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Abstract—PhyloNet was released in 2008 as a software package for representing and analyzing phylogenetic networks. At
the time of its release, the main functionalities in PhyloNet consisted of measures for comparing network topologies and
a single heuristic for reconciling gene trees with a species tree. Since then, PhyloNet has grown significantly. The software
package now includes a wide array of methods for inferring phylogenetic networks from data sets of unlinked loci while
accounting for both reticulation (e.g., hybridization) and incomplete lineage sorting. In particular, PhyloNet now allows
for maximum parsimony, maximum likelihood, and Bayesian inference of phylogenetic networks from gene tree estimates.
Furthermore, Bayesian inference directly from sequence data (sequence alignments or biallelic markers) is implemented.
Maximum parsimony is based on an extension of the “minimizing deep coalescences” criterion to phylogenetic networks,
whereas maximum likelihood and Bayesian inference are based on the multispecies network coalescent. All methods allow
for multiple individuals per species. As computing the likelihood of a phylogenetic network is computationally hard,
PhyloNet allows for evaluation and inference of networks using a pseudolikelihood measure. PhyloNet summarizes the
results of the various analyzes and generates phylogenetic networks in the extended Newick format thatis readily viewable by
existing visualization software. [Bayesian inference; incomplete lineage sorting; maximum likelihood; maximum parsimony;
multispecies network coalescent; phylogenetic networks; reticulation.]

With the increasing availability of whole-genome and
multilocus data sets, an explosion in the development
of methods for species tree inference from such
data ensued. In particular, the multispecies coalescent
(Degnan and Rosenberg 2009) played a central role in
explaining and modeling the phenomenon of gene tree
incongruence due to incomplete lineage sorting (ILS), as
well as in devising computational methods for species
tree inference in the presence of ILS (e.g., Liu 2008; Heled
and Drummond 2010).

Nevertheless, with the increasing recognition that
the evolutionary histories of several groups of closely
related species are reticulate (Mallet et al. 2016), there
is a need for developing methods that infer species
phylogenies while accounting not only for ILS but also
for processes such as hybridization. Such reticulate
species phylogenies are modeled by phylogenetic networks
(Huson and Bryant 2005; Huson et al. 2010; Nakhleh
2010; Morrison 2011). A phylogenetic network extends
the phylogenetic tree model by allowing for horizontal
edges that capture the inheritance of genetic material
through gene flow (Fig. 1a). While the phylogenetic
network captures how the species, or populations, have
evolved, gene trees growing within its branches capture
the evolutionary histories of individual, recombination-
free loci (Fig. 1b). The relationship between phylogenetic
networks and trees is complex in the presence of
ILS (Zhu et al. 2016). Mathematically, the topology of

a phylogenetic network takes the form of a rooted,
directed, acyclic graph. In particular, while gene flow
involves contemporaneous species or populations, past
extinctions or incomplete sampling for taxa sometimes
result in horizontal edges that appear to be “forward
in time” (Fig. 1). It is important to account for such an
event, which is why acyclicity, rather than having truly
horizontal edges, is the only constraint that should be
imposed on rooted directed graphs, in practice, if one is
to model reticulate evolutionary histories.

For inference of phylogenetic networks from
multilocus data sets, the notions of coalescent histories
and the multispecies coalescent were extended to
phylogenetic networks (Yu et al. 2011; Yu et al. 2012).
Based on these new models, the “minimizing deep
coalescence” criterion (Maddison 1997; Than and
Nakhleh 2009) was extended to phylogenetic networks,
which allowed for a maximum parsimony inference of
phylogenetic networks from the gene tree estimates of
unlinked loci (Yu et al. 2013a). Subsequently, maximum
likelihood inference (from gene tree estimates) via
hill-climbing heuristics and Bayesian inference via
RIMCMC were devised (Yu et al. 2014; Wen et al.
2016). As computing the likelihood of a phylogenetic
network formed a major bottleneck in the inference,
speedup techniques for likelihood calculations and
pseudolikelihood of phylogenetic networks were
introduced (Yu et al. 2013b; Yu and Nakhleh 2015b).
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FIGURE 1.

a) A phylogenetic network on five taxa, with
taxon D missing (due to extinction or incomplete sampling), and a
hybridization involving (ancestors of) taxa D and C. Shown within
the branches of the phylogenetic network is a tree of a recombination-
free locus whose evolutionary history includes introgression. b) The
gene tree that would be estimated, barring inference error, on the locus
illustrated in (a). c) An abstract depiction of the phylogenetic network
of (a) given that taxon D is missing.

Finally, to enable direct estimation from sequence data,
new methods were developed for Bayesian inference
from sequence alignments of unlinked loci (Wen and
Nakhleh 2017) as well as biallelic markers of unlinked
loci (Zhu et al. 2018). Here we introduce PhyloNet 3, a
software package for phylogenetic network inference
from multilocus data under the aforementioned models
and criteria. This version is a significant expansion of the
version reported on in Than et al. (2008). Phylogenetic
networks inferred by PhyloNet are represented using an
extended Newick format and can be readily visualized
by Dendroscope (Huson and Scornavacca, 2012).

MODELS AND MAIN INFERENCE FEATURES

Simple Counts of Extra Lineages: Maximum Parsimony

Minimizing the number of deep coalescences, or
MDC, is a criterion that was proposed originally
by Maddison (1997) for species tree inference and
later implemented and tested in both heuristic form
(Maddison and Knowles, 2006) and exact algorithms
(Than and Nakhleh, 2009). When a gene tree is reconciled
with a species tree, the number of extra lineages on a
species tree branch that arises from this reconciliation is
the difference between the numbers of lineages entering
and existing that branch (when traversing the tree from
the leaves toward the root). The total number of extra
lineages is the sum of this quantity over all branches.
Minimizing deep coalescences seeks the species tree
that results in the smallest possible number of extra
lineages over all reconciliations of all gene trees in the
input. This criterion makes use of only the gene tree
topologies.

Yu et al. (2013a) extended the MDC criterion
to phylogenetic networks. The InferNetwork MP
command infers a species network with a specified
number of reticulation nodes under the extended MDC
criterion. Inference under this criterion is done via a local
search heuristic, and the phylogenetic networks returned
by the program include, in addition to the topologies, the
inheritance probability estimates, as well as the number
of extra lineages on each branch of the network, and
the total number of extra lineages of the phylogenetic
network. For this program, only gene tree topologies

are used as input (i.e., gene tree branch lengths are
irrelevant), and the number of individuals per species
could vary across loci. Furthermore, to account for
uncertainty in the input gene tree estimates, the program
allows for a set of gene trees per locus that could be
obtained from a bootstrap analysis or a posterior sample
on the sequences of the respective locus. For inference
under the MDC criterion, the maximum number of
reticulation events in the phylogenetic network must be
specified a priori. Full details of the MDC criterion for
phylogenetic networks and the inference heuristics can
be found in Yu et al. (2013a).

Inference based on the MDC criterion does not allow
for estimating branch lengths or any other associated
parameters of the inferred phylogenetic network beyond
the topology and inheritance probabilities.

When the Species Phylogeny’s Branches Are Too Short:
Maximum Likelihood

One limitation of inference based on the MDC
criterion is the inability to estimate parameter values
beyond the network’s topology. Another limitation is the
fact that such inference is not statistically consistent for
species trees (Than and Rosenberg, 2011), which implies
problems in the case of phylogenetic network inference
based on the criterion as well (more on the notion of
“statistical consistency” in the case of networks below).
The latter problem arises especially when the species
phylogeny has very short branches. To address these
two limitations, Yu et al. (2014) implemented maximum
likelihood estimation of phylogenetic networks based
on the multispecies network coalescent (Yu et al.,
2012). The InferNetwork ML command infers a
maximum likelihood species network(s) along with its
branch lengths (in coalescent units) and inheritance
probabilities. During the search, the branch lengths
and inheritance probabilities of a proposed species
network can be either sampled or optimized (the former
is much faster and has been shown to perform very
well). The input consists of either rooted gene tree
topologies alone, or rooted gene trees with branch
lengths (in coalescent units). If the gene tree branch
lengths are to be used, the gene trees must be
ultrametric. As in the case of maximum parsimony
inference, local search heuristics are used to obtain the
maximum likelihood estimates. Furthermore, multiple
individuals per species could be used, and their
numbers could vary across loci. Multiple gene trees
per locus could be used, as above, to account for
uncertainty in the gene tree estimates. The user can
either specify the maximum number of reticulation
events a priori or utilize the cross-validation (the
InferNetwork_ML_CV command) or bootstrap (the
InferNetwork ML_Bootstrap command) to determine
the model complexity. Furthermore, several information
criteria (AIC, BIC, and AICs) are implemented.
Full details of the maximum likelihood inference of
phylogenetic networks and the inference heuristics can
be found in Yu et al. (2014).
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It is important to note that computing the likelihood
of a phylogenetic network is a major computational
bottleneck in all statistical inference methods
implemented in PhyloNet. To ameliorate this problem,
PhyloNet also allows for inference of phylogenetic
networks based on a “pseudolikelihood” measure,
via the InferNetwork MPL command. However, for
this method, the input could consist only of gene tree
topologies (branch lengths are not allowed). Multiple
individuals per species, as well as nonbinary gene trees,
are also allowed. Full details about inference under
pseudolikelihood can be found in Yu and Nakhleh
(2015b).

Penalizing Network Complexity: Bayesian Inference

Discussing statistical inference in general, Attias
(1999) listed three problems with maximum likelihood:
“First, it produces a model that overfits the data
and subsequently have [sic] suboptimal generalization
performance. Second, it cannot be used to learn the
structure of the graph, since more complicated graphs
assign a higher likelihood to the data. Third, it is
computationally tractable only for a small class of
models.” When the model of interest in a phylogenetic
tree, the first two problems are generally not of concern
(barring the complexity of the model of evolution
underlying the inference). Putting aside the problem of
computational tractability, the first two problems listed
by Attias are an Achilles heel for phylogenetic network
inference by maximum likelihood.

Phylogenetic networks can be viewed as mixture
models whose components are distributions defined
by parental trees of the network (Zhu et al., 2016).
Inferring the true model in the case of phylogenetic
networks includes determining, in addition to many
other parameters, the true number of reticulations.
Inference of such a model based on an unpenalized
likelihood can rarely work since, as Attias pointed out,
“more complicated graphs assign a higher likelihood.”
In fact, the notion of statistical consistency, which
has been a staple in the literature on phylogenetic
tree inference, is not even applicable in the case of
maximum (unpenalized) likelihood of phylogenetic
networks—it is easy to imagine scenarios where adding
more reticulations to the true phylogeny would only
improve the likelihood. Therefore, in analyzing data sets
under the aforementioned likelihood-based inference
methods we recommend experimenting with varying
the maximum allowed number of reticulation events and
inspecting the likelihoods of the models with different
numbers of reticulations.

A more principled way to deal with model complexity
is via Bayesian inference, which allows, among other
things, for regularization via the prior distribution.
The MCMC_GT command performs Bayesian inference
of the posterior distribution of the species network
along with its branch lengths (in coalescent units) and
inheritance probabilities via reversible-jump Markov
chain Monte Carlo (RIMCMC). The input consists of

single or multiple rooted gene tree topologies per locus,
as above, and the number of individuals per species
could vary across loci. Full details of the Bayesian
inference of phylogenetic networks can be found in Wen
et al. (2016).

To handle gene tree uncertainty in a principled
manner, and to allow for inferring the values of various
network-associated parameters, PhyloNet implements
Bayesian inference of phylogenetic networks directly
from sequence data. The MCMC_SEQ command
performs Bayesian inference of the posterior distribution
of the species network along with its divergence
times (in units of expected number of mutations
per site) and population mutation rates (in units of
population mutation per site), inheritance probabilities,
and ultrametric gene trees along with its coalescent
times (in units of expected number of mutations per
site) simultaneously via RIMCMC. The input consists
of sequence alignments of unlinked loci. Multiple
individuals per species could be used, and their
numbers could vary across loci. Full details of the
coestimation method can be found in Wen and Nakhleh
(2017). The MCMC_BiMarkers command, on the other
hand, performs Bayesian inference of the posterior
distribution of the species network along with its
divergence times (in units of expected number of
mutations per site), population mutation rates (in
units of population mutation per site), and inheritance
probabilities via RIMCMC. The input consists of biallelic
markers of unlinked loci, most notably single nucleotide
polymorphisms (SNPs) and amplified fragment length
polymorphisms (AFLP). Also, multiple individuals per
species could be used. This method carries out numerical
integration over all gene trees, which allows it to
completely sidestep the issue of sampling gene trees. Full
details of the computation can be found in Zhu et al.
(2018).

Other Features

In addition to the aforementioned inference methods
and all the functionalities that existed in the old version
of PhyloNet (Than et al., 2008), the software package
includes new features that help with other types of
analyzes.

As trees are a special case of networks, all the
features above allow for species tree inference by simply
setting the number of reticulations allowed during the
analysis to 0. Additionally, PhyloNet implements greedy
consensus, the “democratic vote,” and the GLASS
method of Mossel and Roch (2010).

PhyloNet also includes a method for distance-based
inference of phylogenetic networks (Yu and Nakhleh,
2015a), as well as a Gibbs sampling method for
estimating the parameters of a given phylogenetic
network (Yu et al., 2016).

Last but not least, the SimGTinNetwork and
SimBiMarkersinNetwork simulate gene trees and
biallelic markers, respectively, on a phylogenetic
network. In particular, the former automates the process
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of simulating gene trees in the presence of reticulation
and ILS using the program ms (Hudson, 2002). The latter
command extends the simulator developed in Bryant
et al. (2012).

Computational Requirements and Handling
Large Data Sets

Phylogenetic network inference under all of the
aforementioned criteria is computationally very hard.
Therefore, the inference techniques implemented in
PhyloNet search or walk through the space of
phylogenetic networks while evaluating the employed
criterion (e.g.,, MDC, likelihood, or pseudolikelihood)
on the candidate networks. The phylogenetic network
space is much larger than that of trees on the same
number of taxa. Thus, with the current state-of-
the-art phylogenetic network search techniques, not
much can be done beyond allowing the search or
sampling enough time to converge on a good estimate.
It is important to highlight here that the search
heuristics in PhyloNet do not fix a tree and search for
reticulations to add to it. Instead, they define moves on
phylogenetic networks and walk through the network
space without designating a species tree or backbone
tree.

Evaluating the MDC criterion and the
pseudolikelihood of a given phylogenetic network
is very efficient and can scale to networks with tens
and even hundreds of taxa. However, evaluating
the likelihood of a phylogenetic network is a major
computational bottleneck that is affected not only by
the number of taxa or number of reticulations, but also
by the “configuration” of the reticulations. For example,
computing the likelihood of a phylogenetic network
with three independent reticulations (three cycles in
the undirected underlying graph of the phylogenetic
network do not share any edge) could take significantly
less time than that of a phylogenetic network with
three dependent reticulations (e.g., the same species
is involved in multiple reticulations). Two additional
factors that affect the running time of computing the
likelihood of a given phylogenetic network are the
number of taxa “under” a reticulation node and
the amount of divergences along the paths from the
two hybridizing species to their most recent common
ancestor. Therefore, our current recommendation for
conducting analyzes on large data sets is: If using MDC
or pseudolikelihood, the search should be allotted
enough time to obtain good results; if using likelihood
of Bayesian inference based on the likelihood function,
exploring the data to obtain smaller data sets for
analyzes is necessary. For example, one simple heuristic
to analyze a large data set is to first estimate a species
tree, and then “zoom in” on the data for smaller subtrees
and conduct phylogenetic network analyzes on those.
The rationale here is that (i) the species tree would
provide a good backbone against which to partition
the data into smaller subsets, and (ii) reticulations are
confined to taxa within subtrees.

INPUT AND OUTPUT FORMATS

PhyloNet 3 is a software package in the JAR format
that can be installed and executed on any system with
the Java Platform (Version 7.0 or higher). The command
line in a command prompt is

java -jar PhyloNet X.Y.Z.jar script.nex

where X.Y.Z is the version number (version 3.6.1 is the
most recent release), and script.nex is the input NEXUS
file containing data and the PhyloNet commands to be
executed.

The input data and the commands are listed in
blocks. Each block start with the “BEGIN” keyword and
terminate with the “END;” keyword. Commands in a
PHYLONET block begin with a command identifier and
terminate with a semicolon.

In the example input file below, to estimate the
posterior distribution of the species network and the
gene trees, the input sequence alignments are listed
in the “DATA” block. The starting gene tree for each
locus and the starting network, which is optional, can be
specified in the “TREES” block and the “NETWORKS”
block, respectively. Finally the command MCMC_SEQ
and its parameters are provided for execution in the
“PHYLONET” block. Details about specific parameters
for a given command can be found on the website of
PhyloNet.

#NEXUS

BEGIN DATA;
Dimensions ntax=3 nchar=35;
Format datatype=dna symbols="ACTG" missing="?
gap=-;
Matrix

[locus0O, 15]

A TCGCGCTAACGTCGA

B GCGCACCTACTGCGG

B GCGCACCTACTCCGG

[locusl, 20]

A GAAACGGATCTAAGTGTACG

B CGCTCGGATCTAAGTGTACG

C CGCTCGGATCTAAGTGTACG

; END;

BEGIN TREES;

Tree gt0 = (A:0.119, (B:0.058,C:0.058):0.061) ;
Tree gtl = (A:0.068, (B:0.016,C:0.016) :0.052) ;
END;

BEGIN NETWORKS;

Network net = (((B:0.0)#H1:0.05::0.8, (C:0.002,
#H1:0.002::0.2) :0.048):0.01,A:0.06) ;

END;

BEGIN PHYLONET;
MCMC_SEQ -sgt (gt0,gtl)
END;

-snet netl -sps 0.04;

Gene trees are given in the Newick format, where
the values after the colons are the branch lengths.
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Networks are given in the Rich Newick format which
contains hybridization nodes denoted in “#H1,” “#H2,”
..., “#Hn,” where n is the number of reticulations in the
network. The branch lengths, the population mutation
rates, and the inheritance probabilities are specified after
the first, second, and third colons, respectively. Note that
the units of branch lengths (for both trees and networks)
can either be coalescent units, or the number of expected
mutations per site, depending on the requirement of
PhyloNet command. The population mutation rate is
optional if the branch lengths are in the coalescent units,
or a constant population mutation rate across all the
branches is assumed. The inheritance probabilities are
only relevant for the hybridization nodes.

The InferNetwork MP command returns species
networks and the corresponding extra lineages. The
InferNetwork_ML command and its relatives return
species networks and the corresponding likelihood
values. The total number of returned networks can be
specified via -1 option for both commands. As we stated
above, the user can either specify the maximum number
of reticulation events or utilize the cross-validation,
bootstrap, information criteria to determine the model
complexity when using maximum likelihood approach.

For Bayesian inference, the program outputs the log
posterior probability, likelihood, and prior for every
sample. When the MCMC chain ends, the overall
acceptance rates of the RJMCMC proposals and the
95% credible set of species networks (the smallest set
of all topologies that accounts for 95% of the posterior
probability) are reported. For every topology in the
95% credible set, the proportion of the topology being
sampled, the maximum posterior value (MAP) and the
corresponding MAP topology, the average posterior
value and the averaged (branch lengths, population
mutation rates, and inheritance probabilities) network
are given. The model complexity is controlled mainly by
the Poisson prior on the number of reticulations (see Wen
etal. 2016 for details). The Poisson distribution parameter
can be tuned via “-pp” option.

CONCLUSION

PhyloNet 3 is a comprehensive software package
for phylogenetic network inference, particularly in the
presence of ILS. It implements maximum parsimony,
maximum likelihood, and Bayesian inferences, in
addition to a host of other features for analyzing
phylogenetic networks and simulating data on them. The
package is implemented in Java and is publicly available
as an executable as well as source files.

In terms of the main aim of PhyloNet, which is
the inference of phylogenetic networks, very few tools
exist. TreeMix (Pickrell and Pritchard, 2012) is a very
popular tool in the population genetics community.
It uses allele frequency data and mainly targets
analyzes of admixtures among subpopulations of a
single species. More recently, Bayesian inference of
phylogenetic networks was implemented in BEAST2
(Zhang et al., 2018) and inference of unrooted networks

based on pseudolikelihood was implemented in the
PhyloNetworks software package (Solis-Lemus et al.,
2017). However, in terms of implementing inference
under different criteria and from different types of data,
PhyloNet 3 is the most comprehensive. The popular
SplitsTree package (Huson, 1998) is aimed at a different
class of phylogenetic networks than the ones considered
here. In particular, SplitsTree concerns data-display
networks and does not account for processes such as ILS.

Identifiability of phylogenetic networks and their
associated parameters has been discussed, in a
preliminary way, in some papers (Yu et al. 2012; Yu and
Nakhleh 2015b; Solis-Lemus and Ané 2016). In general,
methods that make use of the sequence alignments of
individual loci have the most amount of signal and
methods that make use of only gene tree topologies have
the least amount of signal. More studies of phylogenetic
network identifiability under the various criteria are
needed.

As highlighted above, the challenge of computational
tractability aside, the major challenge with network
inference in general is determining the true number
of reticulations and guarding against overfitting. In
particular, phylogenetic networks are more complex
models than trees and can always fit the data at least
as well as trees do. Does this mean networks are simply
over-parameterized models that should be abandoned
in favor of trees? We argue that the answer is no. First,
if the evolutionary history is reticulate, a tree-based
method is unlikely to uncover the reticulation events
(their number and locations). Second, even if one is
interested in the species tree “despite reticulation,” a
species tree inference method mightnot correctly recover
the species tree (Solis-Lemus et al., 2016). Third, even
when the true evolutionary history is strictly treelike,
the network structure could be viewed as a graphical
representation of the variance around the tree structure.
Insisting on a sparse network for convenience or ease of
visual inspection is akin to insisting on a well-supported
model no matter what the data says. Needless to say,
one is interested in the true graph structure and not one
thatis more complicated simply because it assigns higher
likelihood to the data. From our experience, the Bayesian
approaches handle this challenge very well.

While we continue to improve the features and user-
friendliness of the software package, the main direction
we are currently pursuing is achieving scalability of the
various inference methods in PhyloNet 3 to larger data
sets in terms of the numbers of taxa as well as loci.

AVAILABILITY

PhyloNet is publicly available for download from
https:/ /bioinfocs.rice.edu/phylonet. It can be installed
and executed on any system with the Java Platform
(Version 7.0 or higher). The current release includes
source code, tutorials, example scripts, list of commands,
and useful links.
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