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Abstract

Although synaptic loss is thought to be core to the pathophysiology of schizophrenia, the nature, consistency and magnitude
of synaptic protein and mRNA changes has not been systematically appraised. Our objective was thus to systematically
review and meta-analyse findings. The entire PubMed database was searched for studies from inception date to the 1st of
July 2017. We selected case-control postmortem studies in schizophrenia quantifying synaptic protein or mRNA levels in
brain tissue. The difference in protein and mRNA levels between cases and controls was extracted and meta-analysis
conducted. Among the results, we found a significant reduction in synaptophysin in schizophrenia in the hippocampus
(effect size: —0.65, p <0.01), frontal (effect size: —0.36, p = 0.04), and cingulate cortices (effect size: —0.54, p = 0.02), but
no significant changes for synaptophysin in occipital and temporal cortices, and no changes for SNAP-25, PSD-95, VAMP,
and syntaxin in frontal cortex. There were insufficient studies for meta-analysis of complexins, synapsins, rab3A and
synaptotagmin and mRNA measures. Findings are summarised for these, which generally show reductions in SNAP-25,
PSD-95, synapsin and rab3A protein levels in the hippocampus but inconsistency in other regions. Our findings of
moderate—large reductions in synaptophysin in hippocampus and frontal cortical regions, and a tendency for reductions in
other pre- and postsynaptic proteins in the hippocampus are consistent with models that implicate synaptic loss in
schizophrenia. However, they also identify potential differences between regions and proteins, suggesting synaptic loss is
not uniform in nature or extent.
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Schizophrenia is a chronic mental illness, affecting ~1% of
the population [1, 2]. Imaging studies have demonstrated
that schizophrenia is associated with ventricular enlarge-
ment [3, 4], a whole brain volume reduction of around 3%,
and regional volume reductions of 6-10% in grey matter
areas such as the frontal cortex [5, 6] and hippocampus [7—
10], as well as alterations in astroglial markers [11, 12].
However, histopathological work has failed to find clear
evidence of gliosis or other degenerative changes in schi-
zophrenia, and, while there is cortical volume loss, this
occurs in the absence of neuronal cell loss [13—18]. Instead,
it has been suggested that lower grey matter volumes are
due to a reduction in synaptic levels, which would be
compatible with the neurodevelopmental hypothesis of
schizophrenia [2, 19-22].

A number of proteins expressed in presynaptic terminals
and the postsynaptic density (Fig. 1) are used as markers of
synaptic density [23-26]. Synaptophysin is the most studied
presynaptic protein, and an accurate index of neuronal synaptic
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Fig. 1 Showing the location of synaptic proteins in the synapses. Rab3
Ras-related protein, VAMP vesicle-associated membrane protein, also
known as synaptobrevin, SNAP-25 synaptosomal-associated protein
25, PSD-95 postsynaptic density protein 95, SNARE SNap REceptor
complex

density [27] because it is limited to neuronal synapses [24].
This protein interacts with synaptobrevin, thus participating in
synaptic vesicle exocytosis [28]. It is specifically enriched in
presynaptic nerve terminals, and is integral to the synaptic
vesicle membrane [29, 30]. Consequently, it has been widely
used in the quantification of synapses in human postmortem
cortical samples [24, 25]. Other synaptic markers include the
SNap Receptor (SNARE) complex proteins, comprising
SNAP-25 (Synaptosomal-associated protein 25), syntaxin and
vesicle-associated membrane protein (VAMP), also known as
Synaptobrevin. The SNARE complex is crucial for calcium-
dependent exocytosis at chemical synapses and is required for
dopaminergic, serotonergic [31] and glutamatergic function
[32]. Given the potential role of these systems in schizophrenia
[33, 34], this makes the SNARE complex of particular interest.
Synaptophysin and SNARE complex proteins are depleted in
conditions associated with synaptic loss, such as Alzheimer’s
disease, other dementias and epilepsy [35-37]. Complexins are
presynaptic membrane proteins that bind syntaxin, and are
thought to be SNARE modulators. Complexin I is enriched in
inhibitory neurons, while Complexin II is more commonly
found in excitatory neurons [38, 39]. Synapsin I and II are
proteins involved in neurite elongation and synapse formation
and maintenance [40]; synapsin III is also a modulator of
plasticity processes and of dopaminergic function [41]. Rab3A
(Ras-related protein Rab-3A) and synaptotagmin are both
involved in regulating synaptic vesicle exocytosis [42, 43].
PSD-95 (postsynaptic density protein 95) is abundant in the
brain and concentrated in the postsynaptic density (PSD). It has
been implicated in forming and maintaining excitatory synap-
ses [44, 45], and in regulating synaptic strength and plasticity
by interacting with other synaptic proteins, including glutamate
receptors [46].

To our knowledge, there has not been a previous meta-
analysis of synaptic protein levels in schizophrenia. We
therefore aimed to synthesise the postmortem findings in
patients with schizophrenia and healthy controls, and then
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discuss the implications of these findings in relation to the
pathophysiology of the disorder.

Methods and materials
Data extraction

The main outcome measure was the difference in synaptic
protein and mRNA levels between patients with schizo-
phrenia and healthy controls. In addition, we extracted the
following variables: sample size, methods of quantification,
inclusion criteria, mean age, patients’ medication, post-
mortem interval (PMI), cause of death, percentage of sui-
cides, and whether the analysis was blind to group status.

Statistical analysis

We performed a meta-analysis when there were at least 5
independent data sets in each specific brain region, as
recommended for meta-analyses using random-effects
approaches [47].

The main outcome measure was the effect size (ES)
(Hedges’ g) of synaptic protein/mRNA change in patients
with schizophrenia and healthy controls for each reported
region or sub-region of interest. See Supplementary Infor-
mation for further methodological details.

Results

The literature search yielded 281 results, from which we
identified 60 relevant papers (see Supplementary Figure 1
for the PRISMA diagram of the literature search). 36 of the
60 studies met criteria for inclusion in the quantitative
synthesis. We were able to perform a meta-analysis of
synaptophysin protein levels for hippocampus, frontal cor-
tex, cingulate cortex (CC), temporal cortex and occipital
cortex. In the frontal cortex, it was possible to perform a
meta-analysis of the following synaptic proteins: synapto-
physin, SNAP-25, PSD-95, VAMP, and syntaxin. All stu-
dies included in the meta-analyses-matched cases and
controls for age at death except for one [48], and post-
mortem interval (PMI) was matched in 31 out of 36 studies.
19 out of the 36 studies (52.8%) reported that the experi-
menter was blind to diagnosis while conducting their ana-
lyses. See supplementary Tables 1-9 for these and further
details of the studies [48—107].

There were insufficient data for meta-analysis of mRNA
data in any brain region. Instead the results from the indi-
vidual studies of mRNA and protein levels, where there
were insufficient studies for meta-analysis are summarised
below and in Supplementary Tables 1-9.
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Fig. 2 Forest plot showing the effect sizes for studies of synaptophysin in hippocampus in schizophrenia patients as compared to controls. There
was a significant reduction in schizophrenia (effect size = —0.65, p = 0.0036)

Synaptophysin levels in the hippocampus

Eight studies (111 patients with schizophrenia and 106
healthy controls) measured synaptophysin levels in the
hippocampus (CA1—4 and Dentate Gyrus). Synaptophysin
was significantly reduced in patients with schizophrenia
with an ES of —0.65 (Fig. 2; z=—2.91; 95% confidence
interval (CI) = —1.08, —0.21; p =0.0036). The I statistic
revealed low heterogeneity (12:0%; 95% CI=0, 70.5;
Cochrane’s Q =5.7; p=0.57). The funnel plot appeared
symmetrical, and a regression test for funnel plot asym-
metry was non-significant (z = —0.54; p =0.59), suggest-
ing there is no evidence of publication bias (Supplementary
Figure 2). The studies were well matched for PMI and the
meta-regression for the proportion of suicides was not sig-
nificant (p = 0.83, for the studies where suicide data were
available), suggesting this was not a major bias. Of the two
mRNA studies of synaptophysin in the hippocampus, one
showed significantly decreased synaptophysin mRNA
levels in schizophrenia, the other a non-significant reduction
[59, 106] (see Supplementary Table 1).

Summary of findings with other synaptic proteins
and mRNAs

In the hippocampus, three studies examined SNAP-25
protein levels, two of which found a significant reduction in
schizophrenia. Three studies measured PSD-95 protein
levels, one of which found a significant reduction, the other
found a trend reduction in schizophrenia. For the com-
plexins, two studies measured protein levels and found no
change, and two studies measured mRNA levels separately
for complexin I (which was only reduced in some subfields)
and complexin II (which was significantly reduced overall

in one study, and in some subfields in the other). Four
studies measured synapsin protein levels, three of which
found a significant reduction in schizophrenia. Rab3A
protein levels were studied twice and both times were found
significantly reduced in schizophrenia.

Synaptic proteins and mRNA levels in frontal cortex
Synaptophysin

Thirteen studies comprising 170 patients with schizophrenia
and 169 healthy controls measured synaptophysin levels in
frontal cortical regions (approximating Brodmann Areas 9, 10,
46, 47) (Fig. 3). The majority of studies of the frontal cortex
examined the dorso-lateral pre-frontal cortex (DLPFC;
approximating BAs 9 and 46) [57, 60, 69, 70, 73, 74, 76, 89,
95], while three studies examined BAs 10 and 45 [79, 83, 92].
Synaptophysin was significantly reduced in patients with
schizophrenia with an ES of —0.36 (z=—2.05; 95% CI=
—0.70, —0.02; p = 0.04). The P statistic revealed low hetero-
geneity (P = 0%; 95% CI = 0-50.1%; Cochrane’s Q =8.1; p
=10.78). Inspection of the funnel plot did not reveal asymmetry
(Supplementary Figure 3), and the regression test for funnel
plot asymmetry was non-significant (z = —1.15; p=0.25). A
sub-analysis only including studies relating to the DLPFC was
non-significant (ES = —0.23; z= —1.14; p =0.25), while the
number of studies investigating other frontal areas was not
sufficient for a separate sub-analysis. An exploratory meta-
regression of the effect of the percentage of suicides on the ES
for the studies where this information was available showed no
significant effect (p =0.98). PMI was significantly different
between cases and controls in one study [69]. In case this was
biasing the results, we excluded this study and re-ran the meta-
analysis, finding the reduction in synaptophysin levels
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Meta-Analysis of Studies of Synaptophysin in Frontal Cortex
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Fig. 3 Forest plot showing the effect sizes for studies of synaptophysin in frontal cortex in schizophrenia patients as compared to controls. There
was a significant reduction in schizophrenia (effect size = —0.36, p =0.04)

remained significant (ES = —0.37; z= —2.03; p = 0.04). With
regards to mRNA data for synaptophysin in the frontal cortex,
one study reports a significant reduction in schizophrenia, while
one reports a significant reduction in BAs 17 and 22 and a non-
significant reduction in BAs 9 and 46, and two studies suggest
no change in frontal cortex (Supplementary Table 1).

SNAP-25

Nine studies comprising 139 patients with schizophrenia and
138 controls measured SNAP-25 levels in frontal cortex
(approximating BAs 9, 10, 46, 47) (Fig. 4). The overall results
indicate no significant change in SNAP-25 in frontal cortex in
schizophrenia (ES: —0.18; z=—0.90; 95% CI = —0.58, 0.21;
p =0.37). The P statistic revealed low heterogeneity (* = 0%;
95% CI=0-81%; Cochrane’s Q =9.5; p =0.30). The three
mRNA studies of SNAP-25 in the frontal cortex showed non-
significant reductions or no changes in mRNA levels in schi-
zophrenia (Supplementary Table 2).

PSD-95, VAMP, and syntaxin

PSD-95 (6 studies, ES = —0.34, p =0.14), VAMP (6 stu-
dies, ES = —0.26, p = 0.27), and syntaxin (6 studies, ES =
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0.16, p = 0.52) protein levels did not differ in frontal cortex
between schizophrenia patients and controls (Supplemen-
tary Figures 4-6). Of the four mRNA studies of PSD-95 in
the frontal cortex, two showed no change, one a non-
significant reduction and one non-significant increase in
mRNA levels in schizophrenia (Supplementary Table 3).
One study measured VAMP mRNA levels and found no
difference in frontal cortex (Supplementary Table 5). Our
search did not identify any studies of syntaxin mRNA in
frontal cortex.

Summary of findings with other synaptic proteins
and mRNAs

For frontal cortex, four studies measured levels of the
complexins: one of the two studies looking at protein levels
found a significant reduction in complexin I in schizo-
phrenia, and one of the studies looking at mRNA levels
found a reduction in complexin II. Three studies measured
synapsin protein levels, and one found a significant reduc-
tion in synapsin III, while of the two studies quantifying
mRNA, one found a significant reduction in synapsin II in
schizophrenia. Both studies of Rab3A found a significant
reduction in protein levels in frontal cortex. No change was
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Fig. 4 Forest plot showing the effect sizes for studies of SNAP-25 in frontal cortex in schizophrenia patients as compared to controls. There was no

significant reduction in schizophrenia (effect size = —0.18, p =0.37)

found in protein levels in schizophrenia in two studies for
synaptotagmin in this region.

Synaptophysin levels in cingulate cortex

Seven studies (comprising 115 patients with schizophrenia
and 105 healthy controls) measured synaptophysin in the
CC (approximating BAs 24, 32, 33). Synaptophysin was
significantly reduced in the CC of patients with schizo-
phrenia with an ES of —0.54 (Fig. 5; z=—2.35; 95% CI
=-0.99, —0.09; p =0.02). The P statistic revealed low
heterogeneity (12 =0%; CI =0, 80.4; Cochrane’s Q = 6.0;
p = 0.42). Inspection of the funnel plot suggested a degree
of asymmetry, however, the regression test for funnel plot
asymmetry was non-significant (z=—1.78; p=0.07)
(Supplementary Figure 7), and the trim and fill analysis
did not reveal any missing studies. There was insufficient
information to test the effect of suicide as a meta-
regressor. While the majority of studies reported samples
coming from the anterior CC (ACC), Honer et al. [80]
describe their sample as from the CC without specifying a
particular sub-region. A sub-analysis removing this study
shows that there still is a significant reduction in synap-
tophysin levels in the ACC in schizophrenia relative to
controls (ES=-0.61; z=-2.27; 95% Cl=-1.14,
—0.08; p =0.02). In further sensitivity analyses, removing
the study by Landén et al. [86], which shows a significant
difference in PMI between cases and controls, affects the

overall significance (ES = —0.42; z = —1.73; CI= —0.90,
0.06; p=0.08). Our search did not find a study of
synaptophysin mRNA in this region.

Summary of findings with other synaptic proteins
and mRNAs in cingulate cortex

Two studies measured SNAP-25 protein levels in the CC,
and found no significant change. With regards to PSD-95,
three studies measured protein levels in CC: two found a
significant reduction, the other no change in schizophrenia,
while one study found a significant increase in PSD-95
mRNA in this area. One study measured the complexins in
this area and found no change. Both studies of Rab3A
found a significant reduction in protein levels in CC in
schizophrenia.

Synaptophysin levels in temporal cortex

Six series in five studies (60 patients and 57 controls)
measured synaptophysin protein levels in the temporal
cortex. There were no significant differences in synapto-
physin levels in schizophrenia patients when compared to
healthy controls in the temporal cortex (ES = —0.31; z=
—1.12; 95% CI=—-0.85, 0.23; p = 0.26—Supplementary
Figure 8). Synaptophysin mRNA were found significantly
decreased in two of three studies of this molecule in tem-
poral cortex.

SPRINGER NATURE
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Fig. 5 Forest plot showing the effect sizes for synaptophysin levels in the cingulate cortex in schizophrenia patients as compared to controls. There
was a significant reduction in schizophrenia (effect size = —0.54, p =0.02)

Summary of findings with other synaptic proteins
and mRNA levels in temporal cortex

SNAP-25 protein levels were found significantly decreased
in one of two studies, while mRNA levels were unchanged
in one study in schizophrenia. Syntaxin, VAMP, synapsin,
Rab3A, and synaptotagmin mRNA levels were not sig-
nificantly altered in one study each. Rab3A protein levels
were unchanged in two studies in temporal cortex. For the
complexins, one study analysed protein levels and found a
reduction in complexin II only. For complexin mRNAs,
three studies reported reductions in complexin II, while no
study found significant reductions in complexin L.

Synaptophysin and other protein and mRNA levels
in occipital cortex

Five series in four studies (51 patients and 48 controls) measured
synaptophysin protein levels in the occipital cortex. There were
no significant differences in synaptophysin levels in schizo-
phrenia patients when compared to healthy controls in the
occipital cortex (ES =—0.16; z=—-045; 95% CI=—0.84,
0.52; p = 0.65—Supplementary Figure 9). One study measured
synaptophysin mRNA levels in the occipital cortex, and found a
significant reduction. Two studies measured PSD-95 in occipital
cortex in schizophrenia: one found a significant increase in its
mRNA, and one found no change in PSD-95 protein levels.
There were insufficient studies for meta-analysis of other
synaptic protein or mRNA levels in this region.

Discussion

Our main findings are that protein levels of the synaptic
marker synaptophysin are significantly decreased in
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schizophrenia in the hippocampus and cingulate cortex.
We also found a decreased level of synaptophysin mRNA
levels in the hippocampus [59, 106] (see Supplementary
Table 1).

The frontal cortex also shows a significant reduction in
synaptophysin protein levels. However, the ES is numeri-
cally smaller than for hippocampus and CC. Moreover, the
sub-analysis restricted to the DLPFC was not significant,
and the mRNA data for synaptophysin in the frontal cortex
are inconsistent, with two studies suggesting a reduction,
and two studies suggesting no change (Supplementary
Table 1). Furthermore, the other protein levels in frontal
cortex that we meta-analysed (SNAP-25, PSD-95, VAMP,
and syntaxin) are not significantly reduced. Taken together,
this suggests findings are less consistent in the frontal cortex
than the findings in the hippocampus and CC. Among the
potential contributors to these inconsistencies are age [108]
and mode of death [109, 110]. However, all of our studies
matched the subjects for age at death, and our meta-
regressions for suicide as manner of death were all not
significant, suggesting this is unlikely to be a major con-
tributor to inconsistency. Other potential explanations for
these inconsistencies could be differences in protein quan-
tification methodology, variations in dissection protocols,
and differences in the biological substrate due to the het-
erogeneity of the illness being studied, in addition to sub-
regional variability (as suggested by lack of difference in
the DLPFC); we discuss each of these sources of variation
in the methodological section below; see also the review by
McCullumsmith and colleagues for a further discussion of
the factors that may influence postmortem findings [109].
We found no evidence of synaptic protein change in the
temporal and occipital cortex. Our meta-analytic findings
are summarised in Table 1.



Synaptic density in schizophrenia 555
Table 1 Summary of our meta-analytic results

Protein: area: synaptophysin SNAP-25 PSD-95 VAMP syntaxin
Hippocampus 1 —0.65 N/A N/A N/A N/A
Cingulate cortex 1 —0.54 N/A N/A N/A N/A
Frontal cortex | —0.36 « —0.18 « —0.34 < —0.26 «0.16
Temporal cortex < —0.31 N/A N/A N/A N/A
Occipital cortex < —0.16 N/A N/A N/A N/A

The number is the effect size (Hedges’ g) and “|” indicates a significant reduction in schizophrenia, while “~* indicates no significant difference

N/A not available

Interpretation of findings

Our findings of reductions in synaptophysin levels extend
postmortem microscopy studies in schizophrenia that have
found synaptic loss in the hippocampus [111, 112] and
ACC [113] by providing meta-analytic evidence consistent
with loss of synapses between neurons. They also extend a
meta-analysis of genetic expression studies that found that
genes in the presynaptic secretory function category
(including synaptophysin) were significantly altered in
schizophrenia [114], by providing evidence that this trans-
lates into alterations in protein levels of synaptophysin.
Interestingly, the brain areas we found to have lower
synaptophysin levels are among the regions that show the
most volume loss in schizophrenia [115-120]. There is
evidence that this cortical loss is at least partially due to
reduced neuropil, including reduced synaptic compart-
ments, rather than neuronal loss [121]. It is therefore pos-
sible that the reductions in the synaptic marker observed in
our meta-analysis indicate that loss of synapses contributes
to the brain volume loss seen in imaging and postmortem
studies. Consistent with this, volume loss in hippocampus in
schizophrenia is present from the onset of symptoms, pre-
dates antipsychotic exposure, and does not appear to be
secondary to neuron loss [7, 18, 122—124], occurring in the
absence of a change in total neuron numbers [15, 18].
However, it should be recognised that there is considerable
debate about the cellular changes that underlie brain volume
alterations in schizophrenia, and other cellular changes,
including alterations in axonal density, glial cells and neu-
ronal size could also contribute to loss of neuropil [121].
The role of synaptic alterations and contribution of these
other factors to volume loss needs further testing. Post-
mortem studies of the CC in schizophrenia have also found
structural alterations, including synaptic loss [113, 125].
We found no significant changes in synaptic density in
some of the brain areas studied in this meta-analysis, such
as temporal and occipital cortices. Taken with our findings
of significant reductions in hippocampus, cingulate and
frontal cortex, this could suggest that synaptic loss shows
regional specificity, affecting some areas more than others,

which is similar to the pattern of regional volume changes
in schizophrenia [10, 120]. This is consistent with models of
schizophrenia that implicate the hippocampus and frontal
cortex as central to the pathophysiology of the disorder [5,
7, 118, 123, 125-130]. However, while the lack of sig-
nificant differences in the temporal and occipital cortex
raises the question of what underlies the grey matter volume
reductions commonly reported in these regions [120, 131],
we caution about over-interpretation of regional differences
as there is a risk of a type II error. Recent work has also
suggested a temporal specificity of synaptic change in
schizophrenia, with synaptogenesis predominating earlier in
the disease, and synaptic loss in chronic phases [132].
Ultimately, further studies are needed to compare sub-
regions and timing with regards to disease onset.

Although there is some evidence that synaptophysin
might be more abundant in glutamatergic than in
GABAergic vesicles [133], it should be noted that it is not
specific enough to particular synapses to draw firm con-
clusions. Thus, the reductions may reflect a global loss of
synapses or be specific to particular neuronal populations.

Our findings of a significant reduction in frontal cortex in
synaptophysin but not other synaptic markers is intriguing.
Synaptophysin is specific to presynaptic nerve terminals
[29, 30]. It binds cholesterol, which is required for the
genesis of synaptic vesicles [134]. This could indicate
dysfunction in vesicle formation. Synaptophysin is con-
sidered one of the best proxies for synaptic density [27], and
may be more sensitive to detecting synaptic reductions than
the other markers, so the lack of reductions in the other
markers could be a type II error. Ultimately, large studies
comparing multiple synaptic marker levels across brain
regions are required to definitively test whether there is
greater reduction in some regions, such as the hippocampus,
and proteins relative to other regions and proteins.

Methodological considerations
A potential limitation of this meta-analysis is that studies
used different methods of protein quantification (24 studies

used western blotting (WB), 7 immunohistochemistry and 5
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using ELISA—see Supplementary Information). However,
a study comparing the different techniques for assessing
synaptophysin levels in brain tissue found that WB and
immunohistochemistry methods give similar results [27].
Another study compared WB and ELISA for synaptophysin
quantification found that ELISA might be more robust at
synaptophysin quantitation [135]. However, combining
different methods with different levels of precision and
sensitivity in the same meta-analysis should not account for
our findings of reductions in schizophrenia, as the degree of
precision is taken into account by the measure of dispersion,
and variability in this would reduce the sensitivity to detect
differences between groups, if it had any effect. Further-
more, we have used a random-effects model approach,
which takes into account inter-study variability. However,
we cannot exclude that our findings of no significant dif-
ferences in the other regions examined could be a type II
error due to variability in the sensitivity of methods used,
and the smaller number of studies that assessed these areas,
meaning that our meta-analysis may have been under-
powered to detect small effects. Further studies are needed
in these regions to rule this possibility out.

A potential confounder in the studies included is the use of
antipsychotic medication in samples. There is evidence to
suggest that antipsychotics may cause brain structural
abnormalities, such as striatal [136] or brain volumetric
changes [137]. However, studies have shown no difference in
synaptophysin levels in the hippocampus of rats after anti-
psychotic exposure [59]; it should be noted that the animals
used in these experiments were healthy animals, and could
therefore not fully reflect results in schizophrenia. Similar
studies on the frontal cortex and striatum have shown either
no change or an increase in synaptophysin following anti-
psychotic treatment [138-140]. In addition, non-human pri-
mate studies have shown that synaptophysin levels are not
affected following the continuous administration of haloper-
idol for several weeks [141, 142]. Thus, we find that anti-
psychotic treatment is unlikely to account for the reductions in
synaptophysin, but studies in antipsychotic-naive patients are
required to definitively rule an effect out. Studying lifetime
antipsychotic dose as a meta-regressor was not possible in the
present study as this information was not present in the
majority of studies. Unfortunately, it was also impossible to
study illness duration as a meta-regressor as this information
was not present in the majority of the included studies.

PMI was significantly different between groups in 5 out
of 36 studies. When the one non-matched PMI study was
removed from the analysis of synaptophysin in the frontal
cortex, it did not affect the overall significance. However, in
the analysis of synaptophysin in CC, after removing the
study that did not match groups for PMI [86], the overall
effect was no longer significant, suggesting that differences
in PMI may contribute to differences in this region.

SPRINGER NATURE

We were able to explore the potential effect of suicide on
our findings because it was widely reported, but this was not
possible for other potential contributors to inconsistency
because they were not consistently reported. This should not
be taken as indicating they are not important, and it is
recommended that future studies report these in more detail
to facilitate comparisons.

Other potential sources of variability are the differences in
laterality [143, 144], dissection protocols and tissue proces-
sing. However, few studies reported data by hemisphere,
precluding analysis of potential differences. Tissues sources
are summarised in the Supplementary Tables; unfortunately,
few papers mention the dissection protocol that was used,
therefore it was impossible for us to take this factor into
account. In addition to this, the brains came from different
sources: some samples came from brain banks, which collect
samples from different consortia, each with different dissec-
tion protocols; some papers sourced their own samples
without specifying the dissection technique they used, and for
17 samples the source was not mentioned.

There is evidence that there may be variability in gene
expression depending on the specific dissection boundaries
[145]. Some of the studies we included used immunohis-
tochemistry to quantify synaptic proteins, and reported
protein and mRNA levels for different tissue layers and/or
very specific sub-regions within the same region, thus, also
confirming that molecular profiles within brain regions vary
on a gradient [39, 56, 64, 65, 69, 73, 93, 97, 103]. Other
studies used tissue homogenates, therefore, in our meta-
analysis, we combined the data from different sub-regions
within a given region, which could obscure sub-regional
differences, as suggested by analyses of grey matter
alterations [144].

Future directions

Our findings raise a number of questions. In particular,
whether the reduction in synaptophysin is developmental or
develops later in life; whether it is primary or secondary to
other factors and changes, such as oxidative stress [146]
or inflammation [147, 148]; whether it indicates a loss of
synapses or the loss of synaptophysin specifically, and how
it relates to grey matter changes and symptoms. Further
studies are needed to tackle these questions. The recent
development of PET tracers that index synaptic proteins
provides a means of addressing some of them. Longitudinal
in-vivo imaging studies with synaptic tracers, from child-
hood to early in the course of illness to a chronic stage, are
needed to address the questions relating to the time course
of the changes. The concomitant study of other biological
factors of the illness, such as oxidative stress, inflammation
and structural brain changes, would allow the correlations
of these elements with synaptic loss to be tested. This work
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would need to be complemented by preclinical studies to
determine the effect of these potential mechanisms on
synaptic proteins that can be measured postmortem and
in vivo using PET imaging.

Finally, these results may also have implications for drug
development. In animal models, the administration of a
p21-activated kinases (PAK) inhibitor in late adolescence
has been shown to block synaptic loss and prevent adult
behavioural deficits associated with schizophrenia [149].
Reversing or preventing synaptic loss could therefore be a
potential treatment target in schizophrenia.

Conclusions

There is a significant reduction in synaptophysin in the
hippocampus, cingulate and frontal cortices of patients with
schizophrenia as compared to matched healthy controls,
although the findings in the CC were not significant after
excluding a study that did not match for PMI, and we did
not find significant results for the levels of SNAP-25, PSD-
95, VAMP and syntaxin in the frontal cortex. We found no
difference in temporal cortex and occipital cortex for
synaptophysin. These findings are consistent with models
that implicate synaptic loss in hippocampus and frontal
cortical regions in the pathophysiology of schizophrenia,
but further studies are required to determine if this is a
general loss of synapses or specific loss of synaptophysin,
and to test regional variability.
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