Skip to main content
. 2018 May 29;26(Suppl 1):87–101. doi: 10.3233/THC-174568

Table 7.

RMSE and MRE of the SBP and DBP prediction results from different models

Subjects GA-MIV-BP models Regression models ANN model based on PWTT
RMSE_S MRE_S RMSE_D MRE_D RMSE_S MRE_S RMSE_D MRE_D RMSE_S MRE_S RMSE_D MRE_D
Test_1 3.0420 2.41% 2.9413 3.87% 3.7176 3.08% 4.5969 5.44% 4.7255 3.96% 4.0691 4.93%
Test_2 3.3081 2.61% 1.6757 1.71% 5.4799 3.91% 5.9899 7.65% 5.0957 4.06% 1.7365 1.82%
Test_3 3.4543 2.70% 2.4761 2.96% 8.1623 7.94% 6.8155 9.59% 5.1674 4.38% 5.6901 7.33%
Test_4 2.4662 2.04% 2.6178 3.03% 4.7583 3.91% 5.4297 7.79% 3.2022 3.06% 3.4881 5.03%
Test_5 2.4165 1.79% 2.9055 3.54% 6.4733 5.33% 6.0118 7.73% 6.3368 5.51% 4.8409 6.39%
Test_6 3.0869 2.44% 2.1546 2.27% 6.0896 4.92% 5.3005 6.98% 5.4932 4.41% 5.3543 7.08%
Test_7 4.0977 3.37% 2.8408 3.80% 6.6318 5.80% 6.7844 11.38% 6.5084 5.98% 4.2405 6.06%
Test_8 3.1423 2.68% 2.5924 3.65% 4.2564 3.16% 3.2107 4.68% 5.9482 4.47% 4.1366 5.83%
Test_9 4.5070 3.17% 2.6717 3.53% 5.2784 4.10% 5.2562 6.98% 4.9569 3.82% 5.6944 7.37%
Test_10 2.8102 2.37% 2.7863 4.09% 7.1870 6.95% 7.2949 11.24% 6.4674 5.93% 5.9476 8.01%