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Infectious diseases are often affected by specific pairings of hosts
and pathogens and therefore by both of their genomes. The
integration of a pair of genomes into genome-wide association
mapping can provide an exquisitely detailed view of the genetic
landscape of complex traits. We present a statistical method,
ATOMM (Analysis with a Two-Organism Mixed Model), that maps
a trait of interest to a pair of genomes simultaneously; this
method makes use of whole-genome sequence data for both host
and pathogen organisms. ATOMM uses a two-way mixed-effect
model to test for genetic associations and cross-species genetic
interactions while accounting for sample structure including inter-
actions between the genetic backgrounds of the two organisms.
We demonstrate the applicability of ATOMM to a joint association
study of quantitative disease resistance (QDR) in the Arabidop-
sis thaliana–Xanthomonas arboricola pathosystem. Our method
uncovers a clear host–strain specificity in QDR and provides a
powerful approach to identify genetic variants on both genomes
that contribute to phenotypic variation.

statistical genetics | genome-wide association studies |
mixed-effect models | host–pathogen interaction | population structure

Genome-wide association studies (GWASs) can provide
insight into the genetic basis of complex traits. A standard

paradigm in genome-wide association (GWA) mapping (1–3)
is to genotype a sample of individuals of a single species and
then measure the statistical association between each genetic
variant (such as single-nucleotide polymorphism, SNP) on the
genome and the trait of interest. Owing to advances in geno-
typing and sequencing technology, the GWA mapping app-
roach has become a powerful tool of trait analysis for a num-
ber of species, including humans, Drosophila, Arabidopsis, and
maize (3–6).

Despite the widespread popularity of GWASs, GWA mapping
has rarely been performed on two interacting species simulta-
neously (7). Integration of genomes from a pair of organisms
into GWA mapping will allow the elucidation of genomic regions
that are likely to carry evidence of co-evolution between species.
Pathosystems, in which a pathogen and host adapt to each other
and jointly determine infectious disease status (8, 9), consti-
tute an important class of examples. Interactions between host
and pathogen can include G × G interactions between pairs of
causal variants as well as interactions between population mem-
bership indicators representing genetic backgrounds of host and
pathogen. To our knowledge, existing GWA methods (2, 10) per-
formed on disease phenotypes either exclusively focus on the
host genome (6) or stratify the mapping by pathogen strain (11),
leaving the pathogen genome unexplored (12). With advances
in sequencing, both host and pathogen genome data are becom-
ing readily available. Identifying genetic associations on both
genomes can provide insight into the genetic basis of host–
pathogen specificity, thereby shedding light on the molecular
landscape of host–pathogen interactions. Therefore, statistical

methods that integrate genomes from a pair of organisms into
GWA mapping could enable important advances.

In this paper, we present the ATOMM method (for Analysis
with a Two-Organism Mixed Model) designed to simultaneously
detect genetic variants on a pair of genomes that are associated
with a trait of interest. We develop both Gaussian and binomial-
like, two-way, mixed-effects models whose features include ran-
dom and fixed effects for the two organisms and interactions
between them. ATOMM offers three main advantages over pre-
vious methods (1–3). First, ATOMM takes advantage of the
genome sequence data from both partners in the pathosystem,
with effects of variants in the two genomes jointly incorporated
in the model. In addition to including main effects of both
host and pathogen variants, ATOMM explicitly models interac-
tion between variants on the host and pathogen genomes. This
can enable identification of, for example, host variants whose
effects are specific to certain strains of pathogen, which might
be expected to occur due to co-evolution, but could be over-
looked by existing GWA methods (2, 10). Second, ATOMM ad-
dresses the challenges of confounding due to host and pathogen
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population structure by using a two-way, mixed-effects model
with three types of genetic relatedness matrices (GRMs): one
each for the host and pathogen additive polygenic random effects
individually, and the third for the additive-by-additive polygenic
interaction random effects between the two genomes. The inclu-
sion of GRMs in the model for background correlation of the
trait can improve both power and type 1 error when mapping
in structured samples. Third, ATOMM integrates different types
of genetic variants, including both mutation and deletion poly-
morphisms, into the association mapping, and we develop a
generalized GRM that allows multiallelic variants. While avail-
able methods can be directly applied to marginal analysis of most
common host species, there is a lack of association methods
appropriate for bacterial pathogens, whose genomes typically
include a large number of insertion–deletion polymorphisms in
addition to the usual allelic polymorphisms (13). Our method
takes into account both the core genome (i.e., regions shared
by all strains) and the dispensable genome (i.e., regions shared
by a subset of strains) in bacterial pathogens, thus making bet-
ter use of the wealth of genomic data provided by whole-genome
sequencing of the pathogen.

We demonstrate the applicability of ATOMM in a pathosys-
tem in which the model plant Arabidopsis thaliana interacts with
the bacterial pathogen Xanthomonas arboricola in natural set-
tings (see SI Appendix). A. thaliana is known to harbor a consid-
erable number of genetic variants for many adaptively important
traits, and a GWAS approach appears to be productive even with
low sample size (3).

With some modification, our framework can be extended as
well to association studies involving human participants, pro-
vided that the infectious agent also has an available genome
sequence (Discussion). We believe that the development of
ATOMM is timely, as several consortium efforts have emerged
to sequence the genomes of a variety of organisms (4, 5, 12, 14).

ATOMM for Joint GWA Mapping
Fig. 1 illustrates the schematic diagram of ATOMM in a host–
pathogen association study. ATOMM takes as input (i) pheno-
type data consisting of a trait measured on host–pathogen pairs
and (ii) genotype data consisting of genome-wide variants in host
and pathogen samples. Our goal is to identify genomic regions
associated with the trait in both host and pathogen genomes

simultaneously and to detect gene–gene interaction between host
and pathogen.

In genetic association studies, failure to adequately account
for population structure can lead to inflated type 1 error and
loss of power (2, 15). This issue requires particular attention in
our context because both host and pathogen samples may exhibit
population structure, though not necessarily of the same type.
Furthermore, host and pathogen subpopulations may undergo
co-adaptation in a natural biotic system, resulting in a system-
atically heterogeneous genetic background across samples. This
introduces further complexity into association analysis because
differences in phenotype may be due to the pairing of the genetic
backgrounds or population memberships of the organisms rather
than to the pair of variants being tested. This population-
level interaction must be accounted for to avoid confounding
in the association analysis. We tackled these challenges via a
mixed-model approach, which we describe below.

Two-Way Mixed-Effects Model Underlying ATOMM. We first con-
sider association analysis with a quantitative trait, meaning that
the response is multivariate Gaussian (conditional on the predic-
tors). The extension to a binomial-like trait is given in Materials
and Methods. Suppose there are n observations, and for 1≤ k ≤
n , let Yk denote the trait value for the k th observation. Sup-
pose the k th observation is for host–pathogen pair (i , j ), where
i =1, . . . ,nh indexes the host line, and j =1, . . . ,np indexes the
pathogen strain. We propose to model Yk as

Yk=Xkβ+Gh,test
i γh +Gp,test

j γp +Gh,test
i Gp,test

j γhp [1]

+ ηhi + ηpj + ηhpij + εk ,

where Xk is a row vector of observed covariate values (with
first entry 1, to represent an intercept term) for pair observa-
tion k ; β is a column vector of unknown coefficients; Gh,test

i and
Gp,test

j are the observed genotype of, respectively, host i at the
host genetic variant currently being tested and pathogen j at the
pathogen genetic variant currently being tested; γh , γp , and γhp
are unknown parameters of interest representing the effects of
the host genetic variant being tested, the pathogen genetic vari-
ant being tested, and the interaction of these, respectively; ηhi
is the additive polygenic random effect of other host genomic

Fig. 1. Schematic diagram of the ATOMM framework for joint association analysis. ATOMM takes as input (i) phenotypic values obtained from host–
pathogen pairs and (ii) whole-genome sequencing data for both host and pathogen samples and outputs results from (i) marginal GWA mapping on host
and pathogen genomes and (ii) G × G interactions between host and pathogen variants. In this schematic, a (conditionally) multivariate normal trait is
assumed, but we have also developed a version of ATOMM for binomial-like count data.
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variants not currently being tested; ηpj is the additive polygenic
random effect of other pathogen genomic variants not currently
being tested; ηhpij is a random effect representing additive-
by-additive polygenic interactions between host and pathogen
variants not currently being tested; and εk is assumed to be inde-
pendent and identically distributed (i.i.d.)N (0,σ2

e ). Note that if,
for example, the pathogen variant currently being tested is not
binary, then the model specification changes somewhat (see SI
Appendix).

We use Fisher’s infinitesimal approach (16) to model the poly-
genic random effects ηhi , ηpj , and ηhpij , which arise as the result
of many variants, assumed to be of small effect, throughout
the genomes. Specifically, let ηh =(ηh1 , . . . , η

h
nh
)
T

, ηp =(ηp1 , . . . ,

ηpnp
)T , and ηhp =(ηhp11 , . . . , η

hp
1np

, . . . , ηhpnh1
, . . . , ηhpnhnp

)
T

. Then,
under certain infinitesimal model assumptions (SI Appendix),
we have

ηh ∼N (0,σ2
hKh), η

p ∼N (0,σ2
pKp), η

hp ∼N (0,σ2
hpKhp), [2]

where Kh∈Rnh×nh and Kp∈Rnp×np are, respectively, the GRMs
(to be specified in the next section) for the hosts and for the
pathogens; Khp∈R(nhnp)×(nhnp) is the covariance matrix for the
host–pathogen intergenome polygenic random effects; and σ2

h ,
σ2
p , and σ2

hp are unknown scalar parameters. We assume Khp =
Kh ⊗Kp , where ⊗ denotes the Kronecker product. The deriva-
tion of this modeling assumption using Fisher’s infinitesimal
approach is detailed in SI Appendix, Section 1.2.

Combining Eqs. 1 and 2 yields the vectorized version of the
full model,

Y |X,Gh,test,Gp,test∼N (µ,Σ), with [3]

µ= Xβ+ZhGh,testγh +ZpGp,testγp

+Zhp

(
Gh,test⊗Gp,test

)
γhp ,

Σ=σ2
hZhKhZT

h +σ2
pZpKpZT

p +σ2
hpZhp (Kh ⊗Kp)ZT

hp

+σ2
e I,

where Y =(Y1, . . . ,Yn)
T ; Xβ represents the intercept and

the covariate effects; Gh,test =(Gh,test
1 , . . . ,Gh,test

nh
)
T

; Gp,test =

(Gp,test
1 , . . . ,Gp,test

np
)
T ; Zh∈Rn×nh , Zp∈Rn×np , and Zhp∈Rn×nhp

are the incidence matrices that map the trait value to host lines,
to pathogen strains, and to host–pathogen pairs, respectively;
and I denotes an n-by-n identity matrix.

The parameters of interest in the model in Eq. 3 are the
association parameters (γh , γp , γhp), while the nuisance parame-
ters are β and the variance components (VCs) (σ2

h ,σ
2
p ,σ

2
hp ,σ

2
e ).

We find it convenient to represent the VCs in terms of
(σ2

t , ξh , ξp , ξhp), where σ2
t =σ2

h +σ2
p +σ2

hp +σ2
e represents the

total residual variance of the trait, and ξh =σ2
h/σ

2
t , ξp =σ2

p/σ
2
t ,

and ξhp =σ2
hp/σ

2
t represent the (narrow-sense) heritability due

to host, pathogen, and host–pathogen additive-by-additive poly-
genic effects, respectively. In our analysis of the A. thaliana–X.
arboricola pathosystem, we include an additional VC in the
model to represent a plant random effect (see ATOMM with an
Additional VC).

General Formulation for Haploid GRM Estimation. ATOMM uses
whole-genome sequence data to estimate the GRMs Kh and Kp .
For ease of presentation, we consider only the case of a hap-
loid organism or inbred lines of a diploid organism and drop the
subscript/superscript h or p in this section.
GRM estimation with mutation polymorphisms. Let Gil be the
genotype of individual i at genetic variant l , for i =1, . . . ,n and
l =1, . . . ,m . Suppose each variant l has only two possible states

(e.g., variant could be a SNP), Gil ∈{0, 1}, and let fl be the allele
frequency at variant l . A standard model (2, 17, 18) for ηi , the
additive polygenic effect of background variants in the genome
for individual i , is expressed as

ηi =

m∑
l=1

αl
Gil − fl√
fl(1− fl)

, i =1, . . . ,n, [4]

where, conditional on G= [[Gil ]]∈Rn×m , the αl s are i.i.d. with

E(αl

∣∣G)= 0, Var(αl

∣∣G)=
σ2

m
, l =1, . . . ,m. [5]

Let η=(η1, . . . , ηn)
T . Then, Eqs. 4 and 5 lead to the asymptotic

approximation η
∣∣G∼N (0,σ2K) for large m , where K∈Rn×n is

the GRM with (i , j )th entry

Kij =
1

m

m∑
l=1

(Gil − fl)(Gil − fl)

fl(1− fl)
. [6]

When whole-genome sequence data are available, K can be esti-
mated by Eq. 6, using the set of typed bi-allelic variants, with
their sample frequencies f̂l s used in place of the fl s.
GRM estimation with both mutation and deletion polymorphisms.
Now suppose that each variant l has three possible states, Gil ∈
{0, 1,D}. The particular type of tri-allelic variant we consider is
what we will call a “deletion variant,” where “0” and “1” repre-
sent two alleles of a SNP, and “D” represents “deletion.” This
encoding is motivated by a genomic feature of pathogens such
as X. arboricola, in which many SNP sites (known as dispens-
able SNP sites) are present in only a subset of the sampled
strains. We consider ηi , the additive polygenic effect due to
all such dispensable SNP sites in the genome (i.e., summed
over all such sites), for individual i . We propose to decompose
ηi into two orthogonal parts: ηi = ηi1 + ηi2, where ηi1 repre-
sents the random effect due to the SNP alleles at the variants
and ηi2 represents the random effect due to the presence or
absence of sites. We model these two effects similarly as in
Eq. 4 and assume that they contribute approximately equally
to the variance (SI Appendix). The resulting model for the
additive polygenic effect, η=η1 +η2, where η=(η1, . . . , ηn)

T ,
η1 =(η11, . . . , ηn1)

T , and η2 =(η12, . . . , ηn2)
T , can be written

as η|G∼N (0,σ2K), where K∈Rn×n is the GRM with (i , j )th
entry

Kij =
1

2m

m∑
l=1

−1{Gil 6=Gjl}
∑

s∈{D,0,1}

1− fls
fls

1{Gil=Gjl=s}

,

[7]

where m is the number of tri-allelic variants, fls is the frequency
of state s at variant l , and fl1 + fl0 + flD =1. The scale factor 2 in
Eq. 7 is to ensure E(Kii)= 1 assuming Gil follows a three-class
categorical distribution.

Our approach essentially treats the deletion as a third allelic
type and can be generalized to variants with δ alleles, where
δ≥ 3. SI Appendix, Eq. 13 gives the formula for general δ, which
reduces to Eq. 6 when δ=2 and to Eq. 7 when δ=3.

Finally, in the general case when the genome consists of
both bi-allelic and tri-allelic variants, we construct the empirical
GRM K using the weighted average of Eqs. 6 and 7, where the
weight is proportional to the number of corresponding variants
and the sample frequencies are used in place of the true allele
frequencies in each K.
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Association Mapping with ATOMM. We may wish to estimate the
parameters of the full ATOMM model, or for the purpose of
hypothesis testing, we may wish to estimate the parameters under
a submodel in which some or all of γh , γp , and γhp are set to
0, as we describe in the following paragraphs. The method of
parameter estimation is essentially the same in either case. In
the conditionally Gaussian model, the unknown parameters are
estimated by maximum likelihood. For the binomial-like version
of the ATOMM model, which is described in Materials and Meth-
ods, we perform parameter estimation by extending a previously
described quasi-likelihood approach (19, 20) to construct and
solve a set of estimating equations (SI Appendix).

In the joint association analysis, there may be several hypoth-
esis tests of interest depending on the goal. Given a pair of
genetic variants, one from the host genome (call this variant
H) and the other from the pathogen genome (call this vari-
ant P), we derive here two kinds of hypothesis tests that were
examined in the A. thaliana–X. arboricola pathosystem. Other
forms of hypothesis tests are also possible and are provided in SI
Appendix.
Marginal Test of H or P. In the model in Eq. 3, the genetic
effect of an individual host or pathogen variant can be assessed
marginally by testing, for example, in the case of a host SNP

H0 : γh =0 vs. HA : γh 6=0,

with the constraint that γp = γhp =0. ATOMM uses a score
statistic for this hypothesis test:

T=
1

σ̂2
t,0

(
Y −Wβ̂0

)T
Σ̂
−1

0 G
[
GT Σ̂

−1

0 G−GT Σ̂
−1

0 W

(WT Σ̂
−1

0 W)
−1

WT Σ̂
−1

0 G
]−1GT Σ̂

−1

0

(
Y −Wβ̂0

)
,

[8]

where in Eq. 8 we set G=ZhGh,test, W = X , and the quanti-
ties with subscript 0 denote the estimates under the global null
γh = γp = γhp =0. Under H0, T follows a χ2

1 distribution. The
marginal association of a pathogen variant can be assessed sim-
ilarly, in which we test the null H0 : γp =0 against HA : γp 6=0
with constraint γh = γhp =0.
Gene × Gene interaction between H and P. For a given pair
(H, P) consisting of a host variant and a pathogen variant, the
interaction test, defined to test

H0 : γhp =0 vs. HA : γhp 6=0,

can be carried out to assess whether the combined effects of
the genetic variant pair are modified by additional interac-
tion. The ability to test the G × G effect separately from the
marginal effects can be particularly useful for identifying host
variants that respond differently for different pathogen vari-
ants. The test statistic is the same as in Eq. 8, except that
we set G=Zhp

(
Gh,test⊗Gp,test), W =

(
X, ZhGh,test, ZpGp,test),

and the estimates, β̂0 and σ̂2
t,0, are recalculated under H0 :

γhp =0, instead of γh = γp = γhp =0. The resulting test statis-
tic has a χ2

1 or χ2
2 null distribution depending on whether the

variant P is bi-allelic or tri-allelic (assuming the variant H is
bi-allelic).

The association mapping can be performed on a genome-wide
scale over the two genomes, with one pair of host–pathogen
variants being tested at a time (see Fig. 1). The testing pro-
cedure is parallelizable in a very straightforward way, which
makes ATOMM computationally feasible for large-scale stud-
ies through parallel implementation. In practice, since most
host–pathogen variant pairs have only small effects, we fol-
low the common approach in GWASs (2, 10, 21, 22) and
choose to compute the VC ratios, (ξh , ξp , ξhp), under the global
null, γh = γp = γhp =0, only once per genome-wide scan (at

least at the initial stage of analysis). The fixed effects β and
total residual variance σ2

t are refit for every host–pathogen
variant pair.

Application of Joint Association Study to the A. thaliana –
X. arboricola Pathosystem
To investigate the capability of ATOMM to reveal the genetic
landscape of complex traits, we carried out a joint association
study (Materials and Methods) of quantitative disease resistance
(QDR) in a plant pathosystem of 130 A. thaliana inbred lines
(host) and 22 bacteria X. arboricola strains (pathogen). Briefly,
we paired each of the 130 A. thaliana lines with each of the 22
X. arboricola strains, using three biological replicates for each
A. thaliana–X. arboricola pair. These combinations resulted in
a total of 130× 22× 3 plants. One of three researchers then
infected 2 to 4 leaves (median = 4) on each plant. The QDR
score for each leaf was measured by one of the three researchers
11 d after inoculation. As described in ref. 23, the QDR was
defined using a disease index from 0 (resistant) to 4 (suscepti-
ble). We took the individual leaf as the experimental unit with
Y ∈{0, 1, 2, 3, 4}n , n = 32,960.

We also collected the whole-genome sequence data for both
A. thaliana and X. arboricola samples (Materials and Methods).
In particular, the 130 A. thaliana lines in our study are a sub-
set of the 1001 Genomes Project (14), which contains the most
complete whole-genome sequencing to date for 1,135 natural A.
thaliana lines.

Population Structure and Effects. A well-recognized challenge in
association studies is to account for various forms of sample
structure, including population stratification, admixture, family
relatedness, and cryptic relatedness. We found that our pro-
posed GRMs captured the latent structure present in the host
and pathogen samples well (Fig. 2 A–C). Hierarchical clustering
based on the host GRM demonstrated that the 130 sampled A.
thaliana lines had multiple levels of population structure, rang-
ing from continental and regional clusters of lines to closely
related pairs of lines (SI Appendix, Fig. S1). We found that the
first three principal components (PCs) of the GRM captured
the geographical origins of A. thaliana (Fig. 2 A and B): The
first two PCs distinguished US lines from European lines, while
the combination of the three top PCs were effective at sepa-
rating some of the countries of Europe from one another. On
the basis of these PCs, the 130 A. thaliana lines cluster into
four subpopulations: Sweden area (36 lines), Germany area (33
lines), US (25 lines), and France area (36 lines). On the pathogen
side, several X. arboricola strains exhibited remarkable close-
ness, with seven strain pairs having genomic correlations larger
than 0.9: {MEDV A37, MEDV A39}, {LMC P11, LMC P47},
{PLY 1, PLY 4}, {PLY 2, PLY 3}, and {FOR F21, FOR F23,
FOR F26}, where 1 is the genomic correlation for a pair of
identical strains. The top two PCs of the GRM (SI Appendix,
Fig. S2) result in a clustering of the 22 X. arboricola strains
into two subpopulations: US clade (13 strains) and France clade
(9 strains). These clusters matched the geographic origin of
strains, except that BRE 17 and MEU M1 originated in France
but were genetically more similar to US than French strains
(Fig. 2C).

To assess the extent to which the variation in QDR is attrib-
utable to the particular geographic areas from which the host and
pathogen are drawn, we fit an ordinary linear model to QDR,
in which we included indicators for each of the 4 × 2 = 8 pos-
sible pairings of subpopulations (one host and one pathogen,
inferred from the PCs) as predictors, with correction for addi-
tional covariates (see ATOMM with an Additional VC). We found
no strong evidence of population-level interaction indicative of
local adaptation or maladaptation between host and pathogen
(Fig. 2D and Materials and Methods). Nevertheless, the pathogen
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Fig. 2. Population structure and effects in the A. thaliana–X. arboricola
pathosystem. A and B depict the top three PCs extracted from the A.
thaliana GRM, which cluster the 130 A. thaliana lines into four subpop-
ulations as described in the text. C is the level plot for the X. arboricola
GRM, which clusters the 22 strains into two subpopulations as described
in the text. The hierarchical clustering overlaid on Left is obtained using
the unweighted pair group method with arithmetic mean (UPGMA) (25),
where for the dissimilarity measure, we use [1− ρ̂(i, j)]/2 with ρ̂(i, j) being
the genomic correlation between strains i and j. D plots the joint effects
of host and pathogen population membership on QDR. Each bar repre-
sents the effect on QDR of a particular pairing of host subpopulation and
pathogen clade, where these effects were estimated from a linear model
that includes indicators for each of the 4× 2 = 8 possible pairings of sub-
populations (one host and one pathogen) as predictors, with correction for
additional covariates.

clade was highly predictive of QDR (p=9.89× 10−33), with the
France clade being more virulent than the US clade (Fig. 2D). To
investigate which strains drove the differentiation, we estimated
the strain effects by fitting a linear model but with strain indica-
tors as predictors. Among the 22 strains, FOR F21 and PLY 1,
both of French origin, were found to be the most virulent (SI
Appendix, Fig. S3). Interestingly, their respective genetically clos-
est strains (i.e., strains with genomic covariance> 0.9), FOR F26
and PLY 4, were not as virulent. As previously observed with
the bacterial pathogen Pseudomonas syringae sampled in natu-
ral populations of A. thaliana (24), strains of X. arboricola that
differ in virulence can co-inhabit populations of A. thaliana.
Results of fitting additional models to the data can be found in
SI Appendix, where we also address the issues of model selec-
tion and assessment of goodness of fit of the models to the
observed data.

Heritability Estimation. We applied the null ATOMM model to
QDR and estimated the contribution of the genomic variation
to the phenotypic variation. We found that the X. arboricola
polygenic effects explained a large proportion (44%) of the resid-
ual variance of QDR, whereas A. thaliana and A. thaliana–X.
arboricola polygenic effects explained 2% and 5% of the residual
variance, respectively (Table 1). The results under the binomial-
like ATOMM (Materials and Methods) were similar (Table 1).
A similar phenomenon was previously found in the human-
HIV pathosystem where a larger proportion of viral load was
explained by virus genetic diversity (29%) than by host factors

(8.4%) (26). Because each pathogen strain had a number of
replicates in our design, we were able to further investigate
whether the phenotypic variance explained by X. arboricola was
attributable to additive polygenic effects of genome-wide vari-
ants, so that related strains would have similar phenotypic values,
or whether the interactions among variants in each X. arbori-
cola strain led each strain to have its own distinctive effect,
with little similarity among closely related strains. To exam-
ine this, we fit a model that includes a fixed effect for each
host line, each pathogen strain, and each line–strain pair (SI
Appendix, Eq. 41). In that model, the strain fixed effects explain
52% of the phenotypic variance. This can be interpreted as
the proportion of phenotypic variance explained by pathogen
genetic effects, including both additive and epistatic pathogen
genetic effects (note that there is no dominance effect because
the organism is haploid). Comparison of this value of 52% to
the estimate of 44% for the proportion of phenotypic variance
explained by pathogen additive genetic effects in the ATOMM
model showed that QDR was highly heritable with respect to the
pathogen and that nearly all of the strain effect was attributable
to additive polygenic effects of variants in the X. arboricola
genome, so that the responses to related strains tended to
be similar.

Marginal GWA Mapping. To identify genetic variants that were
associated with QDR, we used ATOMM to perform a score test
for the effect of each A. thaliana variant and a score test for the
effect of each X. arboricola variant. The marginal GWA map-
ping on the A. thaliana genome was well calibrated; that is, the
type 1 error was well controlled (SI Appendix, Fig. S10A, genomic
control coefficient λ=1.07), suggesting that our method does a
good job of correcting for confounding due to population struc-
ture. Nevertheless, we observed few strong association signals
from the marginal analysis (SI Appendix, Fig. S4). This indicated
that most host genes were unlikely to confer broad-spectrum
resistance to the full range of 22 X. arboricola strains. For the
top associated pathogen variants, we found that their geno-
type patterns (see Genotyping Experiment) tended to differentiate
strain PLY 1 from PLY 4 and to differentiate strain FOR 21
from FOR 26. In particular, among the top 100 genotype pat-
terns tested, all of them differentiated FOR 21 from FOR F26

Table 1. Parameter estimates under the Gaussian and
binomial-like ATOMM models for the A. thaliana–X. arboricola
pathosystem

Binomial-like
Parameter estimate Gaussian ATOMM ATOMM
under the null estimate (SE) estimate (SE)

Intercept, β0 0.19 (0.011) −0.75 (0.013)
Person 1, β1 0.15 (0.015) 0.16 (0.015)
Person 2, β2 0.20 (0.015) 0.19 (0.015)
Total residual variance, σ2

t 1.23 1.45
Proportion of residual

variance due to
A. thaliana, ξh 0.021 0.011
X. arboricola, ξp 0.441 0.581
A. thaliana–X. arboricola

interaction, ξhp 0.048 0.011
Plant/block effect, ξJ 0.093 0.069

We included in ATOMM the person effects (i.e., effects due to which lab
researcher scored the QDR) as covariates. There were three persons mea-
suring the trait scores. One person effect is subsumed into the intercept,
leaving us to estimate effects of person 1 and person 2 only. In addition to
the four genetic VCs described in Eq. 3, we also included the plant effect as a
random effect (see Materials and Methods). The parameters were estimated
under the global null hypothesisH0 : γh = γp = γhp = 0.
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Fig. 3. ATOMM analysis in the A. thaliana–X. arboricola pathosystem. A
and B are scatterplots of the association p value from the G × G test vs.
association p value from the marginal test. A plots 1,220,413 A. thaliana
SNPs, and B plots 33,610 distinct observed X. arboricola genotype patterns.
For each A. thaliana SNP or X. arboricola variant, the reported G× G p value
is the minimum p value taken across all host–pathogen interaction tests in
which this SNP or variant is included, where the minimum is taken so that
each variant will appear only once in the plot. C shows the joint effects of
the A. thaliana SNP located at base pair 10646160 of chromosome 4 (gene
AT4G19520) and the X. arboricola variant at which the strongest interac-
tion occurs (marginal A. thaliana p value = 0.0757; marginal X. arboricola p
value = 0.00183; G × G p value = 5.28× 10−18). D shows the joint effects
of the A. thaliana SNP located at base pair 10639289 of chromosome 4 and
the X. arboricola variant at which the strongest interaction occurs (marginal
A. thaliana p value = 0.0401; marginal X. arboricola p value = 0.00185; G ×
G p value = 1.20× 10−15). Each bar represents the effect on QDR of a par-
ticular pairing of host and pathogen genotypes, where these effects were
estimated from Gaussian ATOMM.

and 84% of them differentiated PLY 1 from PLY 4. This
result was in agreement with the noticeable difference in QDR
between FOR 21/PLY 1, on the one hand, and their geneti-
cally closest strains FOR 26/PLY 4, on the other (SI Appendix,
Fig. S3).

Gene × Gene Interaction. We applied ATOMM to test for inter-
action between each SNP on the A. thaliana genome and each
variant on the X. arboricola genome. We ranked the A. thaliana–
X. arboricola SNP pairs in ascending order of interaction p value
and formed a list of the A. thaliana SNPs that appeared among
the top interaction results. Similarly, we ranked the A. thaliana
SNPs in ascending order of marginal p value and formed a list of
those that appeared among the top marginal results. By compar-

ing the A. thaliana SNPs that appeared among the top interaction
results with those that appeared among the top marginal results,
we found that the two analyses prioritized different sets of SNPs
(Fig. 3A). This suggested pathogen-specific host defense genes;
that is, certain A. thaliana SNPs exhibited genetic effects only
when paired with certain X. arboricola variants. For example,
the SNP (MAF = 0.16) at location base pair 10646160 of chro-
mosome 4 at the gene AT4G19520 (SI Appendix, Fig. S5) was
not among the SNPs with the top marginal effects (marginal p
value = 0.0757) but was prioritized second in the interaction
analysis (G × G p value = 5.28× 10−18) (Fig. 3C). In fact, the
gene AT4G19520 encodes a disease resistance protein (TIR-
NBS-LRR class). Several other SNPs at this gene (base pairs
10639269 to 10647079 of chromosome 4) also appeared among
the top interaction results for association with QDR (Fig. 3D),
whereas those SNPs were not prioritized in the marginal analysis
(SI Appendix, Fig. S4).

To better understand the genomic regions detected by
ATOMM, we performed a gene ontology (GO) enrichment anal-
ysis for the A. thaliana SNPs that appeared among the top
interaction results, where we took the top 0.01% of distinct SNPs.
Based on a permutation procedure that takes into account the
linkage disequilibrium (LD) among SNPs (Materials and Meth-
ods), the three most highly enriched Biological Process (BP)
terms were retrograde transport from endosome to Golgi, cel-
lular response to hypoxia, and cellular calcium ion homeostatis
(Table 2). Though these results do not reach significance after
correction for multiple comparisons (p value = 0.097), they
do prioritize genes related to host defense. The gene underly-
ing enrichment of “cellular response to hypoxia” is located at
locus AT4G19520, which, as we have noted earlier, encodes a
disease resistance protein. The AT2G24710/AT2G24720 genes
underlying enrichment “cellular calcium ion homeostatis” cor-
respond to plant glutamate receptor homologs that, like their
animal counterparts, are intimately associated with Ca2+ influx
through plasma membrane. Recent reports have shed light on
their role in wound response and disease resistance (27). Since
the enrichments were based on interaction tests, our results
suggested the presence of strain specificity to X. arboricola in
these host defense genes. In contrast, enrichment analysis based
on marginal testing identified only basic plant function BPs.
Many of the identified BPs are involved in primary metabolism
and correspond to genes in a 37 kb genomic region on chromo-
some 5 (SI Appendix, Table S1). Such functions include carbon
accumulation during photosynthesis, regulation of cell growth,
or DNA recombination, for example. Thus, FUMARASE 2,
which encodes a cytosolic enzyme, is involved in carbon accumu-
lation into fumarate as a result of photosynthesis, required for
rapid nitrogen assimilation and growth (28). ARR10 is a type-B
response regulator involved in cytokinin sensitivity, affecting cell
expansion and division during development (29). Finally, MHF1
is a DNA-binding co-factor limiting crossover formation at
meiosis (30).

Table 2. Enrichment of BP in the 0.01% tail of the top interactive A. thaliana SNPs

BP Enrichment Nominal P value ATG number Locus name Molecular function No. of hits

Retrograde transport 78.3 0.001 AT4G19490 VPS54 Putative homolog of 14
endosome to golgi yeast Vps54

Cellular response 39.6 0.002 AT4G19520 Disease resistance protein 11
to hypoxia (TIR-NBS-LRR class)

GLUTAMATE Member of Putative ligand-gated 12
Cellular calcium 28.7 0.005 AT2G24710, RECEPTOR 2.3 ion channel subunit family

ion homeostasis AT2G24720 GLUTAMATE Member of Putative ligand-gated
RECEPTOR 2.3 ion channel subunit family

The nominal significance of the observed enrichment was assessed using a null distribution based on 10,000 permutations from a procedure that takes
into account LD patterns (see Materials and Methods).
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In addition, if we compare the ranked lists of X. arboricola
variants from the marginal and interaction analyses, then the
interaction analysis in ATOMM pinpoints a subset of the X.
arboricola variants from among the top marginal variants (Fig.
3B). These interactive X. arboricola variants exhibited both muta-
tion and deletion polymorphisms, and their genotype patterns
tended to differentiate strain FOR 21 from both FOR 23 and
FOR 26 (Fig. 3 C and D). Further investigation revealed two very
short regions on the X. arboricola genomes that had highly sig-
nificant interactions with the aforementioned A. thaliana disease
resistance gene AT4G19520. The first region (∼1.7 kb) contains
two genetic variants, including one leading to an amino acid
change in a D-serine/D-alanine/glycine transporter. The second
region (∼20 bp) contains four genetic variants located between
a glutathione peroxidase and a multidrug ABC transporter ATP
binding protein.

Discussion
We present a statistical method, ATOMM, for detecting associ-
ation between a complex trait, such as an infectious disease, and
genetic variants on the genomes of two organisms that contribute
to the trait. ATOMM takes advantage of the genome sequence
data from both partners in a two-organism pathosystem and
enables the identification of interaction between variants on the
host and pathogen genomes, in addition to the marginal effects
of individual host and pathogen variants.

Usefulness of ATOMM for Uncovering Genomic Regions with Biolog-
ical Significance in the A. thaliana–X. arboricola Pathosystem. Our
marginal analysis suggested a lack of genes conferring broad-
spectrum QDR to X. arboricola in A. thaliana. Instead, we
observed clear strain specificity in our interaction analysis (Fig.
3). In particular, the interaction analysis identified three main
biological functions on the A. thaliana genome that contribute
to QDR to X. arboricola (Table 2). Of particular interest is the
AT4G19520 gene that corresponds to a typical immune recep-
tor located near two other TIR-NB-LRR genes known to confer
disease resistance to specific races of the oomycete Hyaloper-
onospora parasitica (9). Although most QDR genes identified
to date do not correspond to typical immune receptors, few
studies have reported the cloning of NB-LRR genes underly-
ing resistance QTLs, leading to the hypothesis that QDR can be
mediated by weak alleles of R genes (31).

Interestingly, the genomic architecture underlying QDR in A.
thaliana differs substantially between X. arboricola and another
phylogenetically close phytopathogenic Xanthomonas species.
Indeed, previous GWASs on the A. thaliana–Xanthomonas
campestris pathosystem revealed that QDR to X. campestris
involves four A. thaliana genes with strikingly different ranges
of specificity. While the gene RKS1 encoding an atypical kinase
confers broad-spectrum QDR to X. campestris (32), a gene
of unknown function (AT5G22540) and a well-known immune
receptor pair, RRS1/RPS4, contribute to QDR to a limited num-
ber of X. campestris races (33). Furthermore, the four A. thaliana
genes conferring QDR to X. campestris do not overlap with the A.
thaliana genomic regions identified in this study of X. arboricola,
suggesting differential resistance determinants to these closely
related pathogen species. Why the host genetic architecture
underlying QDR differs between X. campestris and X. arboricola
remains an open question.

On the pathogen side, in agreement with the reduced effec-
tor repertoire composition in X. arboricola (SI Appendix, Tables
S2 and S3), the three candidate X. arboricola genes we identified
do not correspond to typical effectors in the type III secretion
system (T3SS). Instead, they encode a broad range of molecu-
lar functions that can be critical for pathogenesis. For example,
GSTs are known to counter oxidative stress generated by the host
in response to microbial attack (34).

The candidate genes identified in both interacting partners
undoubtedly constitute key candidate genes for functional anal-
ysis, thereby providing an exciting opportunity to dissect the
molecular landscape of A. thaliana–X. arboricola interactions.

Methodological Considerations. As an association mapping tool,
the analysis of cross-species gene–gene interaction can, in some
cases, lead to increased flexibility and power when the vari-
ant pair under consideration has negligible marginal effects but
strong joint effect. On the other hand, when the most important
effects are marginal effects, power could be severely compro-
mised by the multiple comparison penalty for a large number of
hypothesis tests if all interactions are tested. To reduce both the
burden of the multiple-testing correction and computation time,
gene–gene interaction tests can be applied to a focused subset
of variants that is likely to be enriched for interaction effects,
for example, those achieving a certain significance threshold
from marginal GWA mapping. However, in the A. thaliana–
X. arboricola dataset, the interaction analysis identified several
important loci associated with QDR that were not identified
in the marginal analysis. We note that the G × G p values
from the interaction analysis should be interpreted with cau-
tion because of multiple testing. Nevertheless, they can be used
to provide a ranked priority list of variants that can be com-
pared with the corresponding ranked list from the marginal
analysis. We thus recommend using gene–gene interaction as
a complement to, rather than replacement for, marginal GWA
mapping.

To correct for possible population confounding in association
testing, ATOMM considers multiple VCs based on three types of
GRMs: one each for the host and pathogen marginally and the
third for the interaction between the two. Recent work (35) has
demonstrated that including a Hadamard-type matrix to account
for background interaction, as in ATOMM, can reduce inflation
when the interaction effect is of primary interest. An alterna-
tive approach to correct for population confounding is to use
top PCs as fixed effects (17). In our context, we can extend such
an approach by including as fixed effects the top PCs of both
GRMs as well as the top PCs of their Hadamard product. The
choice as to which approach to take involves similar consider-
ations as in single-organism association mapping (15, 17, 35).
We chose to take the mixed-model approach in our application
because it enforces a less stringent correction on the X. arboricola
clade-specific variants.

In the ATOMM analysis, we partition the pathogen VC into
the variance attributable to pathogen deletion polymorphisms
and that attributable to pathogen mutation polymorphisms,
assuming that they contribute equally to the variance. Other
forms of partition may also be beneficial, such as using separate
GRMs for common and rare variants (36). For parsimony, we
choose to include only a single GRM for the host, one for the
pathogen and one for their interaction, although the ATOMM
method is able to accommodate other choices. Several stud-
ies have also pointed out that the SNP being tested, and those
nearby that tag it, should be excluded from the GRM to avoid
“dilution” (37). The same strategy can be incorporated in the
ATOMM method.

In the ATOMM model, we have included both fixed and ran-
dom effects of genetic variants that are assumed to act additively
both within and between variants, with additional additive-by-
additive interaction effects allowed between host and pathogen
variants. We note that in the A. thaliana–X. arboricola study, the
host is a diploid inbred organism, and the pathogen is a hap-
loid organism. Therefore, the assumption of additivity within a
variant is in fact fully general in this case (there is no other
choice), and the assumption that the interaction effect between
a host variant and a pathogen variant is additive-by-additive is
also fully general. In the case of noninbred diploid organisms,
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dominance effects and additive-by-dominant or dominant-by-
dominant interactions could in principle be included if desired.
We note that a linear mixed model with interaction terms for
both fixed and random effects has previously been proposed (38)
in a somewhat different genetic context of maize breeding in
which the fixed effects represent the haplotypes to be tested
and sets of i.i.d. random effects represent general and specific
combining abilities of different heterotic groups. This approach
to the random effects is closely related to that in the model of
SI Appendix, Eq. 42. It differs somewhat from the approach we
take in ATOMM, in that ATOMM includes sets of i.i.d. random
effects for host variants, pathogen variants, and their interac-
tions, as opposed to sets of i.i.d. random effects for host inbred
lines, pathogen strains, and their interactions.

By incorporating the whole-genome sequence data from a
pair of organisms, ATOMM provides a powerful approach to
detecting crucial host–pathogen gene–gene interactions and to
uncovering genomic regions that are likely to carry evidence
of co-evolution between hosts and pathogens. Although the A.
thaliana–X. arboricola dataset we analyze has a fully crossed fac-
torial design, note that our formulation of ATOMM is fully
general in that it does not place any particular requirements on
the design, beyond that the effects of interest be estimable from
the data (e.g., we would obviously require that host and pathogen
variant effects of interest not be completely confounded). As a
result of this generality, our joint mapping framework can easily
be extended to more complex study designs, including observa-
tional studies involving human participants, provided that the
infectious agent also has an available genome sequence. We
believe that our approach provides an opportunity to integrate
the whole-genome sequence data available for a variety of organ-
isms and to uncover the genetic architecture of complex traits in
finer detail than has previously been possible.

Materials and Methods
We provide here the details on the A. thaliana–X. arboricola joint asso-
ciation study that were not fully described earlier.

Phenotyping Experiment. The A. thaliana–X. arboricola joint association
study initially consisted of 176 different inbred lines of A. thaliana (host) and
24 different strains of X. arboricola (pathogen). Each of the 176 A. thaliana
lines was paired with each of the 24 X. arboricola strains, with three biolog-
ical replicates for each A. thaliana–X. arboricola pair. These combinations
resulted in a total of 176 × 24 × 3 plants, and they were all put into arrays
of mini-greenhouses. For each strain and each biological replicate, the 176
A. thaliana lines were divided into 11 groups of equal size and put into
11 mini-greenhouses. We found that the mini-greenhouse explains only 4%
of the phenotypic variation, so we decided not to include this batch effect
in the association model. Plants were grown on Jiffy pots under controlled
conditions (39).

Three researchers infected two to four leaves (median = 4) on each plant
by piercing three holes in the primary vein of each leaf with a needle dipped
in a bacterial solution of 2.108 cfu/mL. Eleven days after inoculation, a QDR
score for each leaf was measured by one of three researchers. As described
in ref. 23, the resistance score was defined using a disease index of 0, 1, 2, 3,
or 4, which corresponds to the number of holes among the three prepierced
holes on a leaf showing infection symptoms, while disease index “4” stands
for completely dead (no resistance).

Among the 176 A. thaliana lines, genotype information was not available
for 46 lines as of the date when the analysis was performed, reducing the
total number of host lines to 130. In addition, a greenhouse temperature
failure in the experiment was observed for two X. arboricola strains—that
is, FOR F24 and ME P9. Thus, we removed these two strains from the data
analysis. The final dataset we analyzed consisted of n = 32,960 sampling
units (leaves) resulting from multiple combinations of the 130 A. thaliana
lines and the 22 X. arboricola strains.

Genotyping Experiment. We collected whole-genome sequencing data for
both the 130 A. thaliana lines and the 22 X. arboricola strains. The
A. thaliana sequencing data were obtained from the 1001 Genomes project
(14). After quality control and genotype imputation, we included in the

analysis 1,220,413 A. thaliana SNPs (MAF ≥ 0.1). The genome annotation
was obtained from TAIR10 (https://www.arabidopsis.org). In addition to the
genotypes, we also retrieved the geographical information, such as ori-
gin countries, site names, latitudes, longitudes, and so forth, for each A.
thaliana line.

On the pathogen side, we included in the analysis 3,709,869 X. arboricola
variants (MAF≥ .045). The bioinformatics pipeline for sequencing, assem-
bling, and aligning X. arboricola genomes is described in SI Appendix.
Because we focused on only 22 (based on 24; see Phenotyping Experiment)
X. arboricola strains and because of the relatedness among the strains, there
were only 33,610 distinct genotype patterns observed, so, from a computa-
tional point of view, there were effectively only 33,610 distinct X. arboricola
variants to be tested for association.

Effects of A. thaliana–X. arboricola Population Membership on QDR. To assess
the extent to which the variation in QDR is attributable to the particular
geographical areas from which the host and pathogen are drawn, we fit
the following linear model:

Y|X, Subpopulation∼N (µ, Σ), where

µ= Xβ+

4∑
i=1

2∑
j=1

γij1{host population i and pathogen population j},

Σ=σ
2
aJ +σ

2
e I,

where the individual leaf is the experimental unit, with Y∈Rn, n = 32,960,
Xβ represents the person effect (i.e., the effect due to which lab mem-
ber scored the QDR), γij represents the effect on QDR of pairing a host
from A. thaliana subpopulation i with a pathogen from X. arboricola sub-
population j, J is a covariance matrix with Jij = 1 if i and j represent two
leaves from the same plant and 0 otherwise, σ2

a is the variance of the plant
random effect, and σ2

e is the variance of i.i.d. environmental noise. Note
that in this model, the intercept is subsumed into the second term of the
mean. We used the R function lmer for parameter estimation and hypothesis
testing.

ATOMM with an Additional VC. The simplest version of the ATOMM model is
given in Eq. 3. Here we give the extension of the model in Eq. 3 to allow
for inclusion of the plant random effect. We took the individual leaf as the
experimental unit with Y∈Rn, n = 32,960. We included the person effect
(i.e., the effect due to which lab member scored the QDR) as a covariate. In
the model for the variance, we added a random effect to represent the plant
or block effect, in addition to the four random effects specified in Eq. 3. The
plant/block random effect was designated to reflect the correlation among
observations on leaves from the same plant. The final Gaussian model we
fit is

Y|X, Gh,test, Gp,test∼N (µ,σ2
t Σ), where

µ= Xβ+ ZhGh,test
γh + ZpGp,test

γp

+ Zhp

(
Gh,test⊗Gp,test

)
γhp,

Σ= ξhZhKhZT
h + ξpZpKpZT

p + ξhpZhp (Kh⊗Kp)Z
T
hp

+ ξJJ + (1− ξh− ξp− ξhp− ξJ)I,

[9]

where σ2
t is the total residual variance; Xβ represents the intercept and

the person effect; J is an n-by-n matrix with Ji,j = 1 if i and j represent
two leaves on the same plant, and 0 otherwise; and Zh∈Rn×nh , Zp∈Rn×np ,
and Zhp∈Rn×nhp are the incidence matrices that map the observed QDR
score to A. thaliana lines, to X. arboricola strains, and to A. thaliana–X.
arboricola pairs, respectively. The procedure for parameter estimation and
association analysis is similar to that for the original ATOMM model (SI
Appendix).

Extension to a Binomial-Like Trait. Binomial-like traits are a natural gener-
alization of binary traits and are encountered commonly in GWAS. In the
A. thaliana–X. arboricola phenotyping experiment, the QDR score could
be considered a count measurement taking values in {0, 1, 2, 3, 4}. For a
binomial-like count trait, one could still apply the Gaussian model, though
one might expect the mean to be related to variance (SI Appendix, Fig.
S9). Here we provide an alternative approach by extending our model to
a binomial-like trait.
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Let Yij ∈{0, 1, 2, . . . , k} be a binomial-like trait. We propose the follow-
ing model for the mean

E(Y|X, Gh,test, Gp,test) = kµ,

logit(µ) = Xβ+ ZhGh,test
γh + ZpGp,test

γp

+ Zhp

(
Gh,test⊗Gp,test

)
γhp,

[10]

and for the variance

Var(Y|X, Gh,test, Gp,test) =σ
2
t MΣM, [11]

where M is a diagonal matrix with ith diagonal element
√

kµi(1−µi), Σ
is the same as in the model in Eq. 9, and σ2

t is an additional unknown dis-
persion parameter. Note that Σ is pre- and postmultiplied by the diagonal
matrix M to respect the binomial-like variance. In particular, the conditional
variance of the ith unit is kµi(1−µi)σ

2
t .

The model given in Eqs. 10 and 11 is an extension of the linear mixed
model in Eq. 9 (in which the link is an identity function and M = I) to
a generalized linear mixed model (GLMM). In practice, fitting a GLMM
can be computationally costly. To overcome this challenge, we extended
previous work (19, 20) for a binary trait that uses a quasi-likelihood and
estimating equation approach. This approach (see SI Appendix) ensures
the method is efficient for large-scale studies. We constructed prospective
score statistics for both the marginal and interaction hypothesis tests. In
the case of the marginal hypothesis tests, we were able to construct ret-
rospective score tests, in which significance was assessed conditional on Y
and X and treating Gtest as random (19). In our data analysis, we found
that the retrospective approach better controls the genome-wide inflation
than the prospective approach for the binomial-like model (SI Appendix,
Fig. S10).

GO Analysis. To determine which BPs were enriched among SNPs associated
with the response of A. thaliana to X. arboricola, we tested whether or not
the top 0.01% of associated A. thaliana SNPs were overrepresented in each
of 736 GO BPs from the GOslim set [The Gene Ontology Consortium, 2008

(40)]. We adopted the procedures in ref. 41 to take into account the LD
patterns among the SNPs. Specifically, we defined a 10 kb window around
each top SNP (5 kb on each side of the SNP) and let T denote the set of SNPs
covered by the union of these windows. Now consider a BP term of interest.
Let S denote the set of SNPs covered by the genes belonging to this BP term.
Define the observed enrichment score by

Enrichmento
def
= |S∩ T|,

where | · | denotes the cardinality of the set. In each permutation, we
shifted the location of the SNPs in T by a random number k, where k∼
Unif{1, . . . , (total number of SNPs-1)}, and let T′ denote the resulting SNP
set. Then the enrichment score for the given BP term in the permutation
set is

Enrichmentp
def
= |S∩ T′|.

To assess the nominal significance of the enrichment of the given BP term,
we generated 10,000 permutation replicates and compared Enrichmento

with the empirical distribution of Enrichmentp for the given BP term. For
each significantly enriched BP, we reported the (relative) enrichment score
as Enrichmento/Mean(Enrichmentp), and we retrieved the identity of all of
the genes containing the top 0.01% of associated SNPs. Our procedure for
assessing significance taking into account multiple comparisons is given in
SI Appendix.

Availability. ATOMM is implemented in C using the LAPACK linear algebra
library. Our software, including source code, will be publicly available at
https://www.stat.uchicago.edu/∼mcpeek/software/.
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