND METHODS
Cultivation of Ganoderma lucidum
The Ganoderma lucidum cultivar Chuan Yuanzhi No. 1, provided by the Soil and Fertilizer
Institute at the Sichuan Academy of Agricultural Sciences, has been deposited in the China
General Microbiological Culture Collection Center (CGMCC) with the strain number of
CGMCC 13174 on October 21st, 2016. The substrate was composed of cottonseed hull
(90%), wheat bran (5%), corn flour (4%) and gypsum (1%) (Fig. S1), all of which were
fresh, dry and unspoiled. The substrate was put into polypropylene cultivation bags (size:
17 cm× 33 cm× 0.005 cm). One side of the polypropylene bag was covered with breathable
paper for air entry during the cultivation of G. lucidum. The cultivation bags were then
autoclaved at 121 ◦C for 2 h. The purpose of autoclaving was to create a relatively aseptic
environment for mycelium germination. The existence of microbes in the substrate would
likely acidify the substrate, affecting the germination and growth of G. lucidum. Therefore,
it was a good cultivation practice to sterilize the substrate before inoculation of the fungus
G. lucidum. After sterilization, the bags were cooled to room temperature and placed in
a laminar flow cabinet for inoculation of G. lucidum (Fig. S2). A small piece of colonised
grain (approximately 80 g) that was filled with mycelium of G. lucidum with great vitality
was inoculated into each cultivation bag. After inoculation, the cultivation bags were
placed in a greenhouse in the cultivation site at Zhaojia, Jintang, China (N 30◦48′16.45′′,
E 104◦35′48.79′′). The space of the cultivation site had been previously ventilated, cleaned
and simply disinfected with lime before the experiment was carried out. The cultivation
bags were arranged in parallel in two rows and two layers with seven to eight bags in each
on the ground in the greenhouse and the edge of each group was reinforced with wooden
piles (Fig. S3).

The sampling of G. lucidum was done at the four growth stages: hyphal stage, budding
stage, elongation stage and mature stage. After inoculation, the mycelia of G. lucidum
began to germinate. The first sampling was done at the hyphal stage (approximately 35
days after the inoculation) when the mycelia of G. lucidum spread and subsequently filled
the whole culture medium. The mycelia twisted together. The second sampling was done
at the budding stage (approximately 46 days after the inoculation) when the primordia
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formed and started to differentiate. The third sampling was done at the elongation stage
(approximately 56 days after inoculation) when the promordia grew longer and the stipe
was formed. Cap differentiation began after elongation. The last sampling was done at
the mature stage (approximately 66 days after the inoculation) when the spores appeared
on the pileus surface and gradually covered the yellow edges. Disposable disinfected
gloves, sterilized tweezers and knives were used for sampling. At each growth stage, three
cultivation bags were brought to the lab and the substrate materials taken from different
parts of each cultivation bag were pooled together and homogenized (Fig. S4). Finally, a
total of twelve samples were collected in the four growth stages. The fresh samples were
stored at −20 ◦C in 2 mL Eppendorf tubes prior to DNA extraction.

Chemical analysis of substrate materials
Substratematerials at different growing stages ofG. lucidumwere collected and the chemical
properties were determined including pH value, moisture, total nitrogen, total phosphorus
and total potassium. The samples were first digested with sulfuric acid hydrogen peroxide.
Then the treatment solution of each sample was analyzed with the conventional method
according to Thomas, Sheard & Moyer (1967).

DNA extraction, PCR amplification and MiSeq sequencing
No less than 500 mg of substrate materials per sample were collected for DNA extraction.
Three biological replicates of samples taken at each growth stage were treated independently
to ensure the methodological reproducibility. The E.Z.N.A. R© Soil DNA kit (OMEGA
Bio-Tek, Norcross, GA, USA) was used to isolate DNA from the substrate following the
manufacturer’s protocol. DNA concentration wasmeasured using a UV spectrophotometer
(Bio Photometer; Eppendorf, Hamburg, Germany). The quality and size of the extracted
DNA was checked by 0.8% agarose gel electrophoresis.

The PCR amplification was performed by Shanghai Personal Biotechnology Co., Ltd
(Shanghai, China). Both the primer information and the PCR protocol have been described
in detail in Srinivasan et al. (2012). PCR amplification was performed using the bacterial
16S rRNA gene-specific primers 338F (5′-ACTCCTACGGGAGGCAGCA-3′) and 806R
(5′-GGACTACHVGGGTWTCTAAT-3′) with the following conditions: 98 ◦C for 2 min
(initial denaturation), 25 cycles of 98 ◦C for 15 s (denaturation), 55 ◦C for 30 s (annealing)
and 72 ◦C for 30 s (extension), and 72 ◦C for 5 min (final extension) (Langenheder &
Székely, 2011). The PCR products were purified with Agencourt AMPure Beads (Beckman
Coulter, Indianapolis, IN) and quantified using a Quant-iT Pico Green dsDNA Assay
Kit with a microplate reader (FLx800; Bio-Tek, Norcross, GA, USA) and were mixed
based on the concentration of each sample. Amplicon sequencing was performed on
Illumina’s MiSeq platform (Personalbio, Shanghai, China). The samples were barcoded
before pooling. The barcodes and adapters were trimmed with FASTX Toolkit. All raw data
were submitted to the Sequence Read Archive (SRA) database with the accession numbers
SRR5801759–SRR5801768 and SRR5801783–SRR5801784.
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Sequence and statistical analysis
Reads containing ambiguous ‘N’ or with length <120 nt or >140 nt were discarded.
High-quality sequences with 97% or greater similarity were clustered into OTUs using
UCLUST (Edgar, 2010), a sequence alignment tool, using QIIME pipeline version 1.7.0
(Caporaso et al., 2010). All non-bacterial sequences were removed after classification.
The most abundant sequence of each OTU was selected as the representative sequence
of this OTU. The relative abundances of the OTUs were calculated. The OTUs with
relative abundance lower than 0.001% of the total sequences across all samples were
removed (Bokulich & Mills, 2013). The multivariate statistical analyses were done using the
OTU relative abundance data in R environment (R Core Team, 2016). An unconstrained
ordination (non-metric multidimensional scaling NMDS) was used to visualize the broad
pattern of the distribution of bacterial communities. PERMANOVA was used to test the
significance of the difference in bacterial communities between different growth stages
of G. lucidum based on 999 permutations. Both NMDS and PERMANOVA analysis were
performed based on weighted UniFrac distance using the R vegan package (McArdle &
Anderson, 2001; Oksanen et al., 2008). The pairwise PERMANOVA was used to test the
difference in the bacterial community composition between two growth stages at each time,
when the growth stage was found significant to affect the bacterial community composition
in the overall term PERMANOVA test. The numbers of shared OTUs were presented in a
Venn diagram using the R VennDiagram package (Chen & Boutros, 2011). Bacterial alpha
diversity indices including observed OTUs, Chao1, ACE, Shannon and Simpson were
rarefied and calculated based on the smallest library size of the samples. LEfSe analysis
(Segata et al., 2011) was used to reveal the bacterial taxa that showed differential abundance
between different growth stages of G. lucidum at all taxonomic levels. PICRUSt software
(Langille et al., 2013) was used to predict the metabolic functions of bacterial communities
based on the microbial metabolic function categories in the KEGG database. All significant
differences were concluded at P < 0.05.

RESULTS
Chemical analysis of the substrate materials
The physicochemical properties of the substrate materials (e.g., acidity, moisture content,
total nitrogen content, total phosphorus content and total potassium content) changed
between the four growth stages ofG. lucidum (Table 1). The substrate was acidic throughout
the growth ofG. lucidum. Substrate pHwas lowest at the hyphal stage (4.34). After reaching
a peak at the budding stage (5.29), the substrate pH decreased at the later growth stages.
Substrate moisture content declined along with growth of G. lucidum. Particularly, the
moisture content dropped sharply at the mature stage. We observed a lower total nitrogen
content in the substrate at the budding and the elongation stages than at the hyphal and
mature growth stages of G. lucidum. Total phosphorus and potassium in the substrate
displayed the identical fluctuation pattern with the growth of G. lucidum. Both of them
showed the highest content at the budding stage and the lowest content at the elongation
stage.
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Table 1 Chemical properties of substrate.Mean± standard deviation. Statistical analysis was carried out by ANOVA using SPSS 19.0 software.
The Post Hoc tests were done with LSD method. Different lower-case letters showed significant difference (P < 0.05) in the substrate chemical prop-
erties between the different growth stages of G. lucidum.

Growth stage pH Moisture (%) Total nitrogen (g/kg) Total phosphorus (g/kg) Total potassium (g/kg)

Hyphal stage 4.34± 0.11 c 64.60± 1.08 a 13.53± 0.30 a 2.74± 0.13 b 13.31± 0.34 b
Budding stage 5.29± 0.15 a 58.01± 1.22 b 10.75± 0.29 b 3.36± 0.08 a 15.45± 0.13 a
Elongation stage 5.05± 0.01 b 54.48± 2.02 c 11.25± 0.59 b 1.64± 0.07 d 8.80± 0.19 d
Mature stage 4.89± 0.06 b 38.56± 1.54 d 12.60± 0.04 a 2.43± 0.03 c 11.47± 0.68 c

Taxonomy-based analysis of bacterial community
In total, 598,771 sequences from the 12 samples were clustered into 1200 OTUs at 97%
similarity. A total of 15.7% of OTUs were unclassified at the phylum level. The high quality
reads ranged from 25,996 to 69,618 OTUs between samples (Table S1). A total of 295
shared bacterial OTUs were found between the four growth stages of G. lucidum in the
substrate (Fig. 1). A total of 22 phyla were detected in the substrate at the four growth stages
of G. lucidum. As shown in Table 2, the most abundant phylum was Proteobacteria, which
accounted for 41.47%–72.86% (average 57.23%) of all the bacterial sequences, followed
by Firmicutes (22.50%–40.33%, average 34.12%). Together, these two phyla represented
80.12%–95.93% of the bacterial species. The less dominant phyla (average abundance
>1%) included Bacteroidetes (3.30%), Acidobacteria (2.75%) and Actinobacteria (2.03%).
A total of 195 genera were identified in the samples. Most of the identified genera belonged
to the phyla of Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria (Table S2). Of
the 24 major bacterial families (relative abundance >1%) showed in Fig. 2, 20 belonged
to Proteobacteria and Firmicutes. Among these major families, two families of Firmicutes
(e.g., Streptococcaceae and Bacillaceae) showed high relative abundance across all the
growth stages. The relative abundance of proteobacterial families such as Rhizobiaceae,
Bradyrhizobiaceae and Enterobacteriaceae changed greatly between the different growth
stages.

Bacterial alpha diversity
Bacterial alpha diversity indices significantly differed between the four growth stages of
G. lucidum (Table 3). The richness indices (e.g., observed OTUs, Chao1 and ACE) were
significantly higher at the late growth stages (e.g., elongation and mature stages) than
at the early growth stages (e.g., hyphal and budding stages). The Shannon diversity was
significantly higher at the elongation stage than at the hyphal stage. There was no difference
in the Simpson index between the different growth stages of G. lucidum.

Bacterial beta diversity
PERMANOVA test was used to test the effect of the growth stage of G. lucidum on
the bacterial community composition in the substrate. According to the pairwise
PERMANOVA test (Table 4), bacterial community composition significantly differed
between the elongation stage and the other three growth stages. NMDS, an unconstrained
ordination, was used to visualize the patterns of bacterial community distribution. The
separation of the bacterial community samples at the elongation stage from the other three
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Figure 1 Venn diagram showing the number of shared OTUs between different growth stages ofG. lu-
cidum.

Full-size DOI: 10.7717/peerj.4975/fig-1

Table 2 The average relative abundance of different bacterial phyla in the substrate during the four
growth stages ofG. lucidum. Others are all unclassified phyla.

Phylum Abu. (%) at
hyphal stage

Abu. (%) at
budding stage

Abu. (%) at
elongation stage

Abu. (%) at
mature stage

[Thermi] 0.01 0.01 0.02 0.01
Acidobacteria 3.08 2.11 5.64 0.04
Actinobacteria 1.11 0.87 3.37 2.58
Bacteroidetes 1.65 1.00 8.66 1.48
Chloroflexi 0.00 0.00 0.03 0.01
Cyanobacteria 0.09 0.02 1.54 0.03
Elusimicrobia 0.01 0.00 0.02 0.01
Firmicutes 40.37 34.96 40.06 20.70
Fusobacteria 0.04 0.03 0.07 0.04
Gemmatimonadetes 0.01 0.01 0.04 0.00
Nitrospirae 0.00 0.00 0.03 0.00
Planctomycetes 0.01 0.00 0.03 0.00
Proteobacteria 53.6 60.99 40.43 74.93
Tenericutes 0.00 0.00 0.00 0.02
Verrucomicrobia 0.00 0.00 0.01 0.01
Others 0.01 0.00 0.06 0.14
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Figure 2 OTU average relative abundances of the major bacterial families in the substrate ofG. lu-
cidum during all growth stages. Others: the families with relative abundances lower than 1% at each
growth stage of G. lucidum.

Full-size DOI: 10.7717/peerj.4975/fig-2

Table 3 Bacterial alpha diversity indices.Mean± standard deviation. Statistical analysis was carried out by ANOVA using SPSS 19.0 software.
The Post Hoc tests were done with LSD method. The index of the observed OTUs, was used to evaluate the observed OTU richness, whereas the
Chao1 and ACE were used to estimate the total (observed and unobserved) OTU richness of the bacterial community. The indices of Shannon and
Simpson were used to access the richness and evenness of bacterial community, respectively. Different lower-case letters showed significant differ-
ence (P < 0.05) in the diversity indices between the different growth stages of G. lucidum.

Sample Observed OTUs Chao1 ACE Simpson Shannon

Hyphal stage 363± 21 b 197.00± 21.66 b 260.22± 40.72 b 0.85± 0.10 a 4.02± 0.62 b
Budding stage 357± 13 b 189.00± 24.58 b 270.17± 35.29 b 0.88± 0.00 a 4.08± 0.09 ab
Elongation stage 505± 50 a 372.00± 70.55 a 479.66± 99.77 a 0.90± 0.06 a 4.77± 0.33 a
Mature stage 491± 33 a 336.67± 53.46 a 422.42± 56.42 a 0.87± 0.03 a 4.21± 0.13 ab

stages were clearly displayed in the NMDS ordination (Fig. 3). The bacterial community
samples taken at the elongation stage were separated from the hyphal and budding stages
on the first axis, whereas they were separated from the mature stage on the second axis in
the NMDS ordination plot.

Biomarker discovery
LEfSe analysis was used to reveal the bacterial taxa that showed differential abundances
between the four different growth stages of G. lucidum at all taxonomic levels (Fig. 4).
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Figure 3 Nonmetric Multidimensional Scaling ordination of bacterial communities based on
weighted UniFrac distance.

Full-size DOI: 10.7717/peerj.4975/fig-3

Table 4 PEMANOVA analysis of bacterial community between different growth stages based on
weighted UniFrac distance. Significance of the differences in bacterial communities between the different
growth stages were tested using 999 permutations.

Significance

Hyphal stage Budding stage 0.5014
Elongation stage 0.0014
Mature stage 0.1000

Budding stage Elongation stage 0.0014
Mature stage 0.1000

Elongation stage Mature stage 0.0014

Hyphal stage, Budding stage, Elongation stage, Mature stage 0.0014

LEfSe analysis revealed a significantly higher abundance of the order Rhizobiales (e.g.,
genus Rhodoplanes) and the genus Sphingobium at the budding stage than at the other
three growth stages of G. lucidum. The family Frankiaceae and the genera of Alkaliphilus
and Erwinia were significantly enriched in the substrate at the hyphal stage, with regard
to other growth stages. A large number of bacterial taxa exhibited a significantly higher
abundance at the elongation stage. Those taxa included the phyla of Bacteroidetes (e.g.,
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Figure 4 A cladogram showing the differentially abundant bacterial taxa at each of the four growing stages ofG. lucidum based on LEfSe analy-
sis (P < 0.05, LDA score> 2).

Full-size DOI: 10.7717/peerj.4975/fig-4

genera Flavobacterium and Sediminibacterium), Acidobacteria (e.g., genus Candidatus
Koribacter), Nitrospirae (e.g., genus Nitrospira), Cyanobacteria (e.g., order Streptophyta)
and other taxa such as the orders of Xanthomonadales and Rhodospirillales and the family
of Comamonadaceae. The phylum of TM7 and the orders of Clostridiales (e.g., families
Peptostreptococcaceae and Lachnospiraceae) andPseudomonadales (e.g., generaAcinetobacter
and Pseudomonas) were significantly more abundant at the mature stage than at other
growth stages.

Functional prediction of substrate bacteria community
A total of 39 KEGG pathways were identified in the study (Fig. S5). Of these KEGG
pathways, 48.93% were related to metabolism, 17.24% to environmental information
processing and 14.23% to genetic information processing. The tenmost prevalent pathways
were related to four function types: metabolism, environmental information processing,
genetic information processing and unclassified.Membrane transport was the predominant
KEGG pathway predicted by PICRUSt, accounting for an average of 15.93% during the
growth of G. lucidum. Carbohydrate metabolism (on average 10.03%) and amino acid
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Table 5 PICRUSt predicted KEGG pathways of bacterial community in the substrate (relative abundance > 1% in at least one growth stage)
at different growth stages ofG. lucidum. Mean± standard deviation. Statistical analysis was carried out by ANOVA using SPSS 19.0 software. The
Post Hoc tests were done with LSD method. Different lower-case letters showed significant difference (P < 0.05) in the relative abundance of the
pathways between the different growth stages of G. lucidum.

Function type KEGG pathway Relative abundance (%)

Hyphal
stage

Budding
stage

Elongation
stage

Mature
stage

Cellular processes Cell motility 2.77± 0.05 a 2.97± 0.32 a 2.75± 0.32 a 2.95± 0.32 a
Membrane transport 17.40± 1.96 a 16.31± 1.80 a 11.36± 0.81 b 14.08± 0.72 abEnvironmental information

processing Signal transduction 2.14± 0.05 a 2.20± 0.09 a 2.27± 0.05 a 2.35± 0.16 a
Folding, sorting and degradation 1.77± 0.10 c 1.79± 0.04 bc 2.18± 0.04 a 1.98± 0.11 ab
Replication and repair 6.06± 0.27 b 5.99± 0.14 b 6.91± 0.15 a 6.06± 0.12 b
Transcription 2.44± 0.10 ab 2.41± 0.02 ab 2.54± 0.09 a 2.26± 0.05 b

Genetic information
processing

Translation 3.46± 0.23 b 3.42± 0.12 b 4.11± 0.16 a 3.58± 0.07 ab
Amino acid metabolism 9.81± 0.16 a 10.11± 0.46 a 10.38± 0.12 a 10.07± 0.27 a
Biosynthesis of other secondary
metabolites

0.93± 0.02 ab 0.92± 0.04 ab 1.03± 0.11 a 0.80± 0.04 b

Carbohydrate metabolism 10.07± 0.26 b 10.09± 0.11 b 10.68± 0.05 a 9.94± 0.28 b
Energy metabolism 4.85± 0.07 c 4.80± 0.04 c 5.42± 0.05 a 5.05± 0.01 b
Enzyme families 1.80± 0.09 b 1.77± 0.02 b 2.01± 0.05 a 1.67± 0.06 b
Glycan biosynthesis and
metabolism

1.76± 0.09 b 1.73± 0.04 b 2.18± 0.25 a 1.74± 0.15 b

Lipid metabolism 3.75± 0.01 a 3.86± 0.19 a 3.89± 0.10 a 3.93± 0.10 a
Metabolism of cofactors and
vitamins

3.58± 0.01 b 3.58± 0.03 b 3.94± 0.14 a 3.74± 0.11 ab

Metabolism of other amino acids 1.89± 0.04 b 2.02± 0.15 ab 1.94± 0.05 ab 2.13± 0.07 a
Metabolism of terpenoids and
polyketides

1.98± 0.03 b 2.06± 0.10 b 2.04± 0.04 ab 2.22± 0.07 a

Nucleotide metabolism 2.97± 0.09 a 2.90± 0.14 a 3.16± 0.10 a 2.98± 0.05 a

Metabolism

Xenobiotics biodegradation and
metabolism

4.37± 0.20 ab 4.61± 0.28 a 3.73± 0.23 b 4.86± 0.42 a

Cellular processes and signaling 3.71± 0.13 a 3.73± 0.03 a 3.99± 0.09 a 3.89± 0.34 a
Genetic information processing 1.98± 0.16 b 2.05± 0.08 b 2.45± 0.06 a 2.48± 0.18 a
metabolism 2.72± 0.08 a 2.76± 0.04 a 2.72± 0.16 a 2.96± 0.12 a

Unclassified

Poorly characterized 4.90± 0.12 a 4.91± 0.03 a 5.29± 0.07 a 5.13± 0.27 a

metabolism (on average 9.81%) were the second and the third most abundant pathways
during the growth of G. lucidum.

The predicted pathways that had relative abundances over 1% at different growth
stages of G. lucidum were presented in Table 5. A number of predicted bacterial functional
pathways in the substrate were different between the elongation stage and the other three
growth stages of G. lucidum. At the elongation stage, the relative abundance of membrane
transport, and xenobiotics biodegradation andmetabolism were decreased; other predicted
pathways such as folding, sorting and degradation, replication and repair, translation,
carbohydrate metabolism, energy metabolism, enzyme families, glycan biosynthesis and
metabolism, and metabolism of cofactors and vitamins were enriched in the substrate
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bacterial community.Other pathwayswere not significantly different in abundance between
different growth stages (e.g., cell motility, signal transduction, amino acid metabolism, and
cellular processes and signaling).

DISCUSSION
In this study, we observed significant changes in the physicochemical properties of the
substrate materials during the growth of G. lucidum. The substrate materials together
with the aeration and temperature used in our study provided an optimum condition
for the cultivation of G. lucidum. For cultivation of edible and/or medicinal mushrooms,
the substrate rich in essential bio-available nutrients with optimum pH, moisture, and
air content is preferred (Chang & Wasser, 2018). Cottonseed hulls provide fine water
holding capacity and nitrogen to ensure the water and nutrient supply for the cultivation
of edible mushrooms such as Pleurotus ostreatus (Lu & Qu, 1984) and aerobic bacteria
(Slifkin & Pouchet, 1975). The mixture of cottonseed hulls with other materials such as
wheat bran, corn flour and gypsum was used for industrial production of G. lucidum in
China. The growth of G. lucidum slightly increased substrate pH, especially at the budding
stage. However, the substrate still remained acidic with pH values ranging between 4
and 5.5 at different growth stages. The moisture content continued declining with the
vegetative growth of G. lucidum. The observed sharp decline of moisture content was
likely associated with the development of the fruiting bodies at the mature stage, when
the water demand was the largest. The lowered total nitrogen content in the substrate
likely indicated the higher uptake of nitrogen of G. lucidum at the budding and elongation
stages than at the hyphal and mature stages. This phenomenon might be related to
the rapid mycelia growth and protein synthesis processes of G. lucidum at the later
growth stages. Nitrogen content is one limiting factor that should be seriously taken
into consideration during mushroom cultivation. Nitrogen supplementation improves the
nutritional content in substrates (Lelley & Janssen, 1993), contributing to a higher yield
of mushrooms (Yang, Chienyan & Chen, 2003). Dependent on the fungus physiology and
the medium composition, nitrogen source was demonstrated to affect enzyme synthesis
(Couto et al., 2004; Kapich et al., 2004). In addition, the C: N ratio can greatly impact
the mycelia growth and fruiting body formation of G. lucidum (Hsieh & Yang, 2004). It
has been previously stated that more enzymes are involved in cell wall synthesis during
fruiting body formation than at the mycelium and primordial stages. However, enzymes
related to cell wall component degradation were higher expressed at the earlier stages
of mushroom growth (Rahmad et al., 2014). Total phosphorus and potassium content
in the substrate was lowest at the elongation stage, likely attributable to a high nutrient
demand of G. lucidum at this stage. G. lucidum grows most prosperously at the elongation
stage, a critical period for biomass and nutrient production. Minerals such as phosphorus
and potassium were strongly correlated with the yield and biological efficiency of some
edible fungi (e.g., Ganoderma lucidum and Lentinula edodes) (Ozcelik & Peksen, 2007;
Peksen & Yakupoglu, 2009).

Proteobacteria and Firmicutes were the dominating phyla observed in the bacterial
community in the substrate of G. lucidum, with variations in relative abundance between

Zhang et al. (2018), PeerJ, DOI 10.7717/peerj.4975 12/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.4975


different growth stages of G. lucidum. Proteobacteria widely exist in high abundance in
soils with diverse morphologies, physiologies and metabolisms and is considered to be
advantageous in global carbon, nitrogen and sulfur cycling (Janssen, 2006; Kersters et al.,
2006; Spain, Krumholz & Elshahed, 2009). A recent study suggested that the members
of the phylum Firmicutes play important roles in the conversion of wheat straw into
bio-utilizable sugars throughout the Agaricus bisporus mushroom cropping process
(Mcgee et al., 2017). Durrer et al. (2016) characterized the role of biological connections
in agricultural soils and revealed that competition among various bacteria may cause a
decline in the abundance of some taxa. The relative abundance of Firmicutes decreased
with time in our study, likely due to the reduced bioavailability of the wheat straw and the
resource competition between other organisms in the substrate at the late growth stage
of G. lucidum. Besides Firmicutes, other lignocellulose degrading bacteria belonging to
Actinobacteria, Proteobacteria and Bacteroidetes (Ntougias et al., 2004; Zhang et al., 2014;
Liang et al., 2015) were also present with relatively high abundance in the mushroom
substrate, ensuring an effective simultaneous degradation system of lignocellulose in
collaboration with the mushroom G. lucidum.

In our study, bacterial alpha diversity in the substrate increased significantly during
the growth of G. lucidum. Bacterial alpha diversity indices (e.g., observed OTUs, Chao1,
ACE and Shannon) peaked at the elongation stage. Vajna et al. (2010) attributed the higher
diversity of bacterial community around the mushrooms to the growth of the mushrooms.
Nevertheless, the evenness of bacterial community (Simpson index) remained unchanged
with time. Bacterial community composition in the substrate changed significantly during
the growth of G. lucidum. Particularly, bacterial community composition significantly
differed between the elongation stage and the other three growth stages of G. lucidum,
which might be linked to the changes in the substrate environment and the growth of
G. lucidum.

LEfSe analysis revealed that a large number of bacterial taxawere enriched in the substrate
at the elongation stage than at other growth stages of G. lucidum, including Bacteroidetes
(e.g., genera Flavobacterium and Sediminibacterium), Acidobacteria (e.g., genus Candidatus
Koribacter), Nitrospirae (e.g., genus Nitrospira), Cyanobacteria (e.g., order Streptophyta)
and other taxa such as the orders of Xanthomonadales and Rhodospirillales and the family of
Comamonadaceae. The increased relative abundance of these taxa were likely attributable
to the colonization of these bacteria and the changes in the physicochemical condition of
the substrate at the elongation stage of G. lucidum. These bacteria were characterized by
their capacity in the biogeochemical cycling of major biogenic elements such as carbon,
nitrogen, phosphorus and micronutrients. So the nitrogen, phosphorus and potassium
and other nutrients in the substrate were likely more demanded by these bacteria at the
elongation stage than at other stages. The reduction in substrate total nitrogen, phosphorus
and potassium at the elongation stage highly supported this assumption. The activities of
the bacterial community in the cultivation substrate significantly affect growth and quality
of the edible mushrooms (Miller et al., 1990; Stölzer & Grabbe, 1991). Nitrogen fixation
genes were detected in the genus of Burkholderia (Minerdi et al., 2001). Nitrospirae plays
important roles in nitrification during themushroom cropping process (Mcgee et al., 2017).
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Other bacteria may provide essential growth factors such as thiamine (Henningsson, 1967).
The enrichment of these bacteria and the increased bacterial diversity at the elongation
stage might be important to trigger the development of the fruiting bodies of G. lucidum.

G. lucidum produces various enzymes to degrade lignin and synthesize substances
to accomplish its growth as other white rot fungi (Coelho et al., 2010). Accordingly,
the changes in the physicochemical properties of the substrate materials by G. lucidum
during its growth might be an important driver of the successional changes in bacterial
community composition in the substrate. As the main ingredient of the substrate material,
cottonseed hull can affect the growth of G. lucidum to a great extent. Previous studies
reported compositional changes in a substrate with cottonseed hull, which included
cellulose, hemicelluloses and lignin, during the growth period of mushrooms (Li, Pang &
Zhang, 2001; Ni et al., 2002). The abundances of most bacterial groups were dependent on
organic C and total N in the habitat (Zhang, 2010). In our study, the moisture content
of substrate continued decreasing with the growth of G. lucidum, likely to be another
key factor to affect the bacterial community composition and diversity. Therefore, the
qualitative and quantitative change in the substrate physicochemical properties might have
driven the dynamic shifts in the composition and functions of bacterial community during
the growth of G. lucidum. In addition, bacterial communities can be directly affected by
organic substances that fungi secrete (Frey-Klett, Pierrat & Garbaye, 1997). Metabolites
of mushrooms such as carbohydrates, amino acids, thiols and all kinds of enzymes
were secreted to change the physicochemical conditions in the substrate (Rangel-Castro,
Danell & Pfeffer, 2002; Zhu et al., 2013), likely creating a suitable environment for bacterial
colonization and growth at the later stage. In this study, differentially abundant bacterial
taxa were uncovered in the substrate at different growth stages, most likely associated with
the differed metabolic functions in the community.

The reconstruction of metagenome based on marker genes allows inference of the
potential functional profile of the bacterial community in the substrate ofG. lucidum. Of the
identified KEGG pathways, 17.24% were related to environmental information processing,
in whichmembrane transport dominated.Membrane transport of the bacterial community
was predicted more abundant at the budding and hyphal stages than at the elongation
stage in the substrate. The changes in the predicted functional pathways in the bacterial
communities were likely attributable to the changes in the substrate physicochemical
conditions. The pathway of membrane transport showed high abundance when the
moisture content was high at the early stage. The extracellular enzymes and other organic
substances that microbes produce are transported by liquid phase diffusion (Yang et al.,
2011). High moisture content facilitates the transport of nutrients and mobility of bacteria,
increasing the availability of nutrients to bacteria and intercommunication between
microorganisms in the substrate. For bacteria, outer membrane proteins play essential
roles in bacterial adaptation (Lin, Huang & Zhang, 2002). The membrane compositions
differ from bacterial species (Sohlenkamp & Geiger, 2016). The outer membranes are
important for bacterial adaption, as they are associated with the uptake of water, energy
and nutrient, microbial interaction regulations and stress-resistance (Lin, Huang & Zhang,
2002; Schwechheimer & Kuehn, 2015). Outer-membrane vesicles make bacteria interact

Zhang et al. (2018), PeerJ, DOI 10.7717/peerj.4975 14/23

https://peerj.com
http://dx.doi.org/10.7717/peerj.4975


with the environment and survive under stress conditions (Schwechheimer & Kuehn,
2015). Therefore, in addition to the effect of G. lucidum, the high abundance of predicted
environmental information processing pathway (particularly membrane transport) in the
bacterial community at the early stage ofG. lucidumwas also likely related to the adaptation
and colonization mechanisms of the bacterial settlers that entered into the substrate from
air.

At the elongation stage, the abundance of the predicted membrane transport and
xenobiotics biodegradation and metabolism pathways reduced whereas the predicted
genetic information processing pathways (e.g., replication and repair, and translation),
metabolism pathways (e.g., carbohydratemetabolism, energymetabolism, enzyme families,
glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins) increased,
suggesting a functional change in the bacterial community from environmental adaptation
and survival strategies to self-development with the growth of G. lucidum. The increase of
predicted translation pathway at the elongation stage might be a result of rapid protein
synthesis in bacterial cells in response to the rapid growth of G. lucidum. At this stage,
bacterial richness and diversity increased, supported by the evidence of the reduction of
the nutrients (e.g., total nitrogen, phosphorus and potassium) and moisture content in
the substrate. Thus, the sufficient provision of nutrients and water to the substrate at the
elongation stage might be important to sustain the growth and metabolic activities of the
fungus and the substrate -associated microbiome.

Microbes are ubiquitous and participate in the life activities of other organisms (Singh,
2015). It was noteworthy that those bacterial OTUs that were present throughout the whole
life cycle ofG. lucidum accounted formore than 94%of the bacterial community, indicating
that they were the first settlers and continued to be present in the substrate. These bacterial
OTUs might have great capacity to cope with the acidity of the substrate environment and
the resource competition withG. lucidum and other organisms. Some of these OTUs might
also be beneficial to the growth of G. lucidum. Bacteria were involved in cell membrane
permeability, metabolic activity, exudates absorption and nutrient bioavailability of
mycelia, affecting the fruiting body growth (Fitter & Garbaye, 1994; Frey-Klett, Pierrat &
Garbaye, 1997). For instance, bacterial metabolites were found related to fruiting body
formation of Agaricus bisporus and help the mushroom resist pathogens (Urayama, 1967;
Park & Agnihotri, 1969; Zhang, 1999). Bacteria such as fluorescent pseudomonads were
particularly beneficial to Pleurotus ostreatus budding, which brings up a potential research
direction for improving the yield and quality of Ganoderma lucidum by inoculating
beneficial bacteria (Ouhdouch, Barakate & Finance, 2001; Cho et al., 2003). The phyla
Actinobacteria and Firmicutes were suggested to carry out the conversion of wheat straw
into utilisable sugars (Mcgee et al., 2017). In our study, a higher abundance of Bacillus
was observed at the early growth stages (e.g., hyphal stage and budding stage) of G.
lucidum. Bacillus spp. isolated from the cultivation substrate can optimize the growth of
Pleurotus ostreatus by inhibiting Trichoderma harzianum growth through laccase induction
(Velázquez-Cedeño et al., 2008). Bacillus provided relative protection mechanism against
other harmful fungi because mycelia of cultivated mushroom were easily contaminated
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by other harmful fungi before primordia formation. Hence, the potential enhancement of
bacterial activities on the growth of G. lucidum is worth further investigation.

CONCLUSIONS
The study revealed a significant effect of G. lucidum growth on the physicochemical
properties and bacterial community composition of the substrate materials (e.g., pH,
moisture and nutrient conditions). Changes in the substrate physicochemical properties
associate with the growth of G. lucidum were likely the direct factor that drove the changes
in bacterial community composition. The diversity, structure and the predicted functional
pathways of the substrate bacterial community greatly differed between the elongation
stage and other growth stages. The decrease of nutrient contents and moisture indicated
a rigorous growth of G. lucidum at the elongation stage. We therefore suggest that the
nutrient supply especially at the elongation stage is crucial to the growth of G. lucidum,
the diversity and the metabolic activities of the bacteria in the substrate. Hence, this study
increased the understanding of the G. lucidum-bacteria-substrate interactions to hopefully
facilitate the industrial cultivation of G. lucidum.
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