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Summary

Assessment of vaccine efficacy as a function of the similarity of the infecting pathogen to the 

vaccine is an important scientific goal. Characterization of pathogen strains for which vaccine 

efficacy is low can increase understanding of the vaccine's mechanism of action and offer targets 

for vaccine improvement. Traditional sieve analysis estimates differential vaccine efficacy using a 

single identifiable pathogen for each subject. The similarity between this single entity and the 

vaccine immunogen is quantified, for example, by exact match or number of mismatched amino 

acids. With new technology, we can now obtain the actual count of genetically distinct pathogens 

that infect an individual. Let F be the number of distinct features of a species of pathogen. We 

assume a log-linear model for the expected number of infecting pathogens with feature “f,” f = 1, 

…, F. The model can be used directly in studies with passive surveillance of infections where the 

count of each type of pathogen is recorded at the end of some interval, or active surveillance where 

the time of infection is known. For active surveillance, we additionally assume that a proportional 

intensity model applies to the time of potentially infectious exposures and derive product and 

weighted estimating equation (WEE) estimators for the regression parameters in the log-linear 

model. The WEE estimator explicitly allows for waning vaccine efficacy and time-varying 

distributions of pathogens. We give conditions where sieve parameters have a per-exposure 

interpretation under passive surveillance. We evaluate the methods by simulation and analyze a 

phase III trial of a malaria vaccine.
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1. Introduction

Randomized clinical trials of vaccine candidates can provide a rich source of clues about 

vaccine mechanism in addition to a rigorous evaluation of overall efficacy. One important 
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analysis for clues focuses on whether the vaccine has differential efficacy across different 

types of infecting pathogens (e.g., strains of Hepatitis C). The idea is that pathogens that are 

genetically or functionally similar to the vaccine immunogen may be more effectively 

blocked by the vaccine compared to pathogens that are different. Such analyses are known 

as sieve analyses as they reveal if the vaccine differentially blocks certain strains from 

infecting.

A broad and sophisticated literature for sieve analysis has developed; see for example, 

Gilbert et al. (1998, 2001), Gilbert (2000, 2001), Juraska and Gilbert (2013), Sun et al. 

(2013), and Juraska and Gilbert (2016). A traditional feature of these methods is that 

infection was categorized by a single strain of pathogen and thus infection by multiple 

strains was not considered. Recently, technology has improved so that counts of multiple 

infecting pathogen strains can be characterized. Intuitively, this additional information 

should yield more efficient analyses than when only infection yes/no by a single type of 

pathogen is recorded for each subject.

Follmann and Huang (2015) developed methods for analyzing vaccine trials where, at the 

time that infection was detected, the count of infecting pathogens was also determined. They 

assumed an underlying proportional intensity model for the risk of a potentially infectious 

exposure along with a log-linear model for the number of infecting pathogens. Vaccine 

efficacy was defined as the reduction in the mean number of infecting pathogens. Different 

parametric and semi-parametric methods for estimation of the overall vaccine efficacy were 

developed and evaluated. However, they did not consider the case where the infecting 

pathogens could be classified into multiple strains and did not consider sieving methods.

This article develops methods that blend the sieve approaches of Gilbert et al. cited above 

with the founder pathogen approaches developed by Follmann and Huang (2015). Both 

active and passive surveillance vaccine trials are considered. For passive surveillance trials, a 

log-linear model for the mean number of infecting pathogens with a given feature f over a 

fixed interval of follow-up is specified where f = 1, …, F characterize the features of interest. 

For active surveillance, we allow for a proportional intensity model on the incidence of 

exposures that can result in terminal infection, that is, infections that terminate follow-up. 

Following exposure, a vector of pathogen counts X1, …, XF is drawn. Infection occurs if any 

Xf > 0 and for example, Xf = 2 means two distinct pathogens with feature f infected the 

person. With parsimonious specification of the mean function, these approaches can be 

applied even if F is large.

This article is organized as follows: We describe the technology of how infecting pathogens 

can be characterized by long amino-acid strings and specify a log-linear model for the 

pathogen counts following exposure. We discuss how data are obtained under passive and 

active surveillance and provide conditions under which vaccine and sieve effects from such 

data estimate per-exposure effects. We conduct a small simulation to illustrate GEE 

estimation and compare it to old technology and to the within cluster resampling (WCR) 

method (Hoffman et al., 2001; Follmann et al., 2003). We next consider active surveillance 

methods and generalize the methods of Follmann and Huang (2015) to the sieve setting. A 

simple product estimator is developed, and then weighted estimating equations (WEE) are 
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derived for a general model that allows for time-varying vaccine efficacy and pathogen 

distributions that vary with time. The asymptotic distribution of the WEE estimator is 

established. We conclude with an analysis of a malaria vaccine trial and explore the 

difference between the proposed and WCR approaches to active surveillance.

2. Pathogen Quantification and Sampling

Sieve analysis involves quantifying the similarity between the vaccine immunogen and the 

infecting pathogens. Vaccine efficacy is compared between those infected with vaccine-

similar strains versus those with vaccine-dissimilar strains. In this article, we allow 

“infection” to mean either disease (e.g., clinical malaria) or evidence of replication (e.g., 

virus positive as in HIV or Zika infection). Historically, similarity was defined by simple 

methods where an infecting pathogen might be placed into one of several “races,” serotypes, 

or strains, depending on the era and technology. A single infecting pathogen would be 

identified for each infected individual.

While many infections are caused by a single infecting pathogen (or multiple identical 

clones), other pathogens can cause serial infections each by single or multiple unique 

infecting pathogens. If the infecting pathogens are genetically distinct it is possible to count 

them. To fix ideas, consider malaria which is caused by the parasite plasmodium falciparum. 

The infectious cycle starts by a mosquito bite of a human where the sporozoite form of the 

parasite is transferred from the mosquito to human. The sporozoite has an outer membrane 

of circumsporozoite (CS) protein which can induce an immune response. The RTS,S malaria 

vaccine uses part of this outer membrane as an immunogen and part of the amino acid (AA) 

sequence of the RTS,S immunogen is detailed in the first row of Table 1 (see Doud et al., 

2012).

For ease of discussion, suppose that all subjects are followed for the same fixed interval of 

time. To identify infecting parasites, blood is drawn at the end of the study and a number of 

parasites sampled. The part of the parasite's DNA that codes for the CS region of Table 1 is 

amplified so that the DNA for each parasite is determined. This DNA sequence identifies the 

actual protein that coats the outside of the parasite. The middle four rows of Table 1 

illustrate four different parasites. For malaria, the sampled parasites are genetically identical 

progeny of the infecting pathogens. Other diseases are different. For example, HIV 

undergoes replication and mutation within the infected host which adds further complexity 

to the identification of infecting pathogens (see e.g., Keele et al., 2008). Nonetheless, with 

detailed knowledge of the pathogen life cycle, assay technology, and amplification method, 

one can identify the genotypes and count the clonally distinct infecting pathogens.

The potential number of ways that the infecting pathogens can differ is large and simple 

metrics are often used to characterize the difference or “distance” between the vaccine and 

an infecting parasite. The final 3 columns of Table 1 give three examples of dissimilarity; 

(A) whether a vaccine/pathogen match occurs at amino acid location # 320, (B) whether a 

match occurs for all amino acids from location 293 through 302 (the DV10 region of the CS 

protein), or (C) the total number of mismatches from position 290 to 331.
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To develop some notation, suppose that Xf is the number of infecting pathogens with feature 

f for a given subject following exposure and define the vector of counts as X = (X1, …, XF). 

For example, if we define feature by a match at location 320, with f = 1 denoting a match 

and f = 2 a mismatch, then F = 2 and from Table 1, we have (X1, X2) = (1, 3). If we define 

feature as the total number of mismatches (i.e., Hamming distance) over the 42 locations 

290-331 then F = 43 and Xf is the number of pathogens with f–1 mismatches; for Table 1, X 
= (0, 0, 1, 2, 0, 1, 0, 0, …, 0). For malaria, multiple founders often follow from multiple 

infections so X1 + X2 > 1 from a single bite would be somewhat unusual.

A convenient regression model for count data is to assume that the log of the mean count is a 

linear function of covariates. Usually one has a single outcome X along with covariates W 
and one assumes that E(X|W) = exp(W′α). With sieve models we have a vector of outcomes 

X, a vaccine indicator Z and each element f has its associated covariate vector Vf. For the 

Hamming distance metric described above, we have Vf = (f – 1) and the mean model is

E(X f |W f ) = exp (W′ f α) = exp {α1 + α2( f − 1) + α3Z + α4Z( f − 1)} . (1)

The other metrics described above can be represented in a similar fashion.

Vaccine efficacy is typically defined as a percent reduction in an outcome on a vaccine 

relative to a placebo (see Halloran et al., 2010). A traditional metric is to use infection by a 

single pathogen as an outcome and thus vaccine efficacy against infection by a pathogen 

with feature f is

VEI f = 1 −
P(X f > 0|Z = 1)
P(X f > 0|Z = 0) .

With the number of infecting pathogens with feature f, we can define vaccine efficacy in 

terms of the reduction in the mean number of infecting pathogens.

VEM f = 1 −
E(X f |Z = 1)
E(X f |Z = 0) = 1 − Δ f .

Follmann and Huang (2015) introduced the metric VEM. While VEIf is typically more 

clinically relevant than VEMf, the latter may be more efficient at uncovering mechanistic 

clues.

While in vaccine challenge studies, X can be recorded after each controlled exposure in field 

trials, humans are exposed and infected during the course of follow-up, but when infection is 

detected depends on the study sampling framework. We postulate a process for exposure and 

infection where, at each exposure, a vector of counts of clonally unique infecting pathogens, 

X, is drawn from a distribution F(). For active follow-up, surveillance continues until an 
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infection or censoring occurs. Whenever an infection occurs, we sample the infecting 

pathogens, determine XA, and stop follow-up. We sometimes call this a “terminal” infection 

as follow-up stops. What constitutes a terminal infection varies. For HIV any infection is 

terminal, while for malaria multiple subclinical infections are possible before the first 

terminal infection (e.g., parasitemia plus symptoms). For passive surveillance, we follow 

until the end of the study and genotype any infecting pathogens which reveals XP.

Figure 1 illustrates the intricacies of exposure, infection, and terminal infection under 

passive and active surveillance. The top trajectory is for an individual who has 4 exposures 

but remains uninfected until the end of follow-up. Under passive surveillance, we measure 

XP = 0 while for active surveillance, we write XA as 0. The second trajectory is where all 

infections are terminal such as HIV. Follow-up stops for active surveillance when infection 

is detected but continues for passive surveillance. Here, XP = XA though the sample is 

obtained at different times. Finally, the bottom trajectories are where subclinical infections 

can occur and possibly dissipate over time such as subclinical malaria. In this case, XP and 

XA may be weighted random sums of per exposure X's with bigger weights closer to the 

time of sampling. The difference is that the last infection in the sum comprising XA must be 

terminal. Passive surveillance has no such requirement.

In general, the distributions of XA, XP, and X are different and thus VEMf and sieve effects 

based on XA, XP, and X may be different. However for trajectories of type 1 and 2, XA = XP. 

We later provide conditions where the per-exposure VEMf can be recovered from XA. This is 

not possible for passive surveillance but we can provide conditions under which the mean 

per-exposure sieve effect θf,g = Δf/Δg is recoverable from XP. If these conditions are not met, 

sieve effects can still be tested, but the estimates may not have the per-exposure 

interpretation. For simplicity, we have no covariates other than, Z, the vaccine indicator. We 

allow different patients to have different lengths of follow-up L.

Assumption 1. The per exposure counts of infecting pathogens X are independent and 

identically distributed draws from FZ() both within and across subjects within randomization 

group Z. Thus, the distribution of circulating strains of pathogens at each exposure is 

constant over time. Note this forbids an all-or-none vaccine effect where placebos and some 

vaccinees repeatedly draw X from an F() while other vaccinees repeatedly draw from point 

mass at 0.

Assumption 2. Our setting is for the second trajectory of Figure 1, where any infection is 

terminal and stops active surveillance. Multiple infections are not allowed. The count vector 

X that obtain from a terminal infection is recorded without error.

Under these assumptions, for both active and passive surveillance the distribution of XP = 

XA follows FZ
P(X) = FZ(X | X+ > 0)pZ + δ0(X)(1 − pZ), where Z = 0, 1 is the vaccine indicator, 

pZ is the probability of a (terminal) infection during follow-up in group Z, X+ = ∑ f = 1
F X f , 

and δ0() is point mass at 0. Note that pZ implicitly depends on the distribution of follow-up 

lengths, L, in group Z.

With passive surveillance, we can recover the per-exposure ratio of means:
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θ f , g
P =

E(X f
P |Z = 1)/E(X f

P |Z = 0)

E(Xg
P |Z = 1)/E(Xg

P |Z = 0)
=

p1E(X f | X+ > 0, Z = 1)/{p0E(X f | X+ > 0, Z = 0)}
p1E(Xg | X+ > 0, Z = 1)/{p0E(Xg | X+ > 0, Z = 0)}

=
E(X f | X+ > 0, Z = 1)/{E(X f | X+ > 0, Z = 0)}
E(Xg | X+ > 0, Z = 1)/{E(Xg | X+ > 0, Z = 0)} =

π1E(X f | X+ > 0, Z = 1)/{π0E(X f | X+ > 0, Z = 0)}
π1E(Xg | X+ > 0, Z = 1)/{π0E(Xg | X+ > 0, Z = 0)}

=
E(X f |Z = 1)/{E(X f |Z = 0)}
E(Xg |Z = 1)/{E(Xg |Z = 0)} = θ f , g,

where πz is the per-exposure probability of infection P(X+ > 0|Z). This result is analogous to 

that of Gilbert et al. (1998) who used the infection indicator I(Xf > 0) as outcome and only 

allowed for a single infecting strain.

3. Passive Surveillance

In trials with passive surveillance, volunteers are followed for a length of time. At the end of 

follow-up, infection status is determined and for infected volunteers, a sample of infecting 

pathogens genotyped. Let Li be the length of followup for person i. Let Zi be the vaccine 

indicator, Xi
P = X1i

P , …, XFi
P  the vector of counts of infecting pathogens, and Wfi a covariate 

vector, which depends implicitly on Z and which we sometimes write as Wfi(Zi). Similar to 

(1), we specify

E(X f
P |W f ) = exp (W′ f α) . (2)

We allow that Wf can include terms involving L to reflect different lengths of follow-up.

As in Gilbert et al. (1998), who parameterized sieve effects for the infection indicator 

I(X f i
P > 0), we specify Wfi to allow for an arbitrary mean for feature f in the placebo group, 

with possibly structured vaccine effects. For example, one may postulate

E(X f
P |W f ) = exp (β0 f + γ1L + ZV′ f ψ) . (3)

Unstructured vaccine effects occur with Vf = If identifying the fth feature, for example, 0, 

…, 1, …, 0. Ordinal effects occur with Vf as above but with ψ1 ≤ ψ2 · · · ≤ ψf. Another 

possibility is to specify a linear effect for the Hamming distance, for example, Vf = 1, f – 1 

where f – 1 is the number of mismatches. These models can be fit using generalized 

estimating equations (GEE) with each individual a cluster (Zeger and Liang, 1986).

A small simulation was performed to evaluate the GEE estimation. We categorized 

pathogens as either matched (f = 1) or mismatched (f = 2) to the vaccine and generated 

counts ( X1
P, X2

P) using a bivariate negative binomial model with mean given by
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E(X f i
P |W f i, bi) = exp {bi + α1 + α2I( f = 1) + α3Zi + α4ZiI( f = 1)} = exp {bi + W′ f iα},

(4)

where exp(bi) follows a gamma distribution with μ = E{exp(bi)} =.5 or 1 and 

σexp(b)
2 = ver{ exp (bi)} = 0, 1, or 2. We specify α = (0.96, 0, −0.32, −1.28) so that VEM1 = .

80 and VEM2 = .27. In this model, α4 quantifies the sieve effect.

For estimation, we use GEE with a working independence correlation matrix. To mimic the 

old technology where only a single infecting pathogen is characterized, we selected a 

pathogen at random from each infected subject and recorded whether it was a match or not. 

We then fit a logistic regression model with probability exp(α2 + Ziα4)/{1 + exp(α2 + 

Ziα4)} to the match indicator. As an alternate estimation procedure, one could repeat the 

above random selection many times and average the associated estimates of α4. This 

averaging corresponds to a within cluster resampling (WCR) or multiple outputation 

approach to dealing with the multiple outcomes from each individual (Hoffman et al., 2001; 

Follmann et al., 2003). The WCR approach was introduced for use in sieve analysis in 

Neafsey et al. (2015). Here, we average over all possibilities and call this exhaustive WCR 

or EWCR. This approach may offer some robustness as an aberrant subject with large X+ 

and a peculiar suite of infecting pathogens will have substantial weight under the GEE 

approach with working independence but not under WCR.

Table 2 summarizes the simulation results. The two left columns give the true mean and 

variance of exp(bi) while the X̄ column summarizes the average count averaged over f = 1, 2, 

and Z. We define the squared Wald statistic as 2 = θ̂2̄ /S2 (θ̂) or the squared sample average 

of an estimate divided by its sample variance. The far right columns give the ratio of 2 for 

different estimators. This can be viewed as the relative efficiency of different estimators. For 

unbiased estimates, the ratio reduces to the ratio of variances, while for estimators that 

estimate different parameters, it approximates the ratio of sample sizes required to achieve a 

given power. So if 𝒵A
2 /𝒵B

2  is 2, then method B requires twice the sample size as method A 

to achieve the same power.

For the top half of Table 2, data are generated under (4) and all estimators are unbiased. The 

new technology where we characterize multiple infecting pathogens is more efficient than 

the old technology where only a single pathogen is identified; the variance ratio ranges from 

2.68 to 3.49 when μ = 0.5 and from 3.33 to 5.00 when μ = 1. The final columns shows that 

GEE is more efficient than WCR with gains ranging from 18% to 119%.

The top half of Table 2 was generated using a conditional Poisson model for the mean count 

which is consistent with the models used for analysis. Another possibility is a kind of all-or-

none vaccine effect where the vaccine reduces the probability of infection, but has no effect 

on the count of infecting pathogens once infection has occurred. We formalize this idea by 
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perturbing (4) by replacing any Xf|Xf > 0 with a discrete uniform(1,21), irrespective of 

group. Results are given in the bottom half of Table 2. Simulations show that for this setting, 

the EWCR and GEE methods estimate different parameters. The GEE method is more 

powerful than the old technology, but the GEE approach is less powerful than EWCR with 

relative efficiencies between 0.62 and 0.78.

4. Field Trial Time to Event Analysis

In a field trial with active surveillance, the time to event (e.g., infection for HIV or first 

clinical disease for malaria) is recorded along with the counts of each type of infecting 

pathogen. In this section, we parallel the approach of Follmann and Huang (2015) and 

develop estimators of the V:P ratio of means. Our methods are best conceptualized with 

trajectory 2 of Figure 1 where any infection is terminal, that is, stops follow-up and we 

recover the per-exposure mean ratio. Our methods also apply to settings 3 and 4 though here 

XA for the terminal infection may include some previous subclinical infections and the mean 

ratio may not have a crisp per-exposure interpretation.

4.1. Product Estimators of VEMf

Let ω(t) be the instantaneous risk of exposure by any pathogen. This risk should be free of Z 

in a blinded trial. Following exposure, X is generated from FZ(). If ∑ f = 1
F X f = X+ > 0 the 

person is infected and we see XA while if X+ = 0 they remain at risk of future infection. If no 

infection occurs during follow-up, we write XA = 0. Under the assumption that the time of 

exposure and X are conditionally independent given Z, the instantaneous risk of (terminal) 

infection can be written as

h(t |Z) = ω(t)P(X+ > 0|Z) = h0(t) exp log
P(X+ > 0|Z = 1)
P(X+ > 0|Z = 0) Z

= h0(t) exp (Zβ) .
(5)

Thus, exp(β) is the V:P ratio of per exposure infection probabilities. Estimation of β can be 

achieved using standard software for Cox regression and the asymptotic distribution of β̂ is 

well known. Additionally, covariates that impact the risk of exposure can be easily 

incorporated in equation (5) if desired.

Given infection, we can drill down to get at feature specific vaccine efficacy and from that 

sieve effects. Similar to before, we assume that the expectation of X f
A | X+

A > 0 is given by

E(X f
A |W f , X+

A > 0) = exp (W′ f α) . (6)

Note that if all infections are terminal then XA =d X. The vector Wf can be parameterized as 

described previously and α can be estimated using the GEE method with data from infected 
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individuals. Using arguments in Follmann and Huang (2015), we can blend the Cox 

estimator of β with an estimate of α to obtain a consistent estimate of VEMf. Specifically, as 

the sample size goes to infinity

exp (β)
exp {W f (1)′α}
exp {W f (0)′α}

P(X+ > 0|Z = 1)
P(X+ > 0|Z = 1)

E(X f |Z = 1, X+ > 0)
E(X f |Z = 0, X+ > 0)

=
E(X f |Z = 1)
E(X f |Z = 0)

= 1 − VEM f ,

in probability. Here, Wf(Z) are the covariates for a person in group Z. Remarkably, even 

though, we only see X f
A | X+

A > 0, we are able to obtain a consistent estimate of the ratio of 

unselected means. Asymptotics for the product estimator easily follow from the delta 

method as both β̂ and α̂ are asymptotically normal and independent given standard 

conditions including that the Xis are independent draws from Xi|W1i, …, Wfi.

A sieving effect occurs if the VEMf are not constant over f which happens if

E{X f
A |W f (1)}

E{X f
A |W f (0)}

= exp [{W′ f (1) − W′ f (0)}α]

is nonconstant over f. Exactly what this means in terms of α depends on Wf. For example, 

with the Hamming distance metric parameterized as in equation (1), a sieve effect occurs if 

α4 ≠ 0. For the mis-match metric sieving occurs if α4 ≠ 0 with (f – 1) replaced by I(f = 1) in 

(1).

For certain diseases, such as malaria, subclinical infections can occur as suggested by 

trajectories 3 and 4 of Figure 1 and thus an XA associated with a terminal infection (which 

has X+
A > 0) may include infecting pathogens from prior subclinical infection(s). Such an XA 

can be represented as the sum of the count vector from the terminal infection plus a random 

number of other count vectors from recent subclinical infections. We might write 

XA = ∑c = 1
C Xc

∗. The X1
∗, …, XC

∗  could have a complex distribution with, for example, C–1 iid 

subclinical infections drawn from FW
∗ sc followed by a terminal infection drawn from FZ

∗ t. In 

this case, the product method recovers a ratio of means, but it does not have a crisp per-

exposure interpretation.

Interestingly, we can repeat the above development by the indicator of infection yes/no I(Xf 

> 0) instead of Xf. This may be a more sensitive measure of vaccine efficacy if the vaccine 

has an impact on I(Xf > 0) but no impact on the count Xf|Xf > 0. We assume the same model 

for the risk of infection by any pathogen (5). But now our outcome is the indicator of an 

infection of type “f” given infection has occurred. For this, we assume that
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E{I(X f
A > 0) |W f X+

A > 0} = exp {W′ f α} (7)

Arguing as before it follows that as the sample size goes to infinity

exp (β)
exp (W f (1)′α)
exp (W f (0)′α) 1 − VEI f ,

in probability with asymptotic normality following from the delta method.

4.2. Weighted Estimating Equations

While the product estimators of VEIf and VEMf for active surveillance are simple to obtain, 

they do not naturally allow for complex covariates that can model nonconstant vaccine 

efficacy nor allow for changing distributions of pathogens. In this section, we extend the 

WEE approach in Follmann and Huang (2015) to allow for these effects.

Let Ti be the time to infection and Ci the time to censoring for individual i. We assume that 

the censoring time Ci is independent of Ti conditioning on the covariates. Moreover, define 

Yi = min(Ti, Ci), δi = I(Ti ≤ Ci) and Ni(t) = δiI(Yi ≤ t). Motivated by Follmann and Huang 

(2015), we propose to construct unbiased estimating equations based on the observed 

stochastic processes X f i
A dNi(t), f = 1, …, F and i = 1, …, n.

Define by WE covariates that impact the exposure to pathogens and by W f
X covariates that 

impact the count of Xf given exposure to pathogens. Define W = (WE, W1
X, …, WF

X). We 

assume that the intensity of exposure to any pathogen is given by

ω(t |W) = ω(t) exp (θ′WE), (8)

while the mean of X given exposure at time t satisfies the proportional mean model

E(X f |W f ) = E(X f |W f
X) = exp {β f (t) + ϕ′WI + ψ′ZV f } . (9)

With βf(t) varying with t, we allow the mean response in the placebo group to change 

arbitrarily with time. We include WI to allow for pan-feature effects such as innate immunity 

or actual/counterfactual immune response to the vaccine while Vf specifies the vaccine effect 

for feature f. In the appendix, we show these assumptions and only terminal infections imply 

that
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E{X f i
A dNi(t) |Wi} = λ f (t) exp (α′W f i

u )P(Y i ≥ t |Wi)dt (10)

where λf(t) = ω(t) exp{βf(t)} is a nuisance function and W f i
u  are the unique covariates in 

(WE, WI, ZVf). Note that for a covariate included in both Wi
E and Wi

I, the corresponding α is 

the sum of the corresponding θ and ϕ. When there are no such common covariates, we have 

W f i
u = (Wi

E, Wi
I, ZiV f i). A simple example is W f i

u = {Zi, Zi( f − 1)}.

Based on the zero-mean property of the observed stochastic processes, 

X f i
A dNi(t) − E{X f i

A dNi(t)}, we derive p = dim(α) unbiased estimating equations after profiling 

out the nuisance functions λf(t), f = 1, …, F,

U(α) = ∑
i = 1

n ∫
0

τ
∑
f = 1

F
X f i

A W f i
u −

∑ j = 1
n W f j

u exp (α′W f j
u )I(Y j ≥ u)

∑k = 1
n exp (α′W f k

u )I(Yk ≥ u)
× dNi(u) = 0 . (11)

Define the solution as α̂, which we call the weighted estimating equation (WEE) estimator. 

In Web Appendix A, we show that √n(α̂ – α0) converges to a multivariate normal 

distribution with mean zero and variance-covariance matrix Γ−1ΩΓ−1 where Γ = −n
−1E{∂U(α)/∂α |α=α0} and Ω = var{Ui(α0)}.

Remarks

1. Stratification can be incorporated in the proposed WEE method in the usual way. 

Within each stratum, for example, sites in a field trial, we construct estimating 

equation (11) and then sum the equations over strata to estimate the regression 

coefficients.

2. Analogous to the product estimator, for trajectories of type 3 and 4 where XA 

may include pathogens from prior nonterminal infections, the WEE estimator 

recovers a ratio of means, but they do not have a per-exposure interpretation.

3. The equations (11) for failure type f correspond to estimating equation from 

standard Cox regression based on a weighted partial likelihood where the ith 

failure of type f gets weight X f i
A . The equations are summed over all f which have 

at least 1 failure which results in equation (11). Cox regression software which 

allows this sort of weighting can be re-purposed to solve these equations. Note 

that weighted Cox regression typically replicates a person X f i
A  times including in 

the “risk set” or denominator of (11). The weight in equation (11) is different 

with an unchanged risk set but the contribution at Ti reproduced X f i
A  times.

4. If such weighting is not allowed, the equations can still be solved with standard 

Cox regression software. Let  be the set of subjects with an event. For subject 
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k ∈  with an event at time Tk, we concatenate ∑ f = 1
F Xk f

A  data sets. If an 

infection with feature f is observed for this subject k, a total of Xk f
A > 0 identical 

datasets of failure type f are created from the risk set ℛ(Tk) of subjects under 

study at time Tk. Each data set has #ℛ(Tk) – 1 nonevents with covariate vectors 

Wft from those ℓ in the risk set ℛ(Tk) (but excluding subject k) and a single 

infection with feature f with covariate vector Wfk for subject k. This results in 

∑k ∈ 𝒦 ∑ f = 1
F X f k

A  concatenated datasets. If each dataset defines its own stratum 

and stratified Cox regression is run then the a solution to (11) can be obtained. 

The bootstrap can be used to approximate standard errors for the regression 

coefficients.

5. The same arguments apply if we replace X f i
A  with I(X f i

A > 0) when our goal is to 

estimate VEIf. In this case, the estimating equations can be solved using stratified 

Cox regression software. For feature f, we create a Cox regression data set using 

time to infection with feature f as the failure time and the censoring indicator in 

the usual fashion along with Wfi as the covariate for person i in the fth dataset. 

We can then concatenate the datasets into a large dataset and apply stratified Cox 

software. Note that we only need concatenate U ≤ F datasets where U is the 

number of unique infection features observed in the data. Each feature that has 

an event defines a stratum so there are U strata. Again, the bootstrap can be used 

to obtain standard errors for the regression coefficients. This formulation extends 

Method B of Lunn and McNeil (1995) to multiple noncompeting events.

6. The assumption of a constant VEMf throughout follow-up can be weakened. For 

example, the mean at time t for feature f might be proportional to

E(X f i
A |W f

u) = exp {β f (t) + Z(α f 1 + α f 2t)},

Thus, VEMf = 1 – exp(αf1 + αf2t) can wane smoothly over time. If we further 

require αf2 = αf for all f, then the ensemble VEM1, …, VEMf can wane similarly 

over time. Another formulation would have

E(X f i
A |W f

u) = exp [β f (t) + Z{I(t ≤ τ)α f 1 + I(t > τ)α f 2}],

so that VEMf can differ before and after τ, for example, the median follow-up.

In Web Appendix B, we evaluate the performance of the WEE and product approaches via 

simulation. We consider pathogen distributions, that is, placebo draws from FZ, that are 

constant, increase, or decrease over time, and allow for no and substantial subject level 

heterogeneity. The WEE method allows for changing pathogen distributions while the 

product methods does not. Both methods assume no subject-level heterogeneity. 

Interestingly, the simulations show that both methods are unbiased for the sieve effect θf,g 

for all scenarios. For feature specific vaccine efficacy, VEMf the performance differs. The 
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WEE is unbiased for all null scenarios and only modestly biased at about 10% and then only 

when there is both substantial heterogeneity and the mean of FZ() increases over time. WEE 

is unbiased for moderate heterogeneity. For both non and non-null scenarios, the product 

estimate shows bias with nonconstant FZ and is substantially biased under heterogeneity for 

all FZ.

5. Example

Malaria is an ancient parasitic disease that causes substantial illness and disease, primarily in 

the developing world. While vaccine development has been long and difficult, the RTS,S 

vaccine has demonstrated promising efficacy; see Agnandji et al. (2015); RTS et al. (2012). 

Investigation of potential sieve effects of the vaccine is of keen interest. Towards this end, 

next-generation PCR amplification of the CS region in AA positions 293–389 was 

undertaken and the infecting parasites characterized as illustrated in Table 1. Neafsey et al. 

(2015) conducted an extensive sieve analysis of the RTS,S vaccine using the mismatch 

metric for individual AA locations and subregions of the region defined by amino acid 

positions 293–389. Sophisticated methods that had been developed for single infecting 

pathogens were leveraged using the Monte Carlo WCR approach.

To illustrate our methods, we use children 5–17 months old from all trial sites of the RTS,S 

trial (Neafsey et al., 2015). There were 6912 children from 11 trial sites with a total of 2089 

terminal infections, that is, first or only episodes of clinical malaria within the 1st year post 

vaccination. For illustration, we focus on the mismatch metric applied to the DV10 region of 

AA positions 293–302. We define X1
A, X2

A as the counts of matched and mismatched 

pathogens at terminal infection. Of the 2089 infections for this AA region, 1722 had all 

infecting pathogens mismatched, 68 had all infecting pathogens matched and 299 had both 

matched and mismatched infecting pathogens. The top panel of Figure 2 displays a random 

sample of 165 children, 56 of them had an episode of first or only clinical malaria 

(parasitemia plus symptoms) and are denoted by a number providing the jittered total count 

of infecting pathogens at the time of terminal infection. The bottom panel is a jittered 

scatterplot of the count of mismatched and matched infecting pathogens; the correlation 

between the two is about 0.28.

We begin our analysis by evaluating three different estimators of VEIf: WCR, an analysis 

that approximates old technology where a single pathogen is identified, and the product 

estimator. For WCR we generated 10,000 datasets by selecting one infecting strain at 

random for each infected child. For each generated dataset, the Cox proportional hazards 

model was applied separately to matched (f = 1) and mismatched (f = 2) infections using the 

parametrization

λ f (t) = λ0 f (t) exp [Z{α1I + I( f = 2)α2I} ,

see Method B of (Lunn and McNeil, 1995). Here, α1I, α1I + α2I correspond to matched and 

mismatched vaccine effects, and α2I ≠ 0 indicates differential vaccine efficacy. An estimate 
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of its variance is obtained as described in Hoffman et al. (2001) and Follmann et al. (2003). 

To mimic the old technology where a single infecting pathogen was identified, we selected 

the median α̂
2I and corresponding standard error. We view this an approximation to the 

estimate that would likely be obtained under the old technology. For the product method 

with I(Xf > 0) as outcome, we use (7) with W′fα = α1 + α1IZ + α2I(f = 2) + α2IZI(f = 2). 

The estimator reduces to

VEIf = 1 = exp (β)
I(X f 1

A > 0)

I(X f 0
A > 0)

. (12)

where I(X f z > 0) is the proportion infected with feature f among the infected in group z and 

β̂ is estimated from Cox regression. One can show that the estimate of the sieving effect 

simplifies to α2I = log {I(X11
A > 0)/I(X10

A > 0)} − log {I(X01
A > 0)/I(X00

A > 0)}.

For the product method with Xf as outcome, the development is similar. The estimates of 

VEMf, α2M are analogous to VEIf, α2I with I(X f z
A > 0) replaced by X f z

A . The nonparametric 

bootstrap was used to estimate the variance of the estimates based on the product method.

Table 3 reports the results. The first three columns all estimate VEIf. We see that the 

approximation of the old technology, where only one parasite was used for each infection, 

has a smaller Wald statistic than that from Monte Carlo WCR, which shows significant 

evidence of sieving. The use of the product method with the infection indicator as outcome, 

I(Xf > 0), gives a substantially larger Wald statistic than Monte Carlo WCR. The difference 

between the WCR and product estimators of VEIf was interesting and explored in detail 

analytically and via simulations in the Web Appendix C for the simple setting of constant 

pathogen distributions and exponential times to infection. We show that these two 

approaches actually estimate different parameters; the WCR approach estimates VEIf for a 

randomly selected pathogen while the product approach estimates a marginal VEIf. Limited 

simulations show that the relative efficiency 𝒵PROD
2 /𝒵WCR

2  was about 3.5 for these 

scenarios, suggesting the product method may be substantially more efficient. However, 

these simulations do not evaluate an all-or-none type vaccine effect.

The final column estimates VEMf which are larger than the corresponding VEi f s indicating a 

greater estimated effect of the vaccine on the mean than infection. However, the increase is 

more substantial for mismatched infections compared to matched infections. As a 

consequence, the Wald test of differential vaccine efficacy is less substantial (−2.01) than for 

the product estimator using I(Xf > 0) (−3.29).

6. Discussion

This article has developed methods to assess differential vaccine efficacy when multiple 

infecting strains can be quantified. While many pathogens typically have only a single clone 
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infect a person, others, including HIV, malaria, and hepatitis C, can have multiple clones 

infect during the interval(s) between infection assessment. Such characterization offers the 

potential for increased efficiency in identifying clues about the mechanism of action of the 

vaccine. Methods for both passive and active surveillance were developed, the former is an 

obvious generalization of existing methods developed by Gilbert et al., while the latter is an 

extension of the methods of Follmann and Huang (2015). Because this article covered a lot 

of different approaches with different assumptions, in Table 4, we provide a summary of key 

assumptions required for the estimands of θf,g and 1-VEMf to achieve a per-exposure 

interpretation.

For the RTS,S malaria vaccine trial, there were large Wald statistics for the new method 

compared to cataloging a single pathogen when yes/no infection was used as the readout. 

Additionally, in this dataset use of VEIf rather than VEMf had a more significant result. 

Whether VEIf would generally be more powerful than VEMf for malaria or other diseases 

will be answered in the analysis of additional trials. The example also showed that use of the 

marginal VEIf from active surveillance provided more evidence of sieving than the WCR 

estimator of VEIf for a randomly selected pathogen. This behavior was investigated 

analytically and reproduced in limited simulations. The two estimators do estimate different 

parameters and thus provide complementary information; as above, it will be interesting to 

see which approach is more powerful for different diseases.

Our weighted estimating equations were obtained by summing unbiased estimating 

equations over the different pathogen features. This is akin to the use of working 

independence correlation matrix in the GEE method and greater efficiency may be 

achievable if the equations were weighted based on the covariance cov(X|X+ > 0). The 

method of generalized methods of moments approach could be used in future work to derive 

a more efficient estimator of α based on the “F × p” estimating equations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Trajectories of the exposure, infection (possibly subclinical), and terminal infection 

processes for four individuals Exposure=e at which time X is drawn from FZ(). XA and XP 

are the vector of counts obtained under active (solid line) and passive (dashed line) 

surveillance. Xs which result in subclinical infections do not terminate follow-up. Trajectory 

2 corresponds to a disease where all infections are terminal (e.g., HIV) while trajectories 3 

and 4 correspond to a disease with subclinical infections (e.g., malaria). Note that, we allow 

that old sub-clinical infections may be cleared (x1 from trajectory 3 under active 

surveillance).
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Figure 2. 
Top panel: Years to censoring or first/only episode of clinical malaria for 165 randomly 

selected children. Small dots denote censoring, numbers provide the number of infecting 

pathogens at the time of the detection of infection. Bottom panel: a scatterplot of the count 

of infecting pathogens by mismatch/match to the DV10 region.
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Table 1

Partial amino acid sequence of the RTS,S vaccine immunogen along with an illustration of 4 infecting or 

founder parasites (aka haplotypes in malaria) that could have been recovered from an infected volunteer in a 

vaccine trial. A dot indicates agreement with the amino acid of the vaccine immunogen. The consensus 

sequence is given in the bottom row.
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Table 2

Simulated performance of different methods of estimation of a sieve effect using the match/mismatch metric 

for the mean number of infecting pathogens in a trial with passive surveillance. Pairs of rows report the 

average and variance of the estimated α4 over 1000 simulated datasets. Data generated under a bivariate 

negative binomial model. X̄ is the mean X averaged over groups and f and then averaged over the simulations. 

Relative Efficiency is the ratio of squared Wald statistics or 𝒵A
2 /𝒵B

2 , where  is the sample average divided by 

the sample standard deviation.

Relative efficiency

E{exp(bi)} var{exp(bi)} X̄ GEE Single pathogen EWCR GEE/Single GEE/ EWCR

Bivariate negative binomial

0.5 0.0 0.9 −1.302 −1.304 −1.304 2.68 1.18

0.073 0.151 0.087

0.5 1.0 0.9 −1.314 −1.336 −1.325 2.51 1.51

0.067 0.173 0.103

0.5 2.0 0.9 −1.289 −1.322 −1.292 3.49 1.82

0.060 0.222 0.110

1.0 0.0 1.9 −1.283 −1.299 −1.283 3.33 1.31

0.032 0.109 0.042

1.0 1.0 1.9 −1.295 −1.322 −1.299 4.89 1.96

0.030 0.152 0.059

1.0 2.0 1.9 −1.279 −1.283 −1.278 5.00 2.19

0.033 0.168 0.073

All-or-none

0.5 0.0 6.0 −0.997 −1.241 −1.237 1.21 0.78

0.076 0.143 0.091

0.5 1.0 4.8 −0.863 −1.148 −1.137 1.02 0.72

0.092 0.166 0.114

0.5 2.0 4.0 −0.799 −1.108 −1.075 2.75 0.68

0.102 0.540 0.126

1.0 0.0 8.1 −0.742 −1.082 −1.065 1.34 0.62

0.035 0.101 0.045

1.0 1.0 6.4 −0.660 −0.971 −0.965 1.24 0.65

0.045 0.121 0.063

1.0 2.0 5.3 −0.610 −0.907 −0.899 1.20 0.63

0.054 0.142 0.073
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Table 3

Different methods of estimating differential vaccine efficacy applied to the DV10 region of the 

circumsporozoite protein. Data from a phase 3 trial of the RTS,S/AS01 malaria vaccine in African infants. The 

differential VE parameter α2U = log{(1-VEU1)/(1-VEU2)}, where U = I for infection indicator or M for mean. 

95% confidences in parentheses.

VEIf on infection VEMf on count

Parameter One parasite 10,000 Monte Carlo WCR Product method on I(Xf > 0) Product method on Xf

Matched: VE1 0.55 (0.39,0.66) 0.56 (0.44,0.65) 0.60 (0.51,0.67) 0.61 (0.52,0.68)

Mismatched:VE2 0.43 (0.38,0.48) 0.43 (0.38,0.48) 0.44 (0.39,0.49) 0.52 (0.46,0.56)

Sieving effect

α̂
2 −0.219 −0.245 −0.324 −0.211

Vâr(α̂
2) 0.0244 0.0150 0.0097 0.0100

α2/ var(α2) −1.40 −2.01 −3.29 −2.10
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Table 4

Key assumptions required to recover per-exposure estimands. All methods require that any infection be 

terminal (e.g., a trajectory of type 2 of Figure 1). If non-terminal (e.g., subclinical) infections are allowed, θf,g 

recovers a sieve effect and 1-VEMf a ratio of means, but neither has a clear per-exposure interpretation. In 

practice the assumptions below can be weakened further via stratification for any method or by allow use of 

time-varying covariates for the WEE and product methods.

Est. Met. Data Estimand Assumptions

GEE XP

Wf
L

Per-exposure ratio of means θf,g

E(X f
P |W f ) = exp (α′W f )

per-exposure X iid FW () any infection is terminal

Prod XA

W
δ, T VEM f = 1 −

E{X f |W(1)}
E{X f |W(0)}

Same V,P exposure: ω(t) exp(θ′WE)
X independent draws from a dbn. with

· 
P(X+ > 0|Z = 1)
P(X+ > 0|Z = 0) = exp (β)

· E(Xf|W, X+ > 0) = exp(W′fα)

· E(X f |W, X+ > 0) = E(X f
A |W, X+

A > 0) any infection is terminal

WEE XA

W
δ, T VEM f = 1 −

E{X f |W(1)}
E{X f |W(0)}

Same V,P exposure: ω(t) exp(θ′WE)
X at time t an independent draw from a dbn. with

· E(Xf|W) = exp{βf(t) + ϕ′W′ + ψ′ZVf}

· E(X f |W, X+ > 0) = E(X f
A |W, X+

A > 0) any infection is terminal

Notes: X is the per exposure count vector; XP is observed at end of follow-up L; XA is observed at terminal infection at time T, 0 otherwise; T is 

the time to infection or censoring; δ is the infection indicator; f = 1, … F are the features of interest of the pathogen; W f
E

 are covariates that impact 

exposure; Wf are covariates that impact Xf; W1 are covariates that impact Xf for vaccine and placebo; Vf are covariates that describe the vaccine 

efficacy for feature f; Z is the vaccine indicator; W = WE, W1, …, WF; W(Z) denotes covariates in group Z = 1 vaccine or Z = 0 placebo.
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