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Abstract

Based on the results of a SETAC-sponsored Horizon Scanning exercise focused on advancing the 

adverse outcome pathway (AOP) framework, the development of guidance related to AOP network 

development was identified as a critical need. This not only included questions focusing directly 

on AOP networks, but also on related topics such as mixture toxicity assessment and the 

implementation of feedback loops within the AOP framework. A set of two papers has been 

developed to begin exploring these concepts. In the present paper (part I), derivation of AOP 

networks is considered in the context of how it differs from development of individual AOPs. We 

then propose the use of filters and layers to tailor AOP networks to suit the needs of a given 
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research question or application. We briefly introduce a number of analytical approaches that may 

be used to characterize the structure of AOP networks. These analytical concepts are further 

described in a dedicated, complementary paper (part II). Finally, we present a number of case 

studies that illustrate concepts underlying development, analysis and application of AOP networks. 

The concepts described in this paper, and in its companion paper focused on AOP network 

analytics, are intended to serve as a starting point for further development of the AOP network 

concept, but also to catalyze AOP network development and application by the different 

stakeholder communities.
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1. Introduction

Adverse outcome pathways (AOPs) are an important framework that can help support 

greater and more effective use of mechanistic, or pathway-based, data in risk assessment and 

regulatory decision-making. While the conceptual underpinnings of the AOP framework 

date back to at least the late 1980s (Lalone and others 2017a), AOPs have rapidly evolved 

from a conceptual paradigm (Ankley and others 2010) into a formalized framework for 

organizing biological and toxicological knowledge according to a set of principles and 

guidelines that are generally accepted by the scientific and regulatory communities (OECD 

2013a 2015; Villeneuve and others 2014b), and for disseminating that knowledge through an 

internationally harmonized knowledgebase (aopwiki.org, aopkb.org). Nonetheless, further 

development of the framework and the tools, approaches, and concepts surrounding its 

application is required to fully realize its potential and acceptance by society.

In response to the recognized need to continue advancing the framework, the Society of 

Environmental Toxicology and Chemistry (SETAC) sponsored a global Horizon Scanning 

exercise to identify major outstanding topics and challenges related to the AOP framework 

and its application (Lalone and others 2017a). Based on a survey of the international 

stakeholder community, four major topics/themes that needed further development were 

identified: (1) enhance communication, outreach, and stakeholder engagement in the 

development and application of AOP knowledge, (2) enhance regulatory use and acceptance 

of the AOP framework and facilitate its incorporation into regulatory practices, (3) enhance 

the use of the framework for quantitative assessments and applications, and (4) development 
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of approaches for deriving, interrogating, and applying networks of AOPs, which is the topic 

of the current paper.

As outlined by Villeneuve and others (2014b), individual AOPs are viewed as a pragmatic 

unit of development and evaluation. It is tractable for an individual or a research team to 

describe and establish, through both biological plausibility and supporting evidence, how a 

defined perturbation of a biological system can lead, in a causal manner, to a particular 

adverse outcome. It is far less tractable for that individual or team to describe all the possible 

adverse effects a given perturbation may cause, or conversely, all the different perturbations 

through which stressors may evoke a particular adverse outcome (e.g., reductions in 

survival, growth, reproduction, increased risk of disease). It is even more daunting to 

consider describing those possibilities for all the different taxa, life-stages, and sexes (where 

relevant) that are of interest to a stakeholder. However, at the same time it was recognized 

that the “one perturbation-one adverse outcome” model that an individual AOP represents is 

a gross oversimplification of both the complexity of biological systems and the 

consequences of exposures to stressors that they face. In most real world scenarios, 

exposures are to multiple stressors (i.e., mixtures), not just one stressor at a time. Likewise, 

even single stressors may induce toxicity by more than one mechanism. This may be via 

interaction of the chemical with multiple targets in an organism or via interaction with a 

single target found in multiple compartments (e.g., cell types, tissues, organs, etc.) within a 

complex organism. Thus, most often, AOPs cannot be considered in isolation. One needs to 

think about potential interactions among pathways and consider how those interactions may 

alter the trajectory or intensity of the effects resulting from a chemical exposure.

Recognizing this, one of the core principles of AOP development was that, in contrast to 

individual AOPs as pragmatic units of development, AOP networks are viewed as the most 

likely units of prediction (Villeneuve and others 2014b). In turn, the formalization of the 

AOP framework, and its implementation via a knowledgebase structure that allowed for 

sharing of an AOP’s modular units (key events [KEs] and key event relationships [KERs]; 

aopwiki.org), was conceived and designed to allow for de facto construction of more 

complex and comprehensive networks from individual AOPs. In this way, a more accurate 

representation of biological and toxicological complexity that covers more and more of the 

susceptible taxonomic space and biological contexts (e.g., life stage, sex, impacts in or upon 

different target organs) can be built up gradually over time, through the independent 

contributions of individuals or groups.

To date, a vision for AOP networks has just started to be realized. Following publication of 

principles and best practices for AOP development (Villeneuve and others 2014b; 2014c) 

and public release of the AOP-Wiki (aopwiki.org) in 2014, time was needed to allow for an 

accumulation of a sufficient number of AOPs in the AOP knowledgebase (AOP-KB) to 

actually begin exploring their connectivity. Likewise, technical and practical challenges in 

the development of sharable, modular KE and KER units in the public AOP-KB (e.g., 

developing naming conventions, search tools, guidance and training materials, etc.) initially 

hampered rapid assembly of these de facto networks. Nonetheless, over the last three years, 

a critical mass of AOP descriptions has started to accumulate and some of the challenges 

have been overcome. This has led to recent realization of some of the first examples of AOP 
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networks (Angrish and others 2016; Angrish and others 2017; Knapen and others 2015; 

LaLone and others 2017b; Margiotta-Casaluci and others 2016), and along with it, 

opportunities to address key concepts related to the development, analysis, and application 

of AOP networks.

The present set of two papers begins exploring these concepts. In part I, derivation of AOP 

networks is considered in the context of how it differs from development of individual AOP 

descriptions. We then discuss the application of filters and layers to refine and enrich derived 

AOP networks so that they may be tailored to address specific questions of interest. 

Modifications to the AOP-KB that may be needed accordingly are also considered. We then 

briefly introduce a number of analytical and computational approaches that may be used to 

characterize and analyze the structure of AOP networks to derive information that can guide 

research and regulatory decision-making. These analytical concepts are further developed 

and described by Villeneuve and others (2018, part II), including the use of techniques 

derived from graph theory (Trudeau 2013) and network science (Lewis 2009), to analyze 

network topology, the identification of critical paths and the characterization of interactions 

among AOPs in a network (Villeneuve and others 2018, part II). Finally, we present a 

number of application case studies that illustrate concepts underlying development and 

analysis of AOP networks, and how those concepts tie in with ultimate application. While 

not comprehensive in scope, the intent is to provide an enhanced understanding of AOP 

network development, AOP network analysis (Villeneuve and others 2018, part II), their 

applications, and to provide perspectives on how some of the challenges identified through 

the Horizon Scanning exercise (Lalone and others 2017a) can be addressed.

2. Development of AOP Networks

A first and relevant question is: What exactly is an AOP network? An AOP network is 

defined as an assembly of two or more AOPs that share one or more KEs, including 

specialized KEs such as molecular initiating events (MIEs) and adverse outcomes (AOs, Box 

1). Different AOPs diverging from a single MIE, or converging to a single AO, therefore also 

form AOP networks even if they do not have any other KE in common. Development of 

individual AOPs can be thought of as the process of (1) graphically defining a sequence of 

KEs that link a molecular initiating event to a defined adverse outcome, (2) describing the 

change in state that each KE represents and how it is measured, and (3) detailing the weight 

of evidence that supports inference or extrapolation from one KE to the next in the sequence 

based on biological plausibility, empirical support, and quantitative understanding 

(Villeneuve and others 2014b). AOP networks can be thought of as emerging from the 

description of individual AOPs, as soon as KEs are described that are shared between two or 

more AOPs. The description of networked KEs can either be an intentional process that is 

part of the strategy of an AOP developer, or the fact that certain KEs are shared among 

AOPs can be discovered after AOPs have been developed independently. When considering 

different AOP network development processes, it is therefore useful to distinguish between 

“network-guided AOP development” and “AOP network derivation”. While AOP network 

derivation is defined as a formal AOP network development process that is based on 

extracting and linking information that is available in the AOP-Wiki, network-guided AOP 

development is introduced as a rather broadly defined concept that includes many different 
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AOP network development approaches which do not necessarily rely on database extraction 

procedures.

2.1. Network-guided AOP development

When AOPs are developed in the AOP-Wiki, an AOP network is created by default 

whenever a KE or KER description is linked to more than one AOP. This is important 

because it implies that AOP developers are not restricted to describing linear paths only, and 

can thus intentionally conceive and describe structures that are more complex than the 

typical “one perturbation – one outcome” unit. This process could be thought of as network-

guided AOP development. The advantage of network-guided AOP development is that it is 

not conceptually and methodologically different from development and description of 

individual AOPs: the same principles, guidance, and practices in terms of description within 

the AOP-Wiki apply, and no additional tools are required. In order to develop an AOP 

network there is no need to do anything differently than one would for describing a linear 

AOP, other than to intentionally share KE or KER descriptions (pages) among more than one 

AOP, a functionality that is currently built into the AOP-Wiki.

Currently, many AOPs are being developed using this network-guided fashion (e.g., Angrish 

and others 2016; Cavallin and others 2017; LaLone and others 2017b; Nelson and others 

2016; Stinckens and others 2016). However, it is expected that as the AOP-KB matures, 

AOP development will increasingly focus on filling data and knowledge gaps in the AOP-

Wiki, and AOP network development has the potential to mainly become an exercise of 

assembling data that already exists in the AOP-KB. The process of developing AOP 

networks by extracting existing data from the AOP-Wiki and assembling a network based on 

those AOPs rather than de novo description of linked AOPs is called AOP network 

derivation.

2.2. AOP Network Derivation

The first step of network derivation is to extract all AOPs that are relevant for a given 

application from the AOP-Wiki (Figure 1). The criteria that define which AOPs are relevant 

will vary, and will be defined by the application or stakeholder needs. Theoretically, the 

AOP-KB can be queried for any property of an AOP, KE, or KER that has been 

appropriately described and/or structurally annotated. Some examples of extraction criteria 

include: AOPs leading to a single AO of interest, AOPs known to be induced by a particular 

stressor or group of stressors, AOPs that have KEs that map to a particular data set (e.g., a 

collection of positive high-throughput screening assay responses observed for a particular 

chemical or mixture of chemicals), AOPs that have a particular species in their applicability 

domain, AOPs that have KEs for a particular tissue type, etc.

Extraction can be achieved manually, for example by inspecting dedicated pages in the 

AOP-KB which list all the AOPs that a particular KE links to. However, manual extraction 

of AOP networks could rapidly become tedious as well as impractical as the AOP-KB 

grows. Thus, it is important to develop computational tools designed for this purpose, such 

as the AOP-xplorer (http://apps.cytoscape.org/search?q=aopxplorer). Using AOP-xplorer, 

any structured annotation field in the AOP-KB can be queried computationally in order to 
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derive an AOP network. Once such an automated extraction process is complete, the 

resulting collection of AOPs could be assembled based on their topologies of shared KEs 

and KERs into an AOP network that is then called a primary AOP network (Figure 1). In 

some cases, the resulting primary network will be directly suitable for a certain application. 

In others, it may be desirable to refine (simplify and/or enrich) the network using a series of 

filters and data layer options, or to more deeply interrogate and statistically analyze the 

network as discussed below.

2.3. Refining AOP networks using filters

The structural complexity of AOP networks will depend on various factors. Ideally, AOP 

network derivation tools should include ways to focus and refine the network to fit the needs 

of a given application and enhance the information content conveyed from the overall 

network diagram. For example, risk assessment of individual chemicals or mixtures might 

be focused on a particular effect (e.g., impaired reproduction) in a specific class of 

organisms. In such a scenario, one might want to remove AOPs that relate to non-

reproductive endpoints, and AOPs that are relevant to other taxa. On the other hand, efforts 

targeting mode of action identification could benefit from examining highly branched 

networks encompassing many different MIEs and their associated pathways. Thus, it was 

conceived that one should not only be able to construct a primary network based on 

extraction criteria, but also to filter that network based on additional annotation terms that 

would allow one to focus on the pathway(s) of greatest interest.

AOP network filters are envisioned to further refine which KEs and KERs from the primary 

AOP network would be included in downstream applications and analysis (Figure 1). For 

example, the structured KE and KER domain of applicability terms selected in the AOP-KB 

could be used to restrict a network only to those KEs and KERs that are relevant to a given 

life stage, thereby simplifying the overall network. Alternatively, one might want to filter an 

AOP network to only those KEs measured at a defined biological level of organization, in 

order to select appropriate endpoints one might measure in a specific cell line or tissue. A 

range of different filters, based on either structured ontology terms that are part of the AOP 

descriptions (e.g., taxonomic applicability) or based on network metrics (e.g., how strongly 

connected KEs are to the network) could be envisioned. Supplementary Table S1 provides a 

list of possible filters that could be envisioned, including filters for taxonomic, life stage or 

sex applicability, network metrics, and critical paths. Each could be used to help tailor an 

AOP network to a given problem formulation or research question. Finally, we propose a 

confidence assessment filter which can be used to filter AOP networks based on various 

weight of evidence, biological plausibility, essentiality, etc. assessments of the constituent 

AOPs.

2.4. Visualizing AOP network data using layers

A simplified representation of a set of KEs and KERs (i.e., an AOP network) can easily be 

visualized graphically, where each unique KE is represented by a single node, and the KERs 

are represented by edges (Figure 1). While such a simple graphical representation can depict 

the general structure of an AOP network, it is not a practical means of displaying and 

interrogating all the complex information captured within each of its KE and KER 
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descriptions. Additionally, one may wish to supplement a network with additional data that 

is external to the AOP-KB (e.g., experimental data), which can further convolute the 

information associated with an AOP network. To aid in the visualization and interpretation 

of the complex information associated AOP networks, we propose a mechanism to visually 

superimpose this information, as needed, as “layers” on top of an AOP network image 

(Figure 1). AOP network layers can be viewed as analogous to data layers employed in 

geographic information systems (GIS), where information relevant to interpretation or 

application of an AOP network could be laid over the filtered AOP network, much like for 

example traffic or public transportation information is laid over a city map. Ideally these 

layers could capture data derived from structured annotation fields within the AOP-Wiki, as 

well as incorporate other types of data that are not necessarily part of formal AOP 

descriptions.

There has been resistance to the explicit representation of additional data such as feedback 

loops as additional types of nodes and edges in an AOP network, as they may overly 

complicate network interpretation for many applications. On the other hand, for other 

applications, those additional levels of detail may yield insights that may allow for more 

accurately predicting biologically relevant outcomes. Layers add information to an AOP 

network without modifying or influencing the network’s overall properties, structure and 

topology, and are viewed as a way to address competing desires for greater information 

richness and detail on one hand versus clear-cut interpretive simplicity on the other hand. 

The consideration of feedback loops and modulating factors within AOPs and AOP networks 

provide a useful example of this. At present, events associated with a feedback loop may be 

included as KEs in the AOP in cases where a feedback response is causally linked to the 

adverse outcome and is measureable. In other cases however, for example when 

understanding of the feedback loop may aid to predict how severely a particular KE must be 

perturbed in order to progress further along the pathway, knowledge of the feedback loop 

can be included in the “quantitative understanding of the linkage” section of the relevant 

KER pages (Lalone and others 2017a, see Q&A 13). Therefore, feedback, feedforward or 

other types of signaling motifs or loops are not specifically annotated as such in AOP 

descriptions, and thus very difficult to identify automatically. Likewise, modulating factors 

that are extrinsic to the AOP network (i.e., are not driven by interactions among existing KEs 

found in the network) such as dietary factors, genetic susceptibility or resistance, disease 

states, environmental factors, etc., are currently only captured in the free-text descriptions of 

quantitative understanding of the KERs. While potential intrinsic modulating factors are 

captured de facto in the structure of the network since they arise from a shared KE or KER 

and, therefore, do not need explicit annotation, extrinsic modulating factors require separate 

descriptions and anchoring to the AOP network.

Operationally (i.e., from the perspective of further development of the AOP-KB), the 

implementation of certain types of layers would involve introducing additional structured 

annotation fields (Ives and others 2017) in the KE and KER descriptions of the AOP-KB. In 

the case of known modulating factors, this could for example involve introducing an 

optional “modulating factor” field to KER descriptions, where users could define a 

modulating factor and provide additional text description and supporting references. An 

advanced implementation of feedback loop layers could allow future KEs also affecting the 
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feedback loop to reveal interactions between AOPs that are not necessarily evident from 

individual KEs. However, even at the most basic level, the ability to apply a layer that 

identifies those KERs for which feedback or modulating factors are known to influence 

response-response relationships could be very informative and signal a user to explore the 

additional details provided in the AOP description in order to determine whether they are 

relevant to the application in question. While at present, these capabilities have not been 

implemented as computational features of the AOP-KB, the concepts and features outlined 

here have been communicated to the AOP-KB development team to inform on-going 

software development aimed at enhancing the utility of AOP-networks.

In addition to feedback loop layers and modulating factor layers, a number of other data 

layers were identified which could reflect taxonomic, life stage, and sex applicability 

domains, genetic heterogeneity, tissue specificity and temporality, as well as quantitative 

response data (Supplementary Table S2). We propose that in combination, the use of filters 

and layers will help to achieve a network representation that is suited for the intended 

application and will make the AOP-KB more user-friendly and useful for other intended 

audiences in addition to research scientists, such as risk assessors. Importantly, by 

overlaying certain data types on the KERs within an AOP network, the network 

representation can be transformed into a mathematical construct allowing for different types 

of analyses to be applied (see Figure 1; Villeneuve and others 2018, part II).

2.5. Analyzing AOP networks

An AOP network organizes sets of biological perturbations that may interact and influence 

one another in such a way that a significant understanding of the biology may be derived 

through examination and analysis of the structure of the network. While visual examination 

of the network graph is compelling, the use of techniques from graph theory (Trudeau 2013) 

and network science (Lewis 2009) facilitates an encompassing review of the network, 

especially when networks become larger and more complex. Villeneuve and others (2018, 

part II) address several aspects of AOP network analytics, building on the basic AOP 

network concepts described in this paper. They specifically focus on three key elements: (1) 

AOP network topology analysis, (2) critical path identification, and (3) characterization of 

interactions among AOPs in a network. Here, we provide a few topical examples of 

analytical procedures that may be applied to AOP networks to give the reader a brief 

introduction to some of the concepts involved. We refer to our companion paper (Villeneuve 

and others 2018, part II) for a complete overview and in-depth discussion.

In AOP network topology analysis, a large variety of metrics can be calculated that describe 

the overall shape and structure of the network, or identify specific nodes in the network 

which may be of particular interest. For example, one of the first topological properties of 

interest are points of convergence and divergence within a given network (Figure 2A). In a 

convergent topology, AOPs are directed towards a common KE or AO, while a divergent 

topology involves AOPs branching off from a common MIE or KE. Conceptually, the degree 

of convergence or divergence of a network may affect the intensity of the AOs, and analysis 

of convergence/divergence of AOP networks may inform on the existence of potential 

additive, synergistic or antagonistic effects and interactions, or may for example be used to 
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develop assays that would capture a broad range of MIEs, versus assays predictive of a 

group of related AOs, versus assays predictive of only a very specific AO. Most real-life 

AOP networks will likely be mixed networks (i.e. have local divergent and convergent 

regions within the overall network). This could lead to specific motifs, such as a node that is 

a local site of convergence and divergence simultaneously, a mixed structure which would 

create a bow tie motif (Figure 2A) and could represent important integrative biological 

signals. Computationally, a large number of metrics can be calculated to describe network 

topologies, each providing a specific view on the network, and complementary opportunities 

for identifying network nodes of interest. A few examples of such metrics are given in 

Figure 2B.

A second and highly relevant characteristic of AOP networks is that they provide a 

framework for the description of the overall landscape of potential adverse outcomes 

resulting from particular biological perturbations. This can enable strategic identification of 

paths that have the greatest biological likelihood and/or relevance for risk assessment. 

Within an AOP network, the most significant path from an investigational or biological 

standpoint was termed the critical path. Here we distinguish “path” from “pathway” to 

recognize that the critical path may not necessarily follow an entire AOP, and may in fact 

emerge only through the assembly and consideration of the interactions between multiple 

AOPs. The interpretation of what constitutes a critical path can vary widely depending on 

the context and perspective of the AOP developed or end user. Critical paths may be 

representative of a specific research question, or of the strongest weight of evidence for 

certain elements of the network. They may also represent the most toxicologically relevant 

path which may have great importance in the application of AOP networks for risk 

assessment. This can in turn aid identification of endpoints or assays that can serve as useful 

alternatives to the direct measurement of apical adverse outcomes (OECD 2016). Also, AOP 

network-based critical path delineation efforts may be useful for identifying data gaps that 

are required to achieve a complete critical path description in scenarios where the AOP 

network includes poorly supported AOPs. Despite the fact that critical paths currently 

remain a relatively loosely defined concept and quantitative approaches (i.e., qAOP 

development) may be required in order to formulate a more stringent definition, Villeneuve 

and others (2018, part II) recognize the need for different critical path identification 

strategies, and distinguish among problem formulation, weight of evidence, and 

biologically-toxicologically defined critical paths, as well as the pure empirical 

identification of critical paths.

A third, and probably the most challenging, aspect of AOP network analysis is the 

identification and characterization of potential interactions between AOPs. AOP interactions 

describe how one or more components of a pathway may affect another pathway in such a 

way that it modulates the AO in terms of its biological properties, intensity, probability, rate, 

etc., compared to the outcome that would be observed had the interaction not taken place. 

Interactions between AOPs may be described as crosstalk between AOPs, but because the 

concept of crosstalk is typically associated with specific and rather stricly defined molecular 

processes such as signal transduction cascades, “interactions” is preferred as the descriptor. 

From a procedural perspective, since nodes in AOPs represent directional changes in the 

state of biological components (e.g., increased versus decreased testosterone concentration 
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are two different KEs) rather than the biological components themselves (e.g., testosterone), 

it is recognized that tools to automatically map KEs occurring on the same components 

during AOP network extraction and analysis will be required before the full potential of 

interaction analysis is achieved. Nevertheless, interactions are anticipated to result in 

additive, synergistic, or antagonistic responses (Vert and Chory 2011) and their analysis may 

provide the opportunity to guide a more rational assessment of for example mixture toxicity 

(Villeneuve and others 2018, part II).

3. AOP network application: case studies

As described by Villeneuve and others (2014b), AOP networks were envisioned to be a more 

realistic representation of the complex biological interactions compared to single AOPs that 

would, for example, occur in response to exposures to chemical mixtures or single toxicants 

exhibiting multiple biological activities. Development and analysis of AOP networks have 

the potential to provide important information regarding the interactions among multiple 

AOPs, and represent an interface between the specific toxic outcome captured in a single 

AOP and modulation of those outcomes due to interactions occurring in a systems biology 

context. Additionally, analysis of the intersections (shared KEs and KERs) among AOPs that 

make up an AOP network can reveal unexpected or under-appreciated biological 

connections. Consequently, it is anticipated that AOP networks will ultimately be more 

informative than individual AOPs in a decision making context. For example, when mapping 

the landscape of AOPs for a particular adverse effect the network will indicate the points of 

convergence of different pathways, which may indicate the most promising KE for 

development of in vitro assays that can be tailored to capture all the pathways upstream from 

that KE. This approach may be very useful for informing the construction of Integrated 

Approaches to Testing and Assessment (IATAs) to cover the relevant biology for a wide 

range of potential adverse outcomes (Tollefsen and others 2014). AOP networks may also 

offer insights into approaches for evaluating the toxicity of mixtures to understand how a 

chemical acting via one AOP may be impacted by another chemical acting via another AOP 

in a relevant mixture.

While some of the most prominent potential applications of AOP networks are noted above, 

there are undoubtedly other applications which may emerge. For example, AOP networks 

could help speed the design of new drugs or chemicals by providing early warnings of 

potential side effects or toxicological events that could possibly end up in adverse effects. 

Likewise, mapping layers of information on modulating factors onto an AOP network could 

help to identify vulnerable subcategories of people or wildlife whose susceptibility may be 

increased or decreased as a function of health status, microelement deficiencies, 

environmental stresses etc. These could either exacerbate the adverse effect of a chemical, or 

equally undesirable, undermine or counteract the effect of a drug. Given the broad range of 

applications, it is impractical to illustrate them all. Thus, in the context of this paper, we 

highlight just a few application case studies that both illustrate some of the concepts of AOP 

network development and analysis described above, and show how those processes can be 

applied to help address questions related to chemical safety assessment.
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3.1. Case Study 1: AOP network for cardio-metabolic disease

The need to develop AOP networks to effectively evaluate complex diseases was recently 

highlighted in the development of mechanistic toxicity tests based on an AOP network for 

hepatic steatosis, leveraging a large amount of publicly available mechanistic, phenotypic, 

and toxicological liver data (Angrish and others 2016; Angrish and others 2017; Bell and 

others 2016; Oki and others 2016). Steatosis, also known as fatty liver disease, is a 

regulatory endpoint and pathologic condition where energy metabolism is disrupted and fat 

accumulates in the liver. Energy homeostasis is dependent on the balance between energy 

intake and expenditure, a process regulated by endocrine and cellular communication 

between the brain, gut, and metabolic tissues such as adipose, striated (skeletal and cardiac) 

muscle, pancreas, and liver. At the molecular level, metabolism is coordinated by broad 

chemical signals, including nutrients, hormones, and environmental chemical signals that 

control systemic energy homeostasis by binding to cognate cell surface, cytosolic, and 

nuclear receptors. Chemical contact at any point along this neuro-endocrine-organ network 

can impact complex signal transduction, gene expression and protein activation cascades, 

etc. to coordinate the energy demands of a biological system. The challenge is that, because 

these receptors and signaling pathways crosstalk, it is difficult to adapt existing assay data 

(e.g., data from current ToxCast™ and Tox21 assays) to strategies predictive of a steatotic 

outcome. This may be because the events these assays represent are too far upstream of the 

AO to allow for facilitating reliable prediction of outcomes. Effectively, the interactions that 

occur in between are too complex to practically or reliably model.

In the steatosis AOP network this challenge was overcome by identifying a network 

topology converging into four KEs that were viewed as critical paths leading to steatosis 

(i.e., fatty acid uptake, efflux, synthesis, and oxidation, Figure 3). The assumption was that 

assays measuring these points of convergence would integrate the complex interplay of 

upstream events and translate them into KE measures or points of departure that are more 

proximally located relative to the AO. It is conceivable that such an approach would have the 

power to capture not only single chemical exposures, but also mixture effects, as long as the 

effects were upstream of the convergent KEs.

Once the convergent KEs were identified and the corresponding assays were developed, a 

second step was to utilize data from those assays to predict steatotic outcomes as well as 

their severity. A challenge is that the compensatory actions of these 4 KEs collectively 

balance liver lipid levels. Consequently, progression towards a steatosis AO depends on the 

combination and magnitude of KEs’ change, and the interaction between all four KEs and 

their associated AOPs. While in some cases, only one of those four KEs may be impacted 

and that alone could be sufficient to elicit the adverse outcome, in most cases it is likely that 

more than one of the convergent KEs will be affected. This can be expected to yield different 

consequences than those that might be predicted based on impacts on any one of those KEs 

alone. For example, an exposure that increases lipid uptake may be sufficient to cause 

steatosis, whereas an alternative exposure that also activates lipid efflux may compensate for 

increased uptake and restore balance such that no AO is observed. This is a salient example 

of why the consideration of AOP networks has been viewed as critical to the use of the AOP 

framework for predictive toxicology. As such critical paths and points of convergence are 
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identified, AOP network analyses can inform the development of complementary, 

biologically-based mathematical models that facilitate an alternatives-based (e.g., cell-based 

assays) chemical evaluation workflow.

3.2. Case study 2: Decreased serum thyroid hormone AOP network for alternative assay 
development

An example of network-guided AOP development that has led to de facto construction of an 

AOP network in the AOP-Wiki is centered around circulating thyroid hormone 

concentrations. Two major points of convergence/divergence (i.e., KEs resembling the 

“knot” of a bow tie motif, see section 2.4) in this multi-taxon AOP network are decreased 

serum thyroxine (T4) and decreased serum triiodothyronine (T3, see Figure 4A).

This thyroid hormone disruption AOP network has been employed to support the 

development and application of guideline toxicity tests, and subsequently alternatives to 

those same whole animal test guidelines. For example, the amphibian metamorphosis assay 

(AMA, OECD TG 231, OECD 2009) was developed for the purpose of screening chemicals 

for their ability to disrupt the thyroid hormone signaling axis in vertebrates. The branches in 

the AOP network provide the scientifically plausible and evidence-based foundation for 

linking the shared KE of decreased serum T4 to impaired amphibian metamorphosis as an 

indicator of thyroid axis disruption. Adverse neurodevelopmental outcomes in rodents build 

the case for the relevance of the AMA for screening thyroid disrupting chemicals that can be 

adverse to humans (Figure 4A). Given the time and resource-intensive nature of the AMA, 

there was desire to replace it with in vitro assays that could be used to screen large libraries 

of chemicals for their ability to disrupt the thyroid axis. Based on the AOP network, assays 

for thyroid peroxidase (TPO) activity, the sodium iodide symporter (NIS), and iodothyronine 

(DIO) and iodotyrosine (IYD) deiodinase activities were developed to assess the potential 

mechanisms through which chemicals could alter circulating T4 and/or tissue T3 

concentrations (Figure 4A). Recognizing that not all these targets have been covered in 

existing high throughput screening programs (e.g., ToxCast™, Tox21), the AOP network 

helps inform the development of a more comprehensive screening battery for this important 

mode of endocrine disruption.

As part of another alternative testing development effort, a question was posed as to how the 

fish early life stage test (FELS test, OECD TG 210, OECD 2013b) might be replaced by 

more rapid and cost effective alternatives (Villeneuve and others 2014a). While a modified 

fish embryo test (OECD TG 236, OECD 2013c) was proposed as an alternative that could 

cover much of the toxicological space encompassed by the FELS test, it was recognized that 

certain developmental events occurring after hatch, during larval to juvenile transition, could 

be missed. One example was swim bladder inflation, which in common laboratory model 

cyprinids like zebrafish and fathead minnow occurs in two stages: inflation of the posterior 

chamber shortly after hatch, followed by inflation of the anterior chamber several days to 

weeks later (Cavallin and others 2017; Nelson and others 2016; Stinckens and others 2016; 

Villeneuve and others 2014a). While a range of biological perturbations may disrupt this 

event, decreases in circulating T4 and/or deiodination of T4 to T3 have been defined, 

through development of an AOP network, as a means through which chemicals could impact 
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swim bladder inflation in fish, a KE which has been linked to reduced young of year survival 

(Czesny and others 2005; Woolley and Qin 2010). The AOP network focused on swim 

bladder inflation in fish was subsequently integrated with the broader amphibian/mammalian 

AOP network described above, resulting in a multi-taxon thyroid AOP network (see Figure 

4). Consequently, the same battery of in vitro assays that can plausibly screen for thyroid 

disrupting chemicals in amphibian and mammalian models, could also cover toxicological 

space that might be missed if a fish embryo test were employed as the only alternative to a 

FELS test.

From a network development perspective, the thyroid AOP network demonstrates how some 

of the proposed filters and layers might be applied (Figure 4B). For example, application of 

a life-stage filter would show that the AOP mediated via inhibition of the TPO enzyme is 

only relevant to larval fish. If the exposure was during the embryo stage only and the focus 

was inflation of the posterior chamber, DIO enzyme inhibition would represent the critical 

path in the network. Alternatively, if the exposure occurred or was sustained until after 

hatch, both TPO and DIO inhibition would be inferred to be contributing to reduced anterior 

swim bladder inflation, suggesting that the outcome may be more severe than that triggered 

by a chemical exhibiting only one of the two bioactivities. Further, invoking the feedback 

loop layer in the AOP network visualization could unveil additional detail relevant to 

predicting the interactive effect of these two AOPs, since the MIE of DIO inhibition also 

impacts the negative feedback loop mechanism itself. Adding the quantitative properties of 

this feedback mechanism to the response-response relationship of the KER linking 

decreased T4 levels to reduced anterior swim bladder inflation might provide for a more 

accurate prediction of the joint effect of the two AOPs than the basic AOP network alone 

would provide.

3.3. Additional case studies

Two additional, fully described case studies are given in the Supplementary Materials to 

provide further examples to the interested reader illustrating AOP network development and 

application in more advanced scenarios. The first case study illustrates the application of 

AOP networks to support the assessment of complex mixtures. A water sample extract of a 

metropolitan wastewater treatment plant was tested using a number of ToxCast™ assays to 

evaluate the ability of the sample to activate different nuclear receptors and transcription 

factor promoter-regulated reporter sequences. Assay activity was mapped to MIEs described 

in the AOP-Wiki and the resulting AOP network was filtered to focus on KEs that were 

directly relevant to the observed bioactivities. The resulting set of AOP networks was further 

filtered to exclude AOPs that did not terminate at AOs that would be considered relevant to 

ecological risk assessment. Focusing on the remaining AOPs, known potential hazards to 

aquatic vertebrate wildlife associated with this mixture could be identified. The second case 

study provides an example of how an AOP network approach was used to explore the 

polypharmacological profile of the pharmaceutical beclomethasone dipropionate (BDP) 

using the fathead minnow. Thanks to its ability to modulate the glucocorticoid receptor BDP 

is used to treat chronic inflammatory conditions, but the drug also has the ability to modulate 

the androgen and progesterone receptors. Data generated during drug development were 

used to identify the cascades of KEs likely to be triggered and this information was 
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organized within an AOP network. Chronic in vivo exposures to BDP were then carried out 

to generate a quantitative AOP network which provided evidence that the polypharmacology 

profile of the BDP was indeed critically important to interpret and accurately predict the 

toxicological profile of the drug (Margiotta-Casaluci and others 2016).

4. Summary and conclusions

Based on the results of a SETAC-sponsored Horizon Scanning exercise focused on 

advancing the AOP framework, the development of guidance and best practices related to 

AOP network derivation and application was identified as a critical need. This not only 

included questions and concerns focusing directly on AOP networks, but also on different 

related topics such as mixture toxicity assessment, the implementation and graphical 

representation of feedback loops within the AOP framework, the characterization of 

interactions among pathways, the ability to include information on extrinsic modulating 

factors, etc. While the concept of constructing networks has always been deliberately, but 

possibly rather implicitly, built into the AOP framework (Villeneuve and others 2014b; 

2014c), the number of available AOPs has only recently reached a level sufficient to begin 

developing AOP networks. Recognizing different needs and strategies for developing AOP 

networks, we distinguish between network-guided AOP development and AOP network 

derivation based on the AOP-KB. We then propose the use of filters and layers to simplify 

visualization and interpretation of AOP networks, and to tailor them to suit the needs of a 

given research question or application. AOP networks can subsequently be analyzed in a 

variety of ways to extract useful information, including topological analyses, critical path 

identification and characterization of interactions among AOPs within a network. The 

concepts described in this paper, and in its companion paper focused on AOP network 

analytics, are intended to serve as a starting point for further development of the AOP 

network concept and of the AOP-KB to increase its capabilities for managing and analyzing 

AOP networks, but also to catalyze AOP network development and application by the 

different stakeholder communities. Along with other manuscripts produced as a result of the 

April 2017 SETAC Pellston workshop on Advancing the AOP Framework (Lalone and 

others 2017a), we hope to serve the ongoing development of the AOP framework in general 

as a critical concept to support 21st century approaches to toxicological research and 

regulation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Graphical representation of the AOP network derivation – refinement – analysis workflow. A 

primary AOP network is constructed by querying the AOP knowledgebase (AOP-KB). 

Filters are then applied to derive a filtered network containing AOPs of interest for a given 

application or research question. Layers can be added in a next step to add data relevant to 

the application. Finally, the AOP network can be analyzed to produce metrics related to the 

topology and other properties of the network.
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Figure 2. 
Examples of AOP network analysis concepts and approaches. (A) Network topology 

analysis can reveal converging, diverging, or mixed patterns. A mixed pattern can take the 

shape of a bow tie motif. (B) Two different examples of network metrics calculated for the 

same hypothetical AOP network. The degree of a node (key event, KE) in the network is 

equal to the number of edges (key event relationships, KERs) connecting the node to the 

network and is one way of expressing how connected that node is to the network. The path 

occurrence is the number of times a node (KE) occurs in a path connecting a molecular 

initiation event (MIE) to an adverse outcome (AO) after evaluating all possible paths 

between the MIEs and AOs of the network. The path occurrence may be an indication of the 

relative importance of a node within the overall network.
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Figure 3. 
AOP network for steatosis. The high level of crosstalk between the different receptors and 

associated signaling pathways complicates the use of existing high-throughput screening 

data as predictors of a steatotic outcome. This challenge was overcome by identifying a 

network topology converging into four key events (i.e., lipogenesis, and fatty acid uptake, 

efflux and oxidation) that were viewed as critical paths leading to steatosis. Assays 

measuring these points of convergence integrate the complex interplay of upstream events 

and translate them into measures that are more directly related to the adverse outcome. FA: 

fatty acid, TAG: triacylglycerol, PI3K: phosphatidylinositol-3-kinase, AKT: protein kinase 

B, PPAR: peroxisome proliferator-activated receptor, LXR: liver X receptor, CAR: 

constitutive androstane receptor, PXR: pregnane X receptor, FXR: farnesoid X receptor, 

RXR: retinoid X receptor.
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Figure 4. 
AOP networks related to disruption of the thyroid axis. (A) Multi-taxon thyroid hormone 

disruption AOP network including mammalian, amphibian and teleost endpoints. The blue 

regions illustrate how a taxonomic applicability layer may be used to add relevant data to the 

primary network representation. The key events highlighted in yellow indicate two major 

points of convergence/divergence in the network, resembling the “knot” of a bow tie motif. 

(B) Filtered thyroid AOP network only containing key events that are relevant to fish. The 

dashed brown area illustrates how additional filtering might be used to further refine the 

network, e.g. to only include key events that are relevant to specific life stages. The blue area 

illustrates the use of a layer to indicate the presence of a feedback loop acting on an AOP in 

the network, and the interaction between the feedback loop and one of the molecular 
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initiating events in the network. IYD: iodotyrosine deiodinase, NIS: sodium-iodide 

symporter, TPO: thyroperoxidase, DIO: iodothyronine deiodinase, TH: thyroid hormone, 

T4: thyroxine, T3: triiodothyronine, TRH: thyrotropin-releasing hormone, TSH: thyroid 

stimulating hormone, thyrotropin, SB: swim bladder. Red negative sign: inhibition 

processes. Red arrow: DIO inhibition decreases conversion of T4 into T3, thereby inhibiting 

the feedback inhibition of T3 on TRH and TSH synthesis.
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Box 1

Coming to terms with AOP networks

AOP network An assembly of two or more AOPs that share one or more KEs.

AOP network development Broad term referring to the description or development of AOP networks, irrespective of the strategy 
employed.

 Network-guided AOP development AOP network development strategy involving the development of at least two individual AOPs 
containing one or more intentionally shared KEs.

 AOP network derivation AOP network development by manually or programmatically extracting AOPs relevant for a given 
application from the AOP-Wiki.

AOP network analytics Broad term referring to the analysis of AOP networks to reveal, identify or investigate specific network 
properties, such as topological features, critical paths, or interactions between AOPs.

AOP network filter AOP network development tool to refine which KEs and KERs from a given AOP network are 
included in downstream applications and analysis based on specified filter criteria.

AOP network layer Graphical AOP network visualization tool to overlay a given AOP network with additional data such as 
feedback loops to facilitate interpretation without overly complicating the underlying framework.

AOP network topology The overall shape and structure of an AOP network, describing the way in which the constituent parts 
of the network (i.e. KEs and KERs) are interrelated or arranged.

 Convergent topology Topology in which KEs from two or more AOPs are directed towards a common KE or AO, 
representing a range of possible upstream causes.

 Divergent topology Topology in which two or more KERs branch off from a single MIE or KE, representing a range of 
possible downstream outcomes.

 Mixed topology Topology showing local divergent and convergent regions within the overall network, possibly 
featuring specific motifs such as bow tie motifs which could represent important points of biological 
integration.

Critical path The path through an AOP network considered most significant from an investigational, biological or 
regulatory standpoint. A critical path does not necessarily correspond to a single AOP described in the 
AOP-KB.

Interaction between AOPs One AOP affecting another AOP in such a way that it modulates the AO compared to the outcome that 
would be observed had the interaction not taken place.
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