Skip to main content
. 2018 May 29;26(Suppl 1):87–101. doi: 10.3233/THC-174568

Table 6.

Optimization parameters for GA-MIV-BP neural network SBP and DBP models for different subjects

Subjects GA-MIV-BP SBP models GA-MIV-BP DBP models
a s RMSE b d RMSE
Test_1 0.9801 3.3568 3.1190 0.8810 10.0000 2.6199
Test_2 0.9549 10.0000 5.0780 0.9386 6.4728 0.1853
Test_3 0.8946 7.1138 1.8702 0.9410 5.0112 0.3698
Test_4 0.8956 10.0000 1.5383 0.8527 8.9480 1.6903
Test_5 0.9057 10.0000 1.1542 0.8611 10.0000 0.5986
Test_6 1.0000 -0.0277 1.8653 0.8796 8.1677 0.1627
Test_7 0.8975 10.0000 0.8816 0.8217 10.0000 0.7640
Test_8 0.9569 2.8530 0.5290 0.8289 7.1112 0.6577
Test_9 0.9648 3.8192 1.5532 1.0000 0.5465 2.1066
Test_10 0.9331 5.6702 3.5549 0.8397 10.0000 3.8039