Skip to main content
. Author manuscript; available in PMC: 2018 Sep 27.
Published in final edited form as: Biometrics. 2017 Dec 14;74(3):1023–1033. doi: 10.1111/biom.12833

Table 2.

Simulated performance of different methods of estimation of a sieve effect using the match/mismatch metric for the mean number of infecting pathogens in a trial with passive surveillance. Pairs of rows report the average and variance of the estimated α4 over 1000 simulated datasets. Data generated under a bivariate negative binomial model. is the mean X averaged over groups and f and then averaged over the simulations. Relative Efficiency is the ratio of squared Wald statistics or ZA2/ZB2, where 𝒵 is the sample average divided by the sample standard deviation.

Relative efficiency

E{exp(bi)} var{exp(bi)} GEE Single pathogen EWCR GEE/Single GEE/ EWCR
Bivariate negative binomial

0.5 0.0 0.9 −1.302 −1.304 −1.304 2.68 1.18
0.073 0.151 0.087
0.5 1.0 0.9 −1.314 −1.336 −1.325 2.51 1.51
0.067 0.173 0.103
0.5 2.0 0.9 −1.289 −1.322 −1.292 3.49 1.82
0.060 0.222 0.110
1.0 0.0 1.9 −1.283 −1.299 −1.283 3.33 1.31
0.032 0.109 0.042
1.0 1.0 1.9 −1.295 −1.322 −1.299 4.89 1.96
0.030 0.152 0.059
1.0 2.0 1.9 −1.279 −1.283 −1.278 5.00 2.19
0.033 0.168 0.073

All-or-none

0.5 0.0 6.0 −0.997 −1.241 −1.237 1.21 0.78
0.076 0.143 0.091
0.5 1.0 4.8 −0.863 −1.148 −1.137 1.02 0.72
0.092 0.166 0.114
0.5 2.0 4.0 −0.799 −1.108 −1.075 2.75 0.68
0.102 0.540 0.126
1.0 0.0 8.1 −0.742 −1.082 −1.065 1.34 0.62
0.035 0.101 0.045
1.0 1.0 6.4 −0.660 −0.971 −0.965 1.24 0.65
0.045 0.121 0.063
1.0 2.0 5.3 −0.610 −0.907 −0.899 1.20 0.63
0.054 0.142 0.073