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Abstract
Integration is central to HIV-1 replication and helps mold the reservoir of cells that persists in AIDS patients. HIV-1 inter-
acts with specific cellular factors to target integration to interior regions of transcriptionally active genes within gene-dense 
regions of chromatin. The viral capsid interacts with several proteins that are additionally implicated in virus nuclear import, 
including cleavage and polyadenylation specificity factor 6, to suppress integration into heterochromatin. The viral integrase 
protein interacts with transcriptional co-activator lens epithelium-derived growth factor p75 to principally position integra-
tion within gene bodies. The integrase additionally senses target DNA distortion and nucleotide sequence to help fine-tune 
the specific phosphodiester bonds that are cleaved at integration sites. Research into virus–host interactions that underlie 
HIV-1 integration targeting has aided the development of a novel class of integrase inhibitors and may help to improve the 
safety of viral-based gene therapy vectors.
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Abbreviations
PIC  Preintegration complex
MoMLV  Moloney murine leukemia virus
LEDGF  Lens epithelium-derived growth factor
CPSF6  Cleavage and polyadenylation specificity 

factor 6
RNAi  RNA interference
MLL  Mixed-lineage leukemia
HDGF  Hepatoma-derived growth factor
HRP  HDGF-related protein
HDGFL  HDGF like
CR  Charged regions
IBD  Integrase-binding domain
PHAT  Pseudo HEAT repeat analogous topology
NTD  N-terminal domain
CCD  Catalytic core domain
CTD  C-terminal domain
PHD  Plant homeodomain

SMARCB1  SWI/SNF-related, matrix-associated, actin-
dependent regulator of chromatin, subfamily 
B, member 1

INI1  Integrase interactor 1
NPC  Nuclear pore complex
NUP  Nucleoporin
CYPA  Cyclophilin A
RNP  Ribonucleoprotein
RRM  RNA recognition motif
PRD  Pro-rich domain
RSLD  RS-like domain
IN  Integrase
GFP  Green fluorescent protein
NLS  Nuclear localization signal
CFIm  Cleavage factor I mammalian
ChIP-Seq  Chromatin-immunoprecipitation sequencing
Y  Pyrimidine
R  Purine
LEDGIN  LEDGF/p75-integrase interaction site
ALLINI  Allosteric integrase inhibitor
NCINI  Non-catalytic site integrase inhibitor
INLAI  Integrase-LEDGF allosteric inhibitor
MDM  Monocyte-derived macrophages
LRA  Latency-reversing agent
PDB  Protein database
TNPO1  Transportin 1

Cellular and Molecular Life Sciences

 * Alan N. Engelman 
 alan_engelman@dfci.harvard.edu

1 Department of Cancer Immunology and Virology, Dana-
Farber Cancer Institute, 450 Brookline Avenue, CLS-1010, 
Boston, MA 02215, USA

2 Department of Medicine, Harvard Medical School, A-111, 
25 Shattuck Street, Boston, MA 02115, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-018-2772-5&domain=pdf


2492 A. N. Engelman, P. K. Singh 

1 3

TNPO3  Transportin 3
CA  Capsid

Introduction

The lentivirus HIV-1, like all retroviruses, integrates the 
DNA copy of its RNA genome into a host cell chromo-
some. Integration provides a favorable environment for 
viral gene expression and ensures that both daughter cells 
receive a copy of the virus following cell division. Integra-
tion is mediated by the viral integrase protein, a special-
ized DNA recombinase that is incorporated into the virus 
during particle biogenesis from an infected cell. In the 
ensuing round of infection, reverse transcription and inte-
gration occur within the context of large subviral nucleo-
protein structures that are termed the reverse transcription 
complex and preintegration complex (PIC), respectively 
[1, 2]. Within the PIC, the ends of the linear viral reverse 
transcript are held together by a multimer of integrase in 
a complex that is referred to as the intasome [3–6]. The 
active sites of two integrase protomers within the intasome 

interact with the viral DNA ends intimately, and it is these 
two active sites that promote the chemical steps of DNA 
recombination. The number of integrase protomers that 
comprise the intasome differs among the different retro-
viruses, from a minimum of four for the spumaviruses [6] 
to as many as 16 molecules for the lentiviruses [7, 8] (see 
[9] for a recent review).

Retroviral integrases possess two distinct catalytic activi-
ties, 3′ processing and strand transfer, which are required 
for integration. Integrase processes the viral DNA 3′ ends 
adjacent to conserved CA sequences, which most usually 
removes a dinucleotide from each end [10–13]. Integrase 
uses the resulting 3′-hydroxyl groups as nucleophiles to 
cut chromosomal DNA in staggered fashion, which at the 
same time joins the viral DNA  CAOH-3′ ends to target DNA 
5′-phosphate groups [14]. The resulting DNA recombina-
tion intermediate is repaired by the host cell to yield a short 
4–6 bp duplication flanking the integrated provirus, the 
sequence of which is derived from the staggered DNA cut 
(Fig. 1). Clinical integrase strand transfer inhibitors engage 
the intasome and displace the 3′-hydroxyl nucleophiles from 
the enzyme active site, disarming the nucleoprotein complex 

Fig. 1  Mechanism of retroviral 
DNA integration. A multimer of 
integrase (light orange) engages 
the ends of linear viral DNA 
(black lines), synapsing them 
together within the intasome 
complex. Integrase 3′ process-
ing activity yields chemically 
reactive 3′-hydroxyl groups at 
the viral DNA ends. Following 
the binding of host DNA (blue 
lines) in the nucleus, integrase 
promotes the strand transfer or 
DNA joining reaction (stag-
gered cut site in red). Repair 
of the DNA recombination 
intermediate yields a short 
duplication of host DNA (red 
lines) flanking the integrated 
provirus
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[6, 15]. See [16] for a recent review of retroviral integration 
and its inhibition.

Integration in the host genome is non-random, with 
aspects of chromatin structure/function that span from 
DNA sequence to nuclear architecture influencing the sites 
of DNA recombination. Different types of retroviruses dis-
play distinctive preferences for transcription units, promoter/
enhancer regions, histone modifications, and transcriptional 
activity (see [17–19] for recent reviews). HIV-1 in particular 
favors the interior regions of genes that reside in relatively 
gene-dense, transcriptionally active regions of chroma-
tin [20]. Gammaretroviruses, typified by Moloney murine 
leukemia virus (MoMLV), in contrast favor promoter/
enhancer regions [21–23] with more modest preferences 
for transcriptional activity than HIV-1 [24]. Recent research 
has highlighted that HIV-1 integration targeting is in large 
part mediated by the interaction of two virus proteins with 
cognate cellular receptors [25]. One of these interactions is 
between integrase and lens epithelium-derived growth factor 
(LEDGF)/p75 [26], while the other is between the viral cap-
sid protein and cleavage and polyadenylation specificity fac-
tor 6 (CPSF6) [27]. On the local level, nucleosomes [28–33] 
in addition to target DNA sequence [34–38] can influence 
the choice of integration site. Globally, HIV-1 preferentially 
integrates into chromatin located in the peripheral region 
of the nucleus [39–41] in association with nuclear pore 
complexes (NPCs) [42, 43]. Herein we review in detail the 
cellular and molecular mechanisms of HIV-1 integration 
targeting, focusing on what is known alongside questions 
for future research.

Integrase—a primary determinant 
of integration targeting

HIV-1 integrase purified following its expression in 
Escherichia coli is enzymatically active in vitro, revealing 
that human cellular proteins are dispensable for integrase 
catalytic function [13, 44]. However, because viruses from 
different genera of Retroviridae display distinct genome 
targeting preferences, it seemed reasonable to assume that 
integrase-binding cell factors played a role in integration 
targeting [45, 46]. Detailed review of the published literature 
[47–64] alongside the HIV-1 Human Interaction Database 
that is maintained at the National Center for Biotechnology 
Information [65] reveals that several hundred cellular pro-
teins reportedly interact with HIV-1 integrase. Clearly, not 
all of these interactions can play an important role in HIV-1 
infection, and a central tenet of viral interactome research is 
to determine which interactions are key to virus replication. 
Among the reported HIV-1 integrase interactors, LEDGF/
p75 has been shown to play an important role in virus infec-
tion and integration targeting.

LEDGF/p75

From initial reports, it was unclear if LEDGF/p75 played 
an important role in HIV-1 biology. Efficient knockdown 
of LEDGF/p75 via RNA interference (RNAi) yielded 
approximate two- to fivefold infection defects in some 
studies [66, 67] where others failed to detect a specific 
replication defect [68, 69]. The estimated cellular content 
of LEDGF/p75 is several 100,000 molecules [69], which 
seemingly greatly outweighs the level required for the effi-
cient integration of any given PIC. Consistent with this 
interpretation, deep knockdown of LEDGF/p75 by short-
hairpin RNA [70] or disruption of the LEDGF/p75-encod-
ing PSIP1 gene, which theoretically depleted all traces of 
the factor from the cell, yielded ~ tenfold or greater reduc-
tions in HIV-1 integration and virus infection [71–75]. 
CRISPR-Cas9 mediated knockout of PSIP1 in primary 
human  CD4+ T cells yielded a relatively mild ~ twofold 
infection defect [76], a level consistent with early RNAi 
studies [66, 67]. This similarity could be due to residual 
LEDGF/p75 levels across studies, as Cas9 nucleoprotein 
complexes were introduced by electroporation, which may 
not transfect all cells in the population [76]. A significant 
reduction in the level at which HIV-1 targeted active genes 
during integration was observed even when knockdown 
cells supported normal levels of virus infection [25, 77], 
effects that were exacerbated via PSIP1 knockout [25, 71, 
72, 78, 79].

LEDGF/p75 and its shorter p52 splice variant (collec-
tively referred to as LEDGF) were described initially as 
transcriptional co-activators [80], and both interact with 
RNA splicing factors [79, 81, 82]. LEDGF/p75 plays a 
role in homologous DNA recombination [83] and mixed-
lineage leukemia (MLL) [84–87]. LEDGF belongs to the 
hepatoma-derived growth factor (HDGF)-related pro-
tein (HRP) family that also includes HDGF and HDGF 
like (HDGFL) 1–3 [88]. The most common sequence 
element among these proteins is an N-terminal PWWP 
domain [88], which is a type of chromatin reader [89]; the 
LEDGF PWWP domain has a preference for histone H3 
tri-methylated on Lys36 [90–92]. LEDGF/p75 at steady-
state binds chromatin [26, 93, 94], which is mediated by 
the PWWP domain and additional charged elements within 
the N-terminal portion of the protein [95, 96]. LEDGF/p75 
also displays affinity for supercoiled DNA [97] (Fig. 2a).

The interaction of LEDGF/p75 with integrase is specific 
to the lentiviridae genus of Retroviridae [68, 98, 99]. An 
evolutionarily conserved domain in the C-terminal portion 
of LEDGF/p75, which is missing from LEDGF/p52, was 
termed the integrase-binding domain (IBD) because it was 
necessary and sufficient for binding to HIV-1 integrase 
in vitro [100] (Fig. 2a). The LEDGF/p75 IBD is a PHAT 
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domain (for pseudo HEAT repeat analogous topology) 
composed of two helix–hairpin–helix motifs, and evolu-
tionarily conserved hotspot residues Ile365 and Asp366 in 
the N-terminal hairpin were critical for integrase binding 
[101]. Retroviral integrase proteins harbor three common 
domains that are referred to as the N-terminal domain 
(NTD), catalytic core domain (CCD), and C-terminal 
domain (CTD) (reviewed in [9]) (Fig. 2b). The HIV-1 inte-
grase CCD comprised the primary LEDGF/p75-binding 
determinant, while the NTD was required for high affin-
ity binding [94]. An X-ray crystal structure of the IBD in 
complex with the HIV-1 integrase CCD revealed that the 
host factor engaged the CCD dimerization interface. The 
side chain carboxylic acid of Asp366 contacted backbone 
amides of residues Glu170 and His171 from one integrase 
monomer, while the adjacent LEDGF/p75 Ile365 residue 
mediated hydrophobic interactions principally with the 
other CCD molecule [102] (Fig. 2c). A subsequent struc-
ture with the 2-domain NTD-CCD construct from HIV-2 
integrase revealed that electronegative side chains on one 
face of NTD helix 1 engaged conserved electropositive 
residues of the IBD [103]. Interestingly, reverse-charge 

LEDGF/p75 mutants restored partial infectivity to other-
wise non-infectious HIV-1 integrase mutant viruses that 
harbored complementary reverse charge substitutions in 
NTD helix 1 [103, 104]. All-in-all, the structural basis of 
the LEDGF/p75-integrase interaction is fairly well under-
stood. Additional structures that include the full-length 
host factor with the HIV-1 intasome [8] and nucleosomes 
would shed significant new light into the structural basis 
of integration targeting.

Both chromatin and integrase-binding activities are 
critical for LEDGF/p75 to function as an HIV-1 integra-
tion co-factor [70, 72, 105]. LEDGF/p75 normally func-
tions to bring cellular IBD partners such as cell division 
cycle associated 7 like (a.k.a. JPO2) and MLL in proxim-
ity to chromatin [106], and thus HIV-1 hijacks this ancient 
chromatin-associated molecular beacon to fulfill its nefari-
ous needs. Hybrid LEDGF/p75 constructs that swapped the 
N-terminal chromatin-binding elements for heterologous 
chromatin readers supported HIV-1 infection [107] and redi-
rected integration to novel positions in the genome that were 
consistent with the known chromatin-binding properties of 
the substituted domains [108–111]. The plasticity of this 

Fig. 2  LEDGF/p75 and ALLINI structures and binding to integrase. 
a Schematic diagram of LEDGF/p75, highlighting different pro-
tein regions/domains. Chromatin binding is mediated by the PWWP 
domain, charged regions (CR) 1–3, two copies of an AT-hook DNA 
binding motif, and basic NLS [95, 96]. CR 2 and 3 confer binding to 
supercoiled DNA [97]. Numbers refer to domain boundary positions. 
b Schematic of HIV-1 integrase; numbers demarcate domain bounda-
ries. Amino acids invariant across Retroviridae are indicated by sin-
gle-letter code. c X-ray structure of the LEDGF/p75 IBD (magenta) 
bound at the HIV-1 integrase CCD dimer (cyan and green). Shown 

in sticks are LEDGF/p75 hotspot residues Ile365 and Asp366 as well 
as integrase residues that help mold the binding pocket. Dashed lines, 
hydrogen bonds. Blue, red, and yellow denote nitrogen, oxygen, and 
sulfur, respectively (protein database (PDB) accession code 2B4J 
[102]). d X-ray structure of ALLINI BI-D (magenta, with chemical 
structure shown above) bound to the integrase CCD dimer (PDB code 
4ID1 [190]), oriented as in c. The carboxylic acid attached to posi-
tion 3 of the quinoline ring via the tert-butoxy group makes the same 
hydrogen bond contacts with integrase (dashed lines) as LEDGF/p75 
residue Asp366 (compare with c). Other labeling is as in c 
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approach was rather remarkable, as both promoter-proximal 
readers such as PHD (plant homeodomain) fingers as well as 
heterochromatin protein modules such as CBX1 and HP1α 
similarly supported HIV-1 infection. Genotoxic side effects 
of retroviral gene therapy that are linked to sites of MoMLV 
vector integration have led to fatal cases of childhood leu-
kemia [112], so the ability to reprogram HIV-1 integration 
to near random via fusion proteins such as CBX1-LEDGF 
suggested possible novel approaches to safer integrating 
vectors. A major hurdle in such approaches is how to effec-
tively introduce the hybrid LEDGF/p75 construct into the 
cell. LEDGF/p75 is inefficiently packaged into HIV-1 parti-
cles and the scant amount that is packaged is cleaved by the 
viral protease [113]; so the potential to hitchhike retarget-
ing LEDGF/p75 into the cell as a virus vector component 
is an apparent non-starter. The need to introduce a hybrid 
construct into patient cells prior to a therapeutic lentiviral 
vector necessarily complicates the clinical utility of retar-
geting LEDGF/p75 constructs in human gene therapy [103, 
104, 111, 114].

Other integrase‑binding proteins

Although PSIP1 knockout significantly reduced the extent 
to which HIV-1 targeted genes during integration, the 
preference to integrate into genes remained much greater 
than would be expected based on random chance [71, 72, 
78, 79]. Such observations suggested that other integrase-
binding proteins might also play a role in HIV-1 integration 
targeting. SMARCB1 (SWI/SNF-related, matrix-associated, 
actin-dependent regulator of chromatin, subfamily B, mem-
ber 1) was the first cellular interactor of HIV-1 integrase to 
be published in the literature, which at the time was called 
INI1 for integrase interactor 1 [115]. As implicated by its 
name, SMARCB1 is a component of the ATP-dependent 
SWI/SNF chromatin remodeling complex [116], so it was 
from the get-go an obvious candidate for an integration 
targeting cofactor. Although SMARCB1 can influence the 
choice of HIV-1 integration site in in vitro reactions [117], 
it remains unclear if it plays a role in integration targeting 
during HIV-1 infection.

HRP protein family member HDGFL2 in addition to 
LEDGF/p75 harbors a functional IBD [100]; so it too was 
an obvious candidate for an integrase targeting cofactor. 
HDGFL2 was depleted from cells using RNAi [69, 70, 73] 
or gene knockout [74]. None of these manipulations signifi-
cantly affected the level of HIV-1 infection or the selection 
of integration sites. Depleting HDGFL2 from PSIP1 knock-
out cells additionally reduced HIV-1 infection by ~ twofold, 
and further reduced integration into genes from the levels 
observed by sole PSIP1 knockout [74, 78]. However, since 
the sole depletion of HDGFL2 failed to significantly affect 

integration targeting, it seems unlikely that this integrase-
binding factor plays a role in integration targeting under nor-
mal conditions of HIV-1 infection. Additional research is 
required to determine if any integrase-binding partner other 
than LEDGF/p75 plays a significant role in determining the 
profile of HIV-1 integration targeting.

HIV‑1 capsid and integration targeting

A key biological parameter that distinguishes the lentivi-
ruses from the gammaretroviruses is the requirement of 
cell cycling for virus infection. While HIV-1 can produc-
tively infect terminally differentiated, non-cycling cells, 
MoMLV infection is dependent upon cell division [118–121] 
(reviewed in [122]). This difference maps to PIC biology: 
HIV-1 PICs are efficiently transported through the cellular 
NPC in an energy-dependent manner [123], while MoMLV 
PICs require nuclear envelop breakdown such that their p12 
Gag protein can latch onto chromatin for subsequent integra-
tion [124, 125]. The mechanistic details that underlie HIV-1 
PIC nuclear import are still being worked out and exceed the 
scope of this review. In short, seminal work from Yamashita 
and Emerman took advantage of the biological distinction of 
HIV-1 versus MoMLV nuclear import mechanisms to con-
struct chimeric viruses, which mapped the viral determinant 
of HIV-1 nuclear import to the capsid protein [126]. The 
use of such constructs first indicated a role for HIV-1 Gag, 
the polyprotein that includes capsid, in integration target-
ing [127]. HIV-1 capsid interacts directly with several host 
factors implicated in HIV-1 PIC nuclear import including 
nucleoporin (NUP) 153 [128], NUP358 [129], CPSF6 [130], 
and cyclophilin A (CYPA) [131–133], and each of these 
factors has additionally been shown to influence the choice 
of integration site [25, 129, 134–136]. Such observations 
highlight a potential mechanistic link between HIV-1 PIC 
nuclear import and integration targeting [137, 138].

HIV-1 capsid is a 2-domain protein composed of an NTD 
and CTD separated by a flexible linker. Capsid monomers 
assemble into hexameric or pentameric ring-like structures, 
which are the building blocks of the virion capsid shell [139, 
140]. The capsid shell houses the ribonucleoprotein (RNP) 
guts of the virus, composed of viral RNA and viral proteins 
nucleocapsid, reverse transcriptase, and integrase (reviewed 
in [141]).

Capsid and integrase-binding host factors influence 
HIV-1 integration targeting in different ways. Integration in 
cells depleted for NUP358 was preferentially decreased in 
gene-dense regions of chromosomes as compared to gene 
bodies [134]. Similarly, capsid mutant viruses N74D and 
A77V, which are defective for binding to CPSF6 [27, 142], 
lost the targeting preference for gene-dense regions while 
retaining partial preference for genes [25, 129, 136, 142]. 
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While LEDGF/p75 depletion via RNAi reduced integration 
into genes [25, 77], an initial report indicated this did not 
significantly affect the targeting of gene-dense regions [134]. 
Subsequent work indicated this too was likely due to residual 
LEDGF/p75 levels, as PSIP1 knockout reduced the targeting 
of HIV-1 to gene-dense regions of chromosomes as well as 
gene bodies [25, 136]. Thus, although there is some pheno-
typic overlap between capsid and integrase-binding proteins, 
cofactors that bind capsid principally influence the targeting 
of gene-dense regions, while LEDGF/p75 primarily influ-
ences intragenic targeting.

While loss of CPSF6 or NUP358 binding to capsid prefer-
entially reduced the targeting of gene-dense regions, loss of 
CYPA binding yielded the opposite phenotype of enhanced 
gene-dense region targeting [129]. This phenomenon is 
not well understood, as NUP358 and CYPA bind the same 
loop region in the capsid NTD [132, 143, 144] (reviewed 
in [145]) (Fig. 3). While CYPA is composed of the sole 
cyclophilin domain, NUP358 is a relatively large protein 
composed of numerous domains including its C-terminal 
cyclophilin homology domain [146, 147]. One possibility is 
that other parts of NUP358 could interact with the capsid/
PIC to account for the differential effect it versus CYPA has 

on HIV-1 integration targeting. Consistent with this interpre-
tation, the N74D mutation in the CPSF6-binding pocket of 
capsid, which is distal from the CYPA-binding loop (Fig. 3), 
disrupted the interaction of the PIC with NUP358 in the 
cytoplasm of infected cells [148].

CPSF6

The roles of LEDGF/p75 and CPSF6 in integration target-
ing have been scrutinized through side-by-side analysis of 
isogenic sets of cells knocked down or knocked out for each 
or both factors [25]. In such studies, random targeting is 
calculated based on known annotation distribution within 
the human genome. While LEDGF/p75 knockdown in U2OS 
cells marginally reduced integration into genes, gene-tropic 
integration was impressively reduced to near random via 
CPSF6 knockdown. As residual levels of LEDGF/p75 can 
readily mask its role in integration [69, 70], the factors were 
subsequently knocked out alone or in tandem in HEK293T 
cells. While PSIP1 knockout reduced integration into genes 
from ~ 83 to ~ 63%, CPSF6 knockout yielded 57% gene tar-
geting. Dual factor knockout reduced integration into genes 

Fig. 3  CPSF6 structure and interaction with capsid. a CPSF6 iso-
form 1, which lacks internal sequences encoded by exon 6. Regions 
that facilitate binding to cellular CPSF5, transportin 1 (TNPO1), 
transportin 3 (TNPO3), as well as HIV-1 capsid (CA), are indicated. 
RRM, RNA recognition motif; PRD, Pro-rich domain; RSLD, RS-
like domain; numbers, domain boundaries. b X-ray structure of the 
HIV-1 capsid NTD highlighting approximate positions of NUP358 

and CYPA (black dotted line) versus NUP153 and CPSF6 (gray dot-
ted line) binding (PDB code 4XFY [223]). Shown in sticks are capsid 
residues that help mediate binding to the different host factors. Blue 
and red, nitrogen and oxygen, respectively. c Close-up view of CPSF6 
residues 276–289 (magenta) bound to hexameric HIV-1 capsid (PDB 
code 4U0B [165]) highlighting hotspot residue Phe284 (italic type). 
Dashed lines represent hydrogen bonds. Other labeling is as in b 
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to ~ 48%, just a few percentage points above the random 
value of 44.7%. In terms of gene density, each Mb of human 
chromatin harbors on average 8.7 genes, whereas HIV-1 tar-
gets regions that on average contain ~ 21 genes/Mb. PSIP1 
knockout reduced this preference to ~ 14 genes/Mb. Impres-
sively, CPSF6 knockout reduced it to 5.8 genes, well below 
the level expected by pure chance. Inspection of promoter 
proximal integration patterns further distinguished the roles 
of the integrase versus capsid-binding host factors. Consist-
ent with prior reports [71, 72], PSIP1 knockout increased 
promoter proximal integration, from ~ 4 to 10% within a 
5 kb window surrounding transcriptional start sites, while 
CPSF6 knockout reduced this metric to 1.8%, well below the 
random 4.0% value [25].

A number of additional genomic annotations were ana-
lyzed to further tease out unique contributions of LEDGF/
p75 versus CPSF6 in HIV-1 integration targeting [25]. One 
of the more telltale was association with histone post-trans-
lational modifications. HIV-1 integration favors regions in 
the vicinity of activating epigenetic marks and disfavors 
regions nearby repressive marks [31, 149]. While PSIP1 
knockout weakened each of these tendencies, both prefer-
ences were nevertheless maintained when compared to ran-
dom chance values. In contrast, CPSF6 knockout flipped 
both preferences such that the virus now preferred repres-
sive regions and disfavored regions nearby activating marks. 
Another telltale metric was genome-wide averaging of intra-
genic integration sites, which revealed a dominant role for 
LEDGF/p75 in positioning HIV-1 integration along gene 
bodies [25, 79]. We accordingly concluded that the primary 
role of the capsid–CPSF6 interaction was to steer the PIC 
away from heterochromatic regions of chromatin, while 
the LEDGF/p75–integrase interaction primarily positioned 
integration along gene bodies (Fig. 4) [25]. Such observa-
tions invoke a model whereby during its journey the PIC 
sequentially interacts with CPSF6 and then LEDGF/p75, 
but we currently do not know the order of binding events. 
The PIC may very well engage CPSF6 in the cytoplasm to 
enable its import through the NPC [27, 150–152] (Fig. 4), 
though this model is clouded by the fact that cytoplasmic 
accumulation of CPSF6 can potently restrict HIV-1 infec-
tion [27, 153–155]. The PIC is susceptible to LEDGF/p75 
binding in the cytoplasm [156], but even here studies differ 
as to whether LEDGF/p75 is a component of the PIC [68, 
157, 158]. Recombinant LEDGF/p75 protein can signifi-
cantly stimulate the strand transfer activity of purified HIV-1 
integrase [26, 96, 100, 103, 159, 160], yet PICs extracted 
from PSIP1 knockout cells notably support the wild-type 
level of strand transfer activity in vitro [72, 74]. Based on 
these observations, we favor a model whereby the HIV-1 
PIC engages CPSF6 during or shortly after nuclear import, 
but need not engage LEDGF/p75 until it scans chromatin 
for integration sites (Fig. 4). Other scenarios that invoke 

cytoplasmic engagement or integrase–LEDGF/p75 binding 
in the nucleoplasm are also plausible. The integrase hex-
adecamer in the lentiviral intasome could be modeled to 
bind up to 16 LEDGF/p75 molecules, which may help the 
PIC target regions relatively enriched in LEDGF/p75 con-
tent [7]. Recent evidence suggests that HIV-1 preferentially 
integrates into genes that regulate T-cell activation, but the 
roles of LEDGF/p75 and/or CPSF6 in this process have yet 
to be addressed [161].

CPSF6 is an SR-like protein composed of an N-terminal 
RNA recognition motif (RRM), a central Pro-rich domain 

Fig. 4  Cellular and molecular mechanisms of HIV-1 integration tar-
geting. The HIV-1 PIC harbors viral DNA (black lines), integrase 
(IN, light orange ovals), and capsid (CA). CPSF6 may bind CA 
in the cytoplasm to facilitate PIC nuclear import in a NUP358 and 
NUP153-dependent manner; CPSF6 is shown in association with 
transportin 3 (TNPO3), one of its known β-karyopherin-binding part-
ners. Following nuclear import, TNPO3 will recycle to engage addi-
tional transport substrates in the cytoplasm. The PIC utilizes both 
CPSF6 and LEDGF/p75 to target integration to active genes (rep-
resented as three colored exons separated by introns) preferentially 
located within the peripheral region of the nucleus (orange shade). 
A typical integration site (downward light green arrow) is enlarged 
below to indicate nucleotide sequence preference in International 
Union of Biochemistry base code (B: G, C, or T; D: G, A, or T; H: 
C, A, or T; N: G, C, A, or T; V: G, C, or A); opposing green arrows 
denote scissile phosphodiester bonds. PICs that cannot properly 
engage CPSF6, as represented by the N74D change in CA, enter the 
nucleus via an alternate route (marked ?) that may require NUP155 
[27]. Such PICs prefer gene sparse regions and hyper target the 
peripheral region of the nucleus for integration [25, 129, 136, 142, 
152]
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(PRD), and a C-terminal RS-like domain (RSLD) [162] 
(Fig. 3a). Binding to capsid is mediated via the PRD [130, 
163] and although a 15-mer peptide could bind the isolated 
HIV-1 capsid NTD, it displayed significantly higher affinity 
to capsid hexamers in vitro [164, 165]. The form of the capsid 
that engages CPSF6 or other nuclear transport factors during 
HIV-1 infection is unknown, but it seems likely that CPSF6 
will minimally engage a hexamer. Additional work to deter-
mine the form of the capsid that is bound by CPSF6 during 
HIV-1 infection is warranted.

CPSF6 at steady state is nuclear, and a fusion protein 
composed of the RSLD and green fluorescent protein (GFP) 
accumulated in cell nuclei, revealing that the RSLD harbors a 
functional nuclear localization signal (NLS) [162]. An internal 
deletion mutant that lacked the PRD but retained the RSLD 
localized to both the cytoplasm and nucleus, indicating that 
sequences outside of the RSLD may also contribute to CPSF6 
nuclear localization [162]. Consistent with this interpretation, 
two different β-karyopherin proteins, transportin 1 and trans-
portin 3, were shown to bind sequences within the PRD and 
RSLD, respectively [150, 166]. It will be informative to deter-
mine if these CPSF6 sequences actually comprise functional 
NLSs.

CPSF6 is part of the cleavage factor I mammalian (CFIm) 
complex that regulates positions of polyadenylation in the 3′ 
untranslated regions of mRNAs [167–169]. CFIm is a hetero-
tetramer composed of two copies of CPSF5 and two copies of 
either CPSF6 or CPSF7 [167, 168, 170]. Unlike LEDGF/p75, 
CPSF6-binding partners important for integration targeting 
that function downstream from its interaction with the PIC are 
unknown, but one obvious candidate was CPSF5. However, 
expression of a CPSF6 mutant that is defective for CPSF5 
binding in CPSF6 knockout cells in large part restored HIV-1 
integration targeting, indicating that the function of CPSF6 in 
integration targeting is independent from its role in polyade-
nylation regulation [171]. Consistent with this interpretation, 
CPSF6 did not preferentially direct integration into the genes 
for which it regulated polyadenylation [25]. CPSF6 resides 
predominantly in nuclear paraspeckles [162, 172] and is not 
known to directly bind chromatin. Nevertheless, a chromatin-
immunoprecipitation sequencing (ChIP-Seq) dataset is avail-
able [173], and these sequences correlated with regions of 
CPSF6-dependent integration [25]. We accordingly expect that 
factor(s) that apparently bridge CPSF6 to chromatin, as evident 
by the ChIP-Seq dataset, could play a role in integration target-
ing. Additional work is required to clarify the mechanism of 
CPSF6 action in HIV-1 integration targeting.

Global integration targeting and nuclear 
architecture

Imaging-based studies have indicated that HIV-1 prefers to 
integrate into chromatin that resides within the peripheral 
region of the nucleus [39–41, 43, 152] (reviewed in [174]). 
LEDGF/p75 and NUP153 were reportedly both required 
for peripheral integration targeting, as each knockdown 
resulted in shifts of the viral DNA away from the periphery 
toward the central region of the nucleus [43, 175]. Results 
of two other studies, however, fail to support a signifi-
cant role for LEDGF/p75 in the intranuclear localization 
of HIV-1 DNA [176, 177]. CPSF6 knockdown, or infec-
tion with binding defective capsid mutant viruses such as 
N74A or A105T, by contrast increased the accumulation 
of peripherally located proviruses [152]. The binding sites 
for NUP153 and CPSF6 on the capsid overlap [130, 164, 
165], but in each case only relatively short peptides of the 
host factors have been crystallized with capsid (Fig. 3b, 
c). Thus, as previously mentioned for NUP358, regions 
of NUP153 or CPSF6 outside of the visualized peptides 
could potentially interact with capsid or PICs in unknown 
ways to effect the different fates of integration within 
the structure of the nucleus. Additional work is clearly 
required to assess the roles of the different integration tar-
geting cofactors in HIV-1 PIC trafficking to architecturally 
distinct regions of the nucleus for integration.

Local chromatin features in integration 
targeting

Retroviral integration favors particular nucleobases at inte-
gration sites, although these preferences are rather subtle 
and thus only become evident through the alignment of 
multiple sequences [34, 35]. Spumavirus integrase cuts 
target DNA with a 4 bp stagger, and X-ray crystal struc-
tures of the spumaviral intasome with target DNA revealed 
a severe kink at the center of the 4 bp region [178]. The 
center of spumaviral integration sites is enriched in 
pyrimidine (Y)-purine (R) dinucleotides, which, due to 
base stacking, are naturally more flexible than YY and 
RR, or the most rigid RY dinucleotide [179]. Thus, the 
spumaviral intasome preferentially selects for target DNA 
sequences that can best bend to fit into the relatively con-
fined space between two opposing integrase active sites 
[178]. Expanded preferential target DNA sequence analy-
ses indicated that inherent bendability contributed to the 
integration site preferences of most retroviruses, and that 
viruses that cut target DNA with a 6 bp stagger more rou-
tinely utilized less bendable DNA than viruses that cut 
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with 4 or 5 bp staggers [36, 37]. Substitutions of integrase 
residues that interact with target DNA in crystal struc-
tures [178] or molecular models [36, 180] not only altered 
nucleotide selectivity at integration sites [36, 178, 180], 
but also could retarget integration toward gene-sparse 
regions of chromatin [180].

Nucleosomes are favored over matched naked DNA tem-
plates for HIV-1 integration in vitro, with preferred sites 
mapping to outward regions of the distorted nucleosomal 
DNA major groove [29, 30]. Analysis of large numbers of 
integration sites indicated that HIV-1 is likely to retain this 
targeting preference during virus infection [31]. The cryo-
electron microscopy structure of the spumaviral intasome 
bound to a mononucleosome revealed that the intasome 
induced the same target DNA bend that was observed previ-
ously with naked target DNA through the lifting of the DNA 
from the surface of the underlying histones [181]. Although 
these data suggest that retroviruses might universally inte-
grate into preferred target DNA sequences on the surface of 
nucleosomes, other work has revealed differential effects of 
chromatin compaction on the in vitro activities of retroviral 
integrase proteins [32]. HIV-1 integrase in particular favored 
regions of lower nucleosome density under conditions where 
MoMLV and spumaviral integrase favored compact chro-
matin [32]. Thus, the HIV-1 intasome may require chroma-
tin remodeling complexes such as SWI/SNF [115, 117] or 
FACT [64] to effectively access nucleosomal target DNAs 
during virus infection. Additional research that maps the 
integration sites of a variety of retroviruses such as HIV-1, 
MoMLV, and spumavirus in cells depleted for remodeling 
complexes should inform the extent that such complexes 
play a role in viral integration targeting.

Allosteric inhibitors of HIV‑1 integrase 
activity

Over-expression of mutant LEDGF/p75 constructs that 
retained the IBD but substituted the N-terminal chromatin-
binding elements for heterologous sequences such as GFP 
blocked HIV-1 infection at the integration step [70, 182]. 
Moreover, combining this approach with RNAi-mediated 
knockdown of LEDGF/p75 could inhibit HIV-1 infec-
tion > 500-fold [156]. These observations highlighted that 
small molecule inhibitors of the LEDGF/p75–integrase 
interaction could potentially possess antiviral activity.

Two different approaches led to the identification of what 
turned out to be highly similar inhibitors of the interaction 
of LEDGF/p75 with HIV-1 integrase. Whereas one utilized 
a high-throughput screen for integrase 3′ processing activ-
ity [183], the other used an in silico approach to identify 
molecules that mimicked the positions of key LEDGF/p75 
interacting residues at the CCD dimer-binding site [184] 

(Fig. 2c, d). In both cases, micromolar lead compounds were 
developed into low nM inhibitors, with Boehringer Ingel-
heim compound BI 224436 evaluated in human clinical tri-
als [185]. Such compounds go by various names in the litera-
ture. The Debyser laboratory coined LEDGINs for LEDGF/
p75-integrase interaction site [184], whereas we prefer 
ALLINIs for allosteric-integrase inhibitors to represent the 
fact that such compounds bind far from the integrase active 
site and thus allosterically inhibit catalytic function [186]. 
Other terms include NCINIs for non-catalytic site integrase 
inhibitors [183, 185, 187] and INLAIs for integrase-LEDGF 
allosteric inhibitors [188].

ALLINIs possess a remarkable antiviral mechanism of 
action that is linked to their ability to hyper-multimerize 
integrase [189–192]. HIV-1 integrase in solution adopts 
numerous forms including monomer, dimer, tetramer, and 
higher-order multimer, the details of which in part depend on 
protein and salt concentration [160, 190, 193–199]. HIV-1 
intasome assembly, which may occur via DNA-mediated 
tetramerization of the solution integrase tetramer [7], is 
exquisitely sensitive to perturbation of integrase multim-
erization such as that incurred via premature LEDGF/p75 
binding [160, 200, 201]. ALLINI binding induces the forma-
tion of large integrase aggregates [191, 192, 202] through 
the bridging of neighboring protein molecules [203, 204]. 
Aggregation accounts for their anti-integrase activity, as the 
aggregates are unable to assemble with viral DNA to form 
functional integrase–DNA complexes in vitro [186]. And, 
when added to susceptible target cells, the compounds act 
as integrase inhibitors that specifically block the integra-
tion step of HIV-1 infection [184, 187–190, 205]. However, 
the compounds are across the board more potent inhibitors 
of HIV-1 particle maturation [187–190, 192, 206]. Particle 
maturation is particularly sensitive to changes in integrase, 
leading to the definition of a subclass of HIV-1 integrase 
mutant viruses, the class II mutants, to distinguish them 
from the class I mutants that mature normally and thus 
are specifically defective for the integration step of HIV-1 
replication (see [207, 208] for reviews). ALLINI treatment 
phenocopies the maturation defect associated with certain 
class II integrase mutant viruses, which is highlighted by 
the mis-localization of the RNP complex to a region of 
the virion particle outside of the conical shell [187, 190, 
206, 209, 210]. Such viral RNA is susceptible to degrada-
tion following infection [211], highlighting the common 
reverse transcription defect of ALLINI-treated and class II 
integrase mutant viruses [187–190, 192, 206–208]. HIV-1 
integrase binds virion RNA in the virus, which is disrupted 
similarly by ALLINIs and class II mutations [212]. Thus, 
integrase binding to RNA may play a critical role in RNP 
localization during HIV-1 particle maturation [212], though 
the biochemical mechanism of how integrase–RNA binding 
orchestrates capsid shell morphogenesis around the RNP 
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remains to be elucidated. It will also be telltale to ascertain if 
integrase plays a similar role in the morphogenesis of other 
retroviruses.

In the long run, it appears that inhibition of the LEDGF/
p75–integrase interaction may have little to do with the 
mechanism of ALLINI action. Sites of HIV-1 integration 
are altered when susceptible target cells are treated with 
ALLINIs, highlighting that the compounds are likely effec-
tive inhibitors of the LEDGF/p75–integrase interaction 
under this infection condition [175, 192, 202]. However, 
ALLINI potency actually increases during the afferent arm 
of HIV-1 replication when LEDGF/p75 is depleted, indi-
cating that LEDGF/p75 protects the intasome from the 
aggregation inducing effects of the molecules [74, 187–190, 
192]. By contrast, LEDGF/p75 has no apparent influence 
on compound potency under conditions of virus assem-
bly [75, 187–190, 192]. As LEDGF/p75 is not effectively 
incorporated into virions [113], it seems that the inability 
for LEDGF/p75 to bind integrase during viral late events 
unleashes the full potency of the compounds.

Conclusions and perspectives

Recent research has highlighted roles for both integrase- and 
capsid-binding proteins in HIV-1 integration targeting. The 
brunt of this data was derived from transformed cell lines 
such as U2OS and HEK293T due to the sensitivity of these 
cells to RNAi and CRISPR-Cas9 genetic manipulation. It 
therefore is important to extend this line of research to pri-
mary cells such as monocyte-derived macrophages (MDM) 
and  CD4+ T cells to ascertain the extents that LEDGF/p75 
and CPSF6 influence integration targeting under physi-
ologically relevant conditions. As discussed, LEDGF/p75 
has been depleted from primary T cells via electroporation 
of Cas9-guide RNA complexes [76], so mapping HIV-1 
integration sites in these cells should be informative. Treat-
ing MDM with short-interfering RNA against CPSF6 or 
LEDGF/p75 yielded fairly modest knockdowns and reduced 
HIV-1 integration into genes, yet the targeting defects were, 
perhaps expectedly, much more modest than those seen by 
knocking down CPSF6 in U2OS cells or knocking out either 
factor [25]. Additional approaches to increase the potency 
of protein depletion in primary cells are warranted [76]. The 
A77V change in capsid, which disrupts binding to CPSF6, 
importantly ablated integration into gene-dense regions of 
chromatin in both transformed cells and MDM [142].

Patients on antiretroviral therapy harbor a reservoir of 
latently infected cells that rekindle systemic viremia upon 
cessation of therapy [213] (see [214] for review). Analysis 
of AIDS patients integration sites over time revealed the 
persistence of certain proviruses as evident by the clonal 
expansion of infected cells [215, 216]. As the brunt of viral 

DNA in patients is defective [217], it may be expected that 
many of the proviruses in clonally expanded cells are also 
defective [218], though in at least one patient a dominant 
cell clone was responsible for much if not all of the circu-
lating virus [219]. What is currently unknown is whether 
proviruses, defective or otherwise, drive clonal expansion 
due to subtle growth advantages instilled by the particular 
site of integration, though this is surely a popular working 
model (see [220] for review). Significant research is cur-
rently dedicated to HIV cure, where cells that harbor latent 
proviruses would either be permanently locked down for 
viral expression or transcriptionally activated and then 
purged from the body (reviewed in [221]). The site of HIV-1 
integration can influence both entry into latency and tran-
scriptional reactivation by latency-reversing agents (LRAs) 
[222]. Interestingly, suppression of LEDGF/p75-mediated 
integration targeting by RNAi knockdown or ALLINI treat-
ment increased the number of latent viruses and decreased 
the extent of LRA reactivation [175]. As CPSF6 shields the 
HIV-1 PIC from targeting heterochromatin [25], it will be of 
interest to determine the latent state of proviruses formed in 
the absence of this targeting pathway and how such viruses 
respond to LRAs. The cellular and molecular mechanisms 
that drive HIV-1 integration targeting are inextricably linked 
to the persistence of particular proviruses in AIDS patient 
reservoirs and research into HIV cure.
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