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Abstract

We introduce an iterative normalization and clustering method for single-cell gene expression 

data. The emerging technology of single-cell RNA-seq gives access to gene expression 

measurements for thousands of cells, allowing discovery and characterization of cell types. 

However, the data is confounded by technical variation emanating from experimental errors and 

cell type-specific biases. Current approaches perform a global normalization prior to analyzing 

biological signals, which does not resolve missing data or variation dependent on latent cell types. 

Our model is formulated as a hierarchical Bayesian mixture model with cell-specific scalings that 

aid the iterative normalization and clustering of cells, teasing apart technical variation from 

biological signals. We demonstrate that this approach is superior to global normalization followed 

by clustering. We show identifiability and weak convergence guarantees of our method and present 

a scalable Gibbs inference algorithm. This method improves cluster inference in both synthetic 

and real single-cell data compared with previous methods, and allows easy interpretation and 

recovery of the underlying structure and cell types.

1. Introduction

Single-cell RNA-seq (scRNA-seq) is a recent breakthrough technology that measures gene 

expression at the resolution of individual cells (Hashimshony et al., 2012; Jaitin et al., 2014; 

Shalek et al., 2013) presenting exciting opportunities to study heterogeneity of expression 

and characterize unknown cell types. This contrasts traditional bulk gene expression data 

where the gene expression is measured by an average readout across a bulk of cells.

Analyzing scRNA-seq measurements involves many challenges, including the fact that the 

data is only one sample set from the transcriptome (the full range of mRNAs representing 

gene expression) with high chances of missing low-expression genes termed as dropouts1, 

biases in cell sampling, significant differences in total number of mRNA molecules, as well 

as variation in library size, defined as sum of amplified mRNA molecules per cell 

(Kharchenko et al., 2014). These cell type-specific biases can not be resolved with common 

normalization techniques designed for bulk RNA-seq data. Global normalization by median 

*These authors contributed equally.
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library size (Oshlack et al., 2010) or through spike-ins2 (Vallejos & Richardson, 2015) 

would not resolve dropouts, and can lead to spurious differential expression or removal of 

biological stochasticity specific to each cell type, both of which induce improper clustering 

and characterization of latent cell types. Thus, normalization prior to clustering fails to 

consider cell type dependent technical variation, and the cell types are not known a priori, 
hence the normalization and clustering become a chicken- and-egg problem.

To address this problem, we model biological and technical variation in parallel, which we 

refer to as BISCUIT (Bayesian Inference for Single-cell ClUstering and ImpuTing). This is 

done through incorporating parameters denoting technical variation into a Hierarchical 

Dirichlet Process mixture model (HDPMM). This allows inference of clusters of cells based 

on similar gene expression and identifies technical variation per cell. Furthermore, this 

model can be leveraged to impute dropouts and normalize data based on cells with similar 

co-expression patterns. This simultaneous recovery of clusters and associated technical 

variations is a step-up from previous methods that infer the variations in a decoupled 

manner.

Although this model is motivated by challenges in scRNA-seq data, BISCUIT could also be 

applied to other domains where clusters are subject to different variation. One example is in 

stock markets where stock prices associated with certain time periods can fluctuate much 

more than calmer periods (Lamoureux & Lastrapes, 1990). Investing in a highly unstable 

period leads to potential monetary loss and thus clustering periods of high and low price 

fluctuations will help to better forecast stock prices and aid investments. In these cases, 

approaches that do not consider heteroscedasticity can result in spurious clustering due to 

erroneous distributional assumptions.

In the next section we highlight the importance of addressing this problem in the single-cell 

domain and motivate the structure of our model based on observations. The model is 

elaborated in Section 3 with theoretical guarantees in Section 4. In Section 5, we present the 

scalable Gibbs inference algorithm. Results are demonstrated in Section 6 followed by 

concluding remarks in Section 7.

2. Preliminaries of single-cell data and biological motivation

Akin to the remarkable efforts in the development of DNA sequencing methods that built 

maps of genomes, recent advances in scRNA-sequencing now give the opportunity for 

building an atlas of cells through characterizing mixtures of previously unknown cell types 

and functions in tissues (Di Palma & Bodenmiller, 2015; Navin, 2014; Junker & van 

Oudenaarden, 2014; Gawad et al., 2014; Paul et al., 2015).

However, to characterize these cell types, clustering methods applied to scRNA-seq data 

commonly perform a single global normalization that is invariant to cell types, leading to the 

undesired consequence of grouping cells due to technical artifacts rather than true biology. 

2Artificially-introduced genes to correct for cell-specific variations.
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Currently, there is a dearth of robust clustering algorithms that distinguish technical variation 

from biological signal in scRNA-seq data.

A number of characteristics of this data confound clustering: 1. Typical scRNA-seq datasets 

involve a significant number of dropouts in low expression genes, which should ideally be 

imputed for downstream analysis. 2. Multiple rounds of exponential amplification needed to 

generate adequate library for sequencing can have different effects on different latent cell 

types and cause a heavy-tail distribution of library size, suggesting over-dispersed data 

(Figure 1). 3. The data are also prone to high levels of technical variation due to differences 

in machine, enzyme activity, lysis efficiency or experimental protocol. Factoring in and 

correcting for this variation are some of the key challenges in analyzing scRNA-seq data 

(Brennecke et al., 2013; Stegle; Kharchenko et al., 2014). BISCUIT is the first method to 

simultaneously correct these technical artifacts (without needing spike-in genes) and infer 

clusters of cells based on gene co-expression patterns. We demonstrate that such inference is 

superior to first normalizing and then clustering in a decoupled manner.

Notations

We begin with a single-cell expression matrix Xd×n with n single-cell observations {x1, x2, 

…, xn} where each observation xj ∈ ℝd corresponds to·d·genes (as features). Each entry xij 

contains the log of counts of mRNA molecules per gene i from cell j plus one (or a pseudo-

count), which represents the expression of gene i in cell j. X is typically extremely sparse. 

Zeros may represent gene dropouts or true lack of expression. The log library size per cell j, 

given as ∑i = 1
d xi j, is highly variable (Figure 1). In an ideal setting with no technical 

variation, the library size for all cells would be roughly the same. Thus it is imperative to 

denoise the data by correcting for these technical variations, for downstream analysis.

Motivation for cell-specific scalings

To analyze the effects of technical variation, we studied an example single-cell dataset 

containing 3005 cells (Zeisel et al., 2015). We chose 150 cells from a window with high 

library size (wh in Figure 1) and 150 cells from another window with low library size (wl). 

The means and variances of every gene i across cells in the high library size window is given 

by μh
i = 𝔼 j ∈ wh

xi j  and σh
2 i = Var j ∈ wh

xi j  and similarly across the low library size as 

μl
i = 𝔼 j ∈ wl

xi j  and σl
2 i = Var j ∈ wl

xi j . Figure 2 (top) indicates a correlation structure 

between μh and μl and also between σh
2 and σl

2. If we select a particular known cluster of 

cells, e.g. interneuronal cells in each window, and condition μs and σ2s on this cluster, we 

see a pronounced linear relationship especially between means (Figure 2, bottom) 

suggesting linear scaling of moments of expression of all genes per cell with the same factor. 

Hence, for cells in wh we define α: μh
i /μl

i  and β: = σh
2 i /σl

2 i  for all i, which can be related 

to amplification rate of each cell (cells in the same window have more or less the same 

amplification). Since a clear dependence structure is not discernible between α, β (Figure 

S1), this encouraged modeling them as separate parameters for cell-specific moment-scaling.
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2.1. Related work

There have been previous attempts to separate biological variability from technical variation 

in single-cell expression data. Kharchenko et al. (2014) assumes gene counts per cell to be 

generated from a mixture of zero-inflated Poisson for dropouts and a negative-binomial for 

detected and amplified genes. This model neither considers cell-type-dependent variation 

nor infers clusters. Jaitin et al. (2014) normalizes the data based on a total count threshold 

per cell and down-samples cells with counts greater than the threshold whilst removing cells 

with lesser counts. The data is modeled as a mixture of multinomials with an EM-like 

inference. Drawbacks here are discarding majority of data with down-sampling/filtering, cell 

type-independent correction and EM-related local optima issues.

Similarly, Brennecke et al. (2013) and Buettner et al. (2015) resort to an initial weighted 

mean normalization based on each cell’s library size (total counts). While this normalization 

does not introduce significant noise in bulk sequencing techniques (Anders & Huber, 2010), 

it is detrimental to heterogeneous and sparse single-cell data. Cells with small library size 

have many zero entries (dropouts); a strong bias that remains after library-size scaling.

Vallejos & Richardson (2015) (BASiCS) uses a Bayesian Poisson formulation for 

identifying technical variation in single cells but only in the presence of spike-in genes. 

Using spike-ins is undesirable since a) cell-specific variations such as lysis efficiency accrue 

before introducing spike-ins and cannot be corrected with spike-ins, limiting their 

normalizing potential, b) introducing spike-ins is not cost-effective and c) many recent 

promising technologies (Klein et al., 2015; Macosko et al., 2015) that enable substantial 

scale-up in cell number, can not use spike-ins.

Normalization prior to clustering expects all cells to express a similar number of total 

transcripts, which is not a reasonable assumption for most single-cell datasets created today 

involving complex tissues containing multiple cell types. Prior normalizing also eliminates 

the stochastic nature of the error-prone measurements and further removes true biological 

heterogeneity within cell clusters.

2.2. Contributions of this work

This paper presents some of the challenges in analyzing data in the emerging single-cell 

domain. While problems of bulk gene expression analysis have been extensively studied, 

computational techniques for scRNA-seq still need to be developed. BISCUIT is the first 

fully Bayesian model for clustering single-cell expression data given both biological and 

technical variation, without needing spike-ins. We simultaneously learn the unknown 

number of heterogeneous clusters via the DPMM and infer the technical-variation 

parameters which allows imputing dropouts. Our results confirm that this approach shows 

significant improvement over sequentially performing normalization and clustering and over 

other clustering methods that do not correct for such technical variations. The usage of 

conjugate priors and hyperpriors allows for elegant Gibbs sampling from analytical posterior 

distributions and does not involve local optima problems. The model runs in O(n) time. If 

the input data is generated from heavy-tailed distributions, BISCUIT is relatively robust to 

such model mismatches. This is a vital improvement over methods like PAGODA (Fan et al., 

Prabhakaran et al. Page 4

JMLR Workshop Conf Proc. Author manuscript; available in PMC 2018 June 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2016) and Kharchenko et al. (2014) that strongly rely on a negative-binomial input. We infer 

interpretable covariances between genes and use the inferred cell-specific parameters to 

impute and normalize data.

3. Single-cell Hierarchical Dirichlet Process Mixture Model (BISCUIT)

To account for both biological variability and technical variation, we devise BISCUIT that 

allows clustering of cells based on similar gene expression after correcting technical 

variation. BISCUIT extends the conditionally-conjugate DPMM model described in Görür 

& Rasmussen (2010).

The vector of gene expression, xj, defined as log of counts per cell j is assumed to follow a 

Gaussian distribution and is modeled as an i.i.d. sample from BISCUIT. We verified the 

validity of the Gaussian assumption for the log of counts of highly-expressed genes via 

Lilliefors test (Lilliefors, 1967) on several datasets including Klein et al. (2015), Zeisel et al. 

(2015) and Macosko et al. (2015). Thus, if the dropouts are imputed, the distribution of each 

gene per cell type reasonably follows a Gaussian. We also perform model robustness 

experiments in Section 6 on both continuous (Student’s t) and discrete (negative binomial) 

distributions. The log of counts drawn from negative binomial, which is commonly used for 

modeling gene expression data, can be approximated by a Gaussian (Central limit) which 

then allows posterior conjugacy.

The likelihood of xj can be written as x j 𝒩 α jμk, β j∑k  where μk and Σk are the mean and 

covariance respectively of the kth mixture component, and αj, βj are cell-dependent scaling 

factors. A graphical summary of our approach is illustrated in Figure 3. The corresponding 

plate model for the stochastic data generation in BISCUIT is given in Figure 4.

A computational challenge in implementing the DPMM is in handling the infinite mixture 

(Ishwaran & James, 2001) so we use the truncated DP instead (Blei & Jordan, 2004; Ohlssen 

et al., 2007).

For the Bayesian model setting, we assign conjugate prior distributions to the parameters, 

namely a symmetric Dirichlet prior of the order K over π, a conjugate-family prior over each 

μk as Normal and for Σk as Wishart3, and a Normal for αj and Inverse-gamma for βj. We 

chose non-informative priors over α and β based on empirical observations in library size 

variation in real datasets (refer Figure 2). An alternative prior construction would be based 

on the hierarchical Empirical Bayes method (Kucukelbir & Blei). To complete the 

hierarchical Bayesian specification, we place conjugate hyperpriors over these 

hyperparameters similar to the conditionally-conjugate model of Görür & Rasmussen 

(2010).

In the ideal case with no technical variation, we would have observed yj ∼ N (μk, Σk) and 

thus we can use the learned model parameters to correct variations in observed xjs and 

transform to yjs as explained in Section 6.3.

3Wishart distribution notation as in Dıaz-Garcıa et al. (1997)
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Entire model specification

x j
1, …, d z j = kind𝒩 α jμk, β j∑k

y j 𝒩 μk, ∑k

μk 𝒩 μ′, ∑′ , ∑k
−1 Wish H′−1, σ′

μ′ 𝒩 μ″, ∑″ , ∑′−1 Wish d, 1
d∑″

H′ Wish d, 1
d ∑″ , σ′ invGamma 1, 1

d − 1 + d

z j πiidMult z j π , π φ, K Dir π φ
K , ⋯, φ

K

φ−1 Gamma 1, 1
α j 𝒩 ν, δ2 , β j InVGamma ω, θ

(1)

where j = (1, ⋯, n), μ″ is the empirical mean and Σ″ is the empirical covariance.

4. Theory

4.1. Model Identifiability

As we intend to learn interpretable and consistent structures (rather than building a solely 

predictive model), we need to insure model identifiability. Specifically, we need to set 

constraints on parameters αj, βj, μk such that the parameter estimates are valid.

Lemma 1—A finite mixture of multivariate Gaussian distributions f(X|mk, Sk) with means 

mk and covariance Sk for component k, is identifiable with permutations in components, i.e. 

∑k = 1
K πk f X mk, Sk = ∑l = 1

K★
πl

★ f X ml
★, Sl

★  implies that K = K★ and mixtures are 

equivalent with permutations in components.

Proof is in the Supplementary.

Theorem 2—Defining Θ := {∀j, k : (αjμk, βjΣk)} ∪ {π}, suppose that Θ = Θ★ and for the 

prior distributions have ∀ j, k: f α j, μk, β j, ∑k = f α j
★, μk

★, β j
★, ∑k

★  the following conditions 

hold, we then have Φ = Φ★ where Φ := {∀j, k : (αjμk, βjΣk)} ∪ {π}.

∀ j:μk ≥ μ′ + diag ∑′ α j − ν /δ, β j ≤ θ
ω + 1

Proof is presented in the Supplementary. The above theorem provides an identifiability 

guarantee and specifies conditions needed to be satisfied by the prior. These conditions are 

considered in the empirical Bayesian approach.
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4.2. Weak Posterior Consistency

Let f 0 x : = 𝒩 αμ, β∑ ∈ ℝd be the true Gaussian density of x with identifiability constraints 

imposed as in Theorem 2. Let ℱ be the space of all density functions in ℝd w.r.t the 

Lebesque measure. For a given radius ε, the Kullback-Leibler (KL) neighborhood .

Theorem 3—If f0(x) is compactly supported and the DP base distribution has support 

Rd × R+
d × d, then for weak consistency we show that f0(x) ∈ KL(Π) for every ε > 0.

Proof follows closely to Wu & Ghosal (2010) and is provided in the Supplementary.

5. Inference - Gibbs sampling

Inference is obtained via Gibbs sampling using the Chinese restaurant process (CRP). The 

conditional posterior distributions for model parameters {π, μ, Σ, α, β, z, μ′, Σ′, H′} based 

on CRP have analytical forms4. The conditional posterior for the latent class assignment 

variable, zj is: f(zj = k|z−j, φ, μ, Σ) = CRP (zj|φ)f(xj|μ, Σ, α, β) which is 
nk − 1

n − 1 + φ𝒩 x j α jμk, β j∑k  for an existing k and φ/ζ
n − 1 + φ𝒩 x j α jμζ, β j∑ζ  for an auxiliary 

class ζ where μζ and Σζ are sampled from their base distributions; μζ 𝒩 μ′, ∑′  and 

∑ζ
−1 Wish d, 1

d∑″  (Görür & Rasmussen, 2010; Neal, 2000).

For the component-specific mean and covariance; μk, Σk:

f μk · 𝒩 μk
p, ∑k

p , f ∑k
−1 · Wish H, σ

μk
p = ∑k

p ∑′−1μ′ + ∑k
−1 ∑

j
x j/β j

∑k
p = ∑′−1 + ∑k

−1∑
j

α j
2/β j

−1

H = H′ + Sx
−1, σ = σ′ + nk

(2)

where nk is the number of elements in cluster k and Sx = Σj((xj − αjμk)(xj − αjμk)T)/βj). For 

the cell-specific scaling parameters, αj and βj:

4Detailed derivations are provided in Supplementary C.
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f α j · 𝒩 νp, δp2

νp = δp2
νx/δx2

ν/δ2 , δp2
= 1/δx2

+ 1/δ2 −1

f β j · InVGamma ωp, θp , ωp = ω + d /2

θp = θ + 1
2 x j − α jμk

T∑k
−1 x j − α jμk

where A = (βjΣk)−1/2, νx = δx2∑q Ax j
q Aμk

q , δx2
= ∑q Aμk

q −1
, and (·)q denotes the 

q-th element. For the hyperparameters μ′, Σ′ and H′, the derivations are provided in the 

Supplementary.

Parallel implementation

We initialize the algorithm as per Equation 1. The Gibbs inference is detailed in Algorithm 1 

in the Supplementary. We sample cluster-component parameters μk, Σk in parallel across ks 

and sample assignments zj in parallel across cells. One Gibbs sweep for BISCUIT takes 

O(n) time. The proof is presented in the Supplementary.

6. Results

6.1. Synthetic Data

Sample Generation—For the simulations, we implemented a data generator that mimics 

the assumed generative model for X as shown in Figure 3 (bottom panel). Using d = 50 and 

n = 100, we first construct a Gaussian X50 × 100
temp  having a K = 3 block covariance. Using this, 

the hyperparameters, hyperpriors, component parameters and cell-specific scaling 

parameters are sampled based on Equation 1. Next 100 samples are randomly drawn from 

𝒩 αμ, β∑  and stacked to form X50×100.

Comparison experiments—We compared the performance of BISCUIT with a number 

of alternative methods including the naive HDPMM (Görür & Rasmussen, 2010) along with 

two normalization methods typically used for single-cell data. a) a Generalized Linear 

Model-based normalization (GLMnorm) where counts are regressed against the library size 

to get a residual count matrix and b) a Mean-normalized method (MeanNorm) where each 

cell is scaled by the average library size. Both the residual and mean normalized matrices are 

log-transformed and used as input to the naive HDPMM. Additionally we compare with 

non-MCMC methods such as Spectral Clustering (Ng et al., 2002) and Phenograph (PG) 

(Levine et al., 2015).

We assess the quality of inferred clusters using confusion matrices as described in 

Supplementary E. The confusion matrices for the different MCMC methods are shown in 

Figure 5. Figure 6 shows boxplots of F-scores obtained in 15 experiments with randomly 

generated X for the different methods with pairwise differences in Figure S2. The better 

performance of BISCUIT is due to its ability to account for cell-specific scalings.
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Model mismatch—In order to test the robustness under model mismatches, we substituted 

the Gaussian in our data generator with a non-central Student’s t and a negative-binomial to 

simulate X. These produce a right-skewed fat tail distribution as shown in Figure S3. The 

negative-binomial distribution is a valid precept used to model single-cell data (Kharchenko 

et al., 2014). For negative-binomial, the resulting F-scores are in Figure 7 and pairwise 

comparisons in Figure S5. The F-score plots for Student’s t is given in Figure S6. These 

figures show BISCUIT is relatively robust under such model mismatches.

6.2. Single-cell Gene Expression Data

We evaluated BISCUIT’s performance on real world data using mouse cortex cells from 

Zeisel et al. (2015) that include ground truth labels for 7 known cell types. For 

computational speed we chose d = 558 genes with largest standard deviation across n = 3005 

cells. Figure S7 shows the confusion matrix for inferred classes and Figure 8 shows the 

mode of inferred classes across 500 Gibbs sweeps post burn-in of 1500 sweeps compared to 

their actual cell type labels. Cells are visualized using t-SNE dimensionality reduction (Van 

der Maaten & Hinton, 2008), as this was shown to be an effective visualization that captures 

the cell type structure in single-cell data (Amir et al., 2013).

BISCUIT outperforms competing methods including Phenograph (PG), HDPMM, Spectral 

Clustering (Spec-Clust) and DBscan (Satija et al., 2015) (see Figure 8). We also compared 

performance to first normalizing with BASiCS (Vallejos & Richardson, 2015) and 

subsequently clustering using PG, SpecClust, HDPMM and found this to be inferior to 

clustering without normalization. Refer to Table S1 for F-scores of BISCUIT versus 

competing methods.

BISCUIT includes two features which improve both the clustering and normalization. First, 

cells are clustered based on similarity in expression (modeled by cluster means), as well as 

similar co-expression (covariance) structure between genes. Second, by inferring technical 

variation parameters (α, β) that normalize cells, we can improve clustering of cells with very 

different library size but similar co-expressed genes. Figure 9 shows α capturing variation in 

library size which drives clustering with this normalization. Figure S8 shows the mode of 

inferred covariances Σk for 4 example clusters after performing hierarchical clustering on 

each matrix, which show distinct patterns of gene co-expressions specific to each cluster. 

Interpretations and gene annotation enrichment of these structures give insights to gene 

regulatory relationships and pathways particular to each cell type, which would be followed 

up in future work.

6.3. Data Normalization and Imputing

BISCUIT’s key advantage is using a model driven by covariance structures for normalizing 

and imputing data. For a realistic evaluation, we simulated dropouts from a real world 

dataset. The Zeisel et al. (2015) dataset was ideal due to its deep coverage (2 million reads 

per cell compared to the typical 10K-200K reads per cell). To minimize the degree of 

dropouts and library size variation in the original dataset, we selected a narrow window of m 
= 500 cells (Figure 1) from the tail of high coverage cells. Then to simulate dropouts, we 

down-sample counts for each cell j with a different rate rj ∼ Unif(0.1, 1) to generate a set of 
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observations X = {x1, …, xm}, with known down-sampling (DS) rates. The DS is 

specifically done on the counts (prior to taking log) to simulate library size variation.

Figure 10 shows we successfully infer the normalization parameter α to positively correlate 

with the degree of DS rates. Also, in lower DS rates with most of the data discarded, 

simulated data is noisier and intuitively, larger values are inferred for β to scale and correct 

the variance. We also evaluated the performance in inferring clusters in this more 

challenging dataset. Figure 11 shows good performance in clustering. To further explore the 

performance versus percentage of data lost, we estimated F-measures using a sliding 

window with length 0.05 and overlaps of 0.01 on DS rates. We averaged the performance 

across all Gibbs samples. Repeating this experiment on 10 different down-sampled datasets, 

the average performance is depicted in Figure 11, showing almost no impact when > 50% of 

counts are retained and decent performance in typical scenarios where 70 – 90% of 

transcripts are lost.

To evaluate the performance of imputing dropouts and normalization, we use the inferred 

model parameters to impute corrected data. Specifically, we transform simulated data 

x j 𝒩 α jμk, β j∑k  to imputed data y j 𝒩 μk, ∑k . Assuming a linear transformation yj = Axj + 

b, we have μk = αAμk + b and Σk = βAΣkAT. Solving these equations for A and b, we have 

A = V Λ1/2∑k
−1/2 and b = (I − αA)μk given the SVD decomposition 1

β ∑k = V ΛVT. Using this 

transformation, we estimated imputed values yjs from down-sampled xjs, given the inferred 

parameters μk, Σk, z, α, β. Figure 12 shows the density plot for imputed values vs original yj 

values. We compared the performance in recovering values to the common approach of 

normalization by library size (Macosko et al., 2015; Brennecke et al., 2013; Buettner et al., 

2015). In this approach, the values of each cell xj are divided by library size and multiplied 

by mean library size across cells. Figure 12 shows the superiority of our method in 

recovering dropouts. Counts which are down-sampled to zero cannot be recovered with 

normalization (abundance of zero values in normalized X on right panel), while our method 

can successfully recover them (left panel). The proportion of dropouts in this down-sampled 

dataset was 21% and due to their overlaps at zero, they are not emphasized. Addressing this 

problem is very crucial in real datasets which could contain up to 50% dropouts.

7. Conclusion

Single-cell RNA-seq produces vast amounts of noisy, heterogeneous sparse data and 

therefore requires development of appropriate computational techniques. In this paper, we 

address a number of these problems and present our model, BISCUIT, that concurrently 

clusters cells and learns co-expression structures specific to each cluster while inferring 

parameters capturing technical variation (e.g. library size variation). Using these inferred 

parameters, we are able to normalize single-cell data and impute dropouts. We show 

accurate clustering on known cell types and improvement over previous approaches. In 

future work, we will apply BISCUIT to understand tumor heterogeneity and other primary 

tissue to characterize and interpret novel cell types. This method could also be extended to 

other application domains where variation among clusters exhibit heteroscedasticity.
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Figure 1. 
Distribution of log library size in an example scRNA-seq dataset (Zeisel et al., 2015). The 

heavy tail is indicative of over-dispersion in data. Two windows of cells with low and high 

library size are selected for motivating cell-specific scaling in Section 2.
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Figure 2. 
Top: Means and variances per gene across a window of cells with high library size vs a 

window of cells with low library size (each data point is one gene). Bottom: Same for a 

particular cluster (cell type): interneurons.
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Figure 3. 
Toy example showing stochastic data generation. Top: Ideal case without technical variation: 

observations per cell are drawn from a DPMM (a). An example of 10 cells in (b) with block 

covariance (c). Bottom: When cell-specific variations are present, observations are drawn 

from a DPMM (a) with scaled cluster-specific moments (b), where block structures can be 

partially lost (c).
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Figure 4. 
Plate model for BISCUIT. xj is the observed gene expression of cell j, white circles denote 

latent variables of interest, rectangles indicate replications with the replicative factor at the 

bottom right corner, diamonds are hyperparameters and double diamonds are hyperpriors 

calculated empirically.
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Figure 5. 
Left to right: Confusion matrices showing true labels and those from MCMC-based 

methods.
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Figure 6. 
Boxplots of F-scores obtained in 15 experiments with randomly-generated X for various 

methods.
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Figure 7. 
Boxplots of F-scores obtained in 15 experiments with randomly-generated X from a negative 

binomial distribution.
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Figure 8. 
Actual cell types (top left) compared to mode of inferred classes using BISCUIT (top 
center) versus other comparative approaches for 3005 cells in the (Zeisel et al., 2015) 

dataset. Cells are projected to 2D using t-SNE (Van der Maaten & Hinton, 2008).
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Figure 9. 
Inferred αj vs library size per cell j. Errorbars show 1 s.d. across Gibbs sweeps.
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Figure 10. 
Inferred αj, βj vs log of down-sampling rates rj per cell; shaded areas show 70% confidence 

intervals.
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Figure 11. 
Mode of inferred classes for an imputed dataset generated by down-sampling (DS) 500 cells 

from a real dataset (middle), compared to actual cell types (left). F-measure vs center of a 

sliding window on DS rates (r) for 10 different down-sampled datasets got with different 

rates, averaged across Gibbs sweeps; shaded area shows 70% confidence interval.
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Figure 12. 
Density plot of imputed values with BISCUIT (left) and normalization to library size (right) 

on a down-sampled dataset vs original values prior to down-sampling.
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