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Abstract

The discovery that atypical chemokine receptors (ACKRs) can initiate alternative signaling 

pathways rather than classical G-protein coupled receptor (GPCR) signaling has changed the 

paradigm of chemokine receptors and their roles in modulating chemotactic responses. The 
ACKR family has grown over the years, with discovery of new functions and roles in a variety of 

pathophysiological conditions. However, the extent to which these receptors regulate normal 

physiology is still continuously expanding. In particular, atypical chemokine receptor 3 (ACKR3) 

has proven to be an important receptor in mediating normal biological functions, including cardiac 

development and migration of cortical neurons. In this review, we illustrate the versatile and 

intriguing role of ACKR3 in physiology.
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1. Introduction

1.1 Atypical Chemokine Receptor Family

Originally characterized as decoy or silent chemokine receptors, atypical chemokine 
receptors (ACKR) are major regulators of chemokine internalization, degradation, and 

transcytosis [1-3]. The term “atypical” stems from the observation that ACKRs either lack, 
or have alterations in the canonical DRYLAIV motif; this motif is found in the second 
intracellular loop, and is typically required for most G-protein activation and signaling 
[4-9]. Instead, these silent receptors elicit their biological effects through modulation of 

extracellular ligands, and although they do not directly mediate chemotaxis, they 
participate in chemotactic events through chemokine scavenging and degradation. The 
family consists of five major receptors: ACKR1/DARC, ACKR2/D6, ACKR3/CXCR7, 
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ACKR4/CCX-CKR, and ACKR5/CCRL2, and includes one provisional addition, ACKR6/

PITPNM3. Like most chemokine receptors, the ACKRs can also bind to a variety of 

different ligands to elicit their biological effects. Initially described as regulating innate and 

adaptive immune responses and leukocyte recruitment, the expansion of ACKR research in 

recent years has led to alternative roles for ACKRs in physiology, including contributions to 

cardiovascular and lymphatic vessel growth, embryonic development, and central nervous 

system function [9-13]. Several recent reviews highlight ACKRs concerning disease 

mechanisms, including their roles in cell migration and proliferation [14-18]. Here, we focus 

our efforts on emphasizing the diverse physiological ligands and roles of ACKR3 beyond 

participating in chemotaxis (Fig. 1).

1.2 ACKR3 and Ligands

1.2.1 CXCL12 Signaling Mediated by ACKR3—Initially considered an orphan 

receptor, the discovery that ACKR3 (originally named RDC1 and CXCR7) could bind to C-

X-C motif chemokine ligand 12 (CXCL12) challenged the previous notion that CXCL12 

exerted all of its biological functions solely from binding to CXCR4 (Fig. 1) [19]. 

Interestingly, although ACKR3 possesses the common G-protein coupling DRY motif, it 

binds CXCL12 using a unique N-terminal binding site located in extracellular loops two 
and three [20-22]. Although CXCL12 can form homodimers under physiological 

conditions, ACKR3 preferentially interacts with CXCL12 monomers with a 10-fold higher 

affinity compared to CXCR4 [23, 24]. Because this interaction activates β-arrestin 

recruitment rather than classic Gαi-protein signaling, one can categorize ACKR3 as a β-

arrestin-biased receptor that promotes CXCL12 internalization and early endosome 

degradation [6]. The receptor will also undergo constitutive rapid recycling back to the cell 

surface, which is necessary for continued membrane localization and activation [25]. 

Furthermore, recent in vivo studies have shown that ACKR3 inhibition causes an increase in 

CXCL12 plasma levels, implicating ACKR3 as an important regulator of CXCL12 

concentration [19, 26-28]. In zebrafish embryos, CXCL12 sequestration by ACKR3 is 

critical for the primordium to deposit cell clusters across the trunk and tail, facilitating sens 

ry cues for water flow [29]. Finally, CXCL12 gradient regulation by ACKR3 promotes 

neural progenitor cell survival [30, 31]. Extensive research focusing on chemotactic 

properties of ACKR3:CXCL12 interaction has demonstrated successful therapeutic avenues 

for the treatment of several cancers [32]. However, because previous research primarily 

focused on the CXCR4:CXCL12 signaling axis, the full breadth of ACKR3:CXCL12 

regulation of CXCL12 beyond contributing to chemotaxis is still warranted.

ACKR3 regulation of CXCL12 availability is complicated further by its ability to 
heterodimerize with CXCR4. ACKR3 and CXCR4 co-immunoprecipitate in HEK293 cells 

and co-localize in Neuro2A cells and in several tissues [33]. Expression of ACKR3 induces 

conformational rearrangements within Gαi protein complexes of CXCR4, thus impairing 

Gαi protein activation. This modulation of downstream signaling is partially attributed to 

ACKR3 β-arrestin signaling. When both CXCR4 and ACKR3 are co-transfected in HEK293 

cells there is a concomitant increase in CXCL12-induced β-arrestin co-immunoprecipitation 

with ACKR3 [33]. Unlike CXCR4 signaling alone, this heterodimeric effect increases 

ligand-stimulated and membrane recruitment of β-arrestin and causes sustained activation of 
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ERK1/2 and p38 MAPK signaling pathways [33, 34]. CXCR4:ACKR3 heteromeric 

complexes have proven to be critical in valve formation in the heart, and integrin activation 

in T-cells [35-37]. The significance of CXCR4:ACKR3 heterodimers and alteration of 
CXCL12 signaling downstream of Gαi may be physiologically relevant and remains to be 

further explored.

1.2.2 ACKR3 is a Low Affinity Receptor for CXCL11—Interestingly, CXCL11 (also 

known as ITAC) can reduce the heterodimer effects of CXCR4:ACKR3 by modulating β-

arrestin recruitment [33]. Treatment with CXCL11 in CXCR4/ACKR3 co-expressed 

glioblastoma cells increased cAMP production, leading to the assumption that CXCL11 can 
rescue CXCL12 signaling inhibition induced by the CXCR4:ACKR3 heterodimeric 

complex. However, more research is necessary to determine how exactly CXCL11 acts as an 

allosteric modulator of CXCR4:ACKR3 dimer complexes [33].

Although extensive research has determined the biological implications of ACKR3 on 

CXCL12 signaling, few studies have focused on ACKR3:CXCL11 pathway beyond 
mediating chemokine scavenging and degradation Originally presumed to bind only to 

CXCR3, CXCL11 also binds to ACKR3 with low affinity. For this reason in radioligand 
binding assays, the affinity of the 125I-CXCL11 tracer is so low that competition assays 
are performed in a heterologous system with 125I-CXCL12 as the tracer. In this system, 
CXCL11 inhibits 125I-CXCL12 binding to ACKR3 with an IC50 of 9 nM, whereas 
CXCL12 inhibits 125I-CXCL12 binding with an IC50 of 1.3 nM [38-40]. More recent 

reports have indicated a 10-fold difference in binding affinity for CXCL11 vs CXCL12, 4 

nM and 0.4 nM, respectively [41]. As with CXCR3, CXCL11 binding to ACKR3 depends 

on acidic residues of the N-terminus [40]. Not only are high ACKR3 expression levels 

required for CXCL11 scavenging and degradation, but CXCL11 internalizes ACKR3 faster 
than CXCL12 and delays recycling [42] This may be attributed to differences in affinity and 

dependence on β-arrestin 2 recruitment or specific intracellular transport properties for 
CXCL11 [26, 40, 42]. Most studies on CXCL11 have primarily focused on inflammatory 

pathways, due to its characteristics as an inflammatory chemokine, with an increase in 

activation following interferon stimulation [38]. Research efforts focusing on how CXCL11 

modulates ACKR3 will be critical for determining physiologically relevant disease 

mechanisms.

1.2.3 Titration of Adrenomedullin by ACKR3—As the closest known paralog to the 

adrenomedullin receptor (G10D), initial research described ACKR3 as a regulator of the 

vasodilator peptides, calcitonin gene-related peptide (CGRP) and adrenomedullin (Adm, 
AM) [43]. AM binds to ACKR3 with high affinity (Kd=0.2 nM), similarly to its other 
receptors, the canonical heterodimeric receptors AM1 and AM2, suggesting the possibility 

that ACKR3 could be an additional CGRP and AM receptor [41]. This original 

breakthrough study led to more research investigating ACKR3 signaling in association with 

AM. In 1999, Autelitano and Tang determined which AM receptor mediated AM 

vasodilation effects by analyzing mRNA expression levels of AM receptors (G10D and 

CLR) and ACKR3 in lung and vascular smooth muscle cells (VSMC). They determined that 

expression of all three receptors was found in lung, however only ACKR3 was detected in 
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vascular smooth muscle cells (VSMC) suggesting ACKR3 as an important modulator in AM 

VSMC function [44]. Recent studies by Mackay et al. and Klein et al. further confirmed the 

relationship of ACKR3 with AM. ACKR3 null mice exhibit similar phenotypes as Adm 
knockouts, including lymphatic vascular and heart defects [12, 36]. Additionally, in Ackr3-/- 

mice, semilunar valves of the heart have reduced Adm expression and genes that are 

consistent with AM function are also suppressed [36]. Most importantly, the gain-of-
function developmental phenotypes observed in Ackr3-/- mice, including cardiac 
hyperplasia and precocious lymphatic vascular development, can be completely abated by 
crossing onto a genetic background of AM haploinsufficiceny (Adm+/- mice), thereby 
providing direct genetic and in vivo evidence for ACKR3 as a decoy receptor for titrating 
the biological effects of AM peptide during embryogenesis [12]. Moreover, although there 

are no changes in survival rates between wildtype and Ackr3+/- mice, Ackr3+/- mice with 

genetic Adm overexpression exhibit increased lethality further illustrating the critical 
importance of ACKR3 in titrating AM levels

1.2.4 ACKR3 Facilitates Ligand Concentrations of vCCL2 and adrenal opioid 
proenkephalin A—Recently, two additional ligands, C-C motif chemokine ligand 2 

(vCCL2, also known as vMIP-II) and adrenal opioid proenkephalin A, have been shown to 

interact with ACKR3. Known as a viral chemokine and encoded by human herpesvirus 8 

(HHV-8), vCCL2 is linked to disorders such as Kaposi's sarcoma, primary effusion 

lymphoma, and multicentric Castleman disease [45, 46]. vCCL2 is a promiscuous ligan d, 

and can bind to several chemokine receptors; vCCL2 acts as an antagonist for CCR1, 

XCR-1, and CXCR4, and acts as an agonist for CCR3 and ACKR3 [47, 48]. Specifically for 
ACKR3, the N-loop and cysteine motif of vCCL2 may be important for binding, as 
truncated vCCL2 peptides (devoid of the N-loop and the cysteine motif) display weaker 
binding and decreased potency to ACKR3 [39] In glioblastoma cells transfected with 

ACKR3, vCCL2 interacts with ACKR3 (IC50 of 53.6 + 6.3 nM) but does not trigger cAMP 

production or typical intracellular calcium mobilization. Instead, vCCL2 acts as an agonist 

for ACKR3 by recruiting β-arrestin 2 and modifies surface levels of ACKR3 in a 

concentration-dependent manner. As is the case with CXCL12, CXCL11, and AM, ACKR3 

can perhaps function as a scavenger of vCCL2 by manipulating its concentration and 

modifying signaling activity [49]. Thus, future studies on ACKR3:vCCL2 signaling during 
viral infection could provide valuable information on host-virus interactions.

The adrenal opioid proenkephalin A gene encodes peptide precursors for the production and 

release of opioids into circulation and regulates circadian glucocorticoid oscillation [50]. 

Intermediate peptides of adrenal opioid proenkephalin A such as BAM22, peptide I, and 

peptide E can activate ACKR3 through β-arrestin recruitment and increase circadian 

glucocorticoid oscillation [51]. Specifically, BAM22 is a potent ligand of ACKR3 and when 

β-arrestin is knocked down in adrenocortical cells, BAM22 signaling is inhibited. The 

unexpected discovery that ACKR3 can regulate adrenal opioid proenkephalin A and 

circadian glucocorticoid oscillation leads to the idea that this receptor could be significant in 

emotional behavioral outcomes, such as anxiety and depression.
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2. Role of ACKR3 in Physiology

2.1 ACKR3 Murine Knockout Phenotypes

More than 95% of ACKR3-deficient mice die by postnatal day 1 with heart development 

abnormalities including cardiomyocyte hyperplasia and atrial and semilunar valve defects 

[36, 52]. Several phenotypes for perinatal lethality emerge at embryonic day 18.5 including 

circulatory failure, atria dilation, and interstitial edema [12, 52]. Of those that do survive to 

adulthood, most have compromised heart function including severe aortic valve calcification 

and thickening of aortic leaflets; causing sudden death [52]. Furthermore, ACKR3 

expression in the brain, kidney, and trophoblast cells of the placenta suggests there may be 

alternative functions for ACKR3 in addition to cardiac physiology [52, 53]. In the next 

several paragraphs, we will focus on research pertaining to cardiac, neuronal, renal, and 

reproductive physiology to highlight the exquisite importance of this receptor in multiple 
physiological contexts.

2.2 Cardiovascular Physiology

Mounting evidence has identified ACKR3 as a key player in cardiac development [12, 35, 

36, 52]. As mentioned above, Ackr3-/- mice have enlarged hearts due to cardiomyocyte 

hyperplasia, and usually die by postnatal day 1 from cardiac valve defects [35, 52]. 

Moreover, vascular endothelial cells in the heart, cardiomyocytes, and valve mesenchymal 

cells express ACKR3 [36, 52, 53]. Although ACKR3 is expressed in cells contributing to 

heart function and knockouts consequently have heart valve defects, specific regulation of 

ACKR3 in cardiac function remains to be fully elucidated.

Inhibition of ACKR3 in human umbilical and aorta endothelial cells significantly decreased 

angiogenesis, suggesting that ACKR3 may be important for vascular function [54]. 

Conditional endothelial deletion of ACKR3 also impaired heart function and remodeling 

after myocardial infarction (MI) [54]. In myocardial infarction patients, high circulatory 

levels of CXCL12 and AM are present, which could correlate to the loss of ACKR3 [54-56]. 

Indeed, mice with endothelial deletion of ACKR3 and experimentally induced myocardial 
infarction have elevated CXCL12 levels and weakening of heart function [54]. Conversely, 

mice that have a genetically engineered 3-fold increase in Adm also have upregulated 
ACKR3 in cardiac tissue and reciprocal expression patterns for AM and ACKR3 are found 

in the epicardium and trabeculae. Notably, although Ackr3-/- have cardiovascular defects, 

genetic reduction of Adm in these mice (Ackr3-/-; Adm+/-) reverses the cardiac hyperplasia 

of embryos such that they appear indistinguishable from wildtype [12]. This genetic rescue 

demonstrates that ACKR3 may be important in alleviating physiological mechanisms related 

to cardiac failure by regulating CXCL12 and AM signaling. Several reviews have 

highlighted the critical role of CXCL12 and AM receptors in association with cardiovascular 

disease; however, continued ACKR3 research related to these two ligands will be pivotal for 
better diagnosing heart complications [57-59].

2.3 Neurobiology

Normal brain function relies on communication between glia cells and neurons, with 

promising research specifically demonstrating that astrocytes are key controllers of 
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neurotransmitter homeostasis and synaptic signaling [60, 61]. Understanding biological 

mechanisms of neuronal and astrocyte function is important since disabled interactions are 

linked to neurological diseases such as epilepsy, stroke, and hepatic encephalopathy [62]. 

Several studies have characterized the CXCR4:CXCL12 axis as a significant contributor to 

neuronal development and central nervous system function [63, 64]. Expression of this pair 
occurs in nearly all cell types of the central nervous system and due to its role in neuro-

inflammatory response; CXCL12 is linked to several neurological diseases [65, 66]. 

Because ACKR3 is an alternative receptor for CXCL12, research into their function in the 
CNS will continue to evolve in the field of neurology.

Expression of ACKR3 in neurons and astrocytes has led to interesting discoveries pertaining 

to ACKR3:CXCL12 signaling in the adult brain [67, 68]. Ackr3-/-mutant studies have 
shown that ACKR3 is essential for positioning and regulating migration of cortical neurons. 

Interestingly, conditional deletion of ACKR3 in interneurons causes insensitivity towards 

CXCL12 and an increase in CXCL12 concentrations, which can then drive degradation of 

CXCR4 in the cell [69, 70]. Co-expression of ACKR3 and CXCR4 is observed in migrating 

medial ganglionic eminence progenitors, and migrating cells in ACKR3-null mice do not 

produce CXCR4 protein [69]. The relationship between ACKR3 and CXCR4 may therefore 

be critical for proper neuronal development.

Along with regulating neuronal migration, ACKR3 also modulates CXCL12 signaling in 

astrocytes and Schwann cells [67, 71, 72]. In rodent and human astrocytes, ACKR3 signals 

through pertussis toxin sensitive Gi/o proteins by binding to CXCL12 and activating Akt and 

Erk signaling [72]. The role of ACKR3 in neuronal and astrocyte development suggests the 

importance of ACKR3 in the central nervous system and its potential use as a therapeutic 

target.

2.4 Renal Physiology

In the kidney, numerous molecular mechanisms help regulate renal blood flow, glomerular 

filtration rate, and glucose homeostasis [73]. Of these molecular mechanisms, CXCL12, 

AM, and CXCL11 provide renal protective effects, such as regulating renal vascular 

development, and glomerular filtration through arteriole expansion [74, 75]. Therefore, 

ACKR3 may also be critical in renal physiology by altering CXCL12, AM, or CXCL11 

concentrations in the kidney. Specifically, podocyte cells support glomerulus function by 
secreting CXCL12, and glomerular endothelial cells in close contact with podocytes express 

CXCR4 [75]. Because interlobular arteries in the kidney also express CXCL12 and CXCR4, 

and embryos deficient in the ligand or receptor have severe glomerular tuft malformations, 

paracrine signaling between CXCR4:CXCL12 in glomeruli may be important for proper 

renal development [75]. Additionally, Ackr3-/- embryos have decreased levels of CXCR4 in 

the nephrogenic zone and glomerular endothelium [76]. ACKR3 localization in renal 

vesicles and podocytes could therefore be critical for modulating CXCR4/CXCL12 

glomerular tuft development.

Most research pertaining to renal function and ACKR3 has focused on the role of ACKR3 in 

renal carcinoma. In patients diagnosed with renal cancer, ACKR3 expression is increased in 

renal tumors compared to normal tissue biopsies, with specific localization in blood vessels 
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[77, 78]. In addition to blood vessel localization in renal carcinoma, ACKR3 expression also 

increases in blood and lymphatic vessels in human kidneys during allograft rejection [79]. In 

SCID mice with acute renal failure, neutralization of ACKR3 reduces renal multipotent 

progenitor cells, which are critical for improving renal function. Along with being important 

in the migration of renal multipotent progenitors to sites of renal tissue injury, ACKR3 also 

regulates their transendothelial migration by promoting adhesion to endothelial cells [80]. 

Although the importance of ACKR3 in renal carcinoma is evident, more research is needed 

to elucidate the biological role of ACKR3 in normal kidney function.

2.5 Reproductive Physiology

Much of reproductive research has recognized CXCL12 and AM as important regulators of 

conception and pregnancy in several species [81-85]. As a receptor for these ligands, it 

therefore stands to reason that ACKR3 may also play important functions in reproductive 

physiology.

The ability of CXCL12 signaling to regulate immune cell migration to the uterus, 

trophoblast invasion, and angiogenic factor synthesis demonstrates its importance at the 

fetal-maternal interface. Secretion of CXCL12 in trophoblast cells leads to recruitment of 

peripheral natural killer (NK) cells to the decidua, which along with uterine NK cells, 

contributes to spiral artery remodeling and fetal immune tolerance [86-88]. Although 

peripheral NK cells do not express ACKR3, it has yet to be clarified if ACKR3 is expressed 

in uterine NK cells, and how ACKR3 may regulate this unique population during pregnancy 

[89]. Along with NK cells, activation of M2 macrophages during pregnancy is also 

important for embryo survival [90]. Circulating blood monocytes secrete CXCL12 and 

express CXCR4 and ACKR3; leading to the idea that CXCL12 may function in an autocrine 

fashion through ACKR3 to regulate monocyte differentiation to specific macrophage 

populations. Interestingly, inhibition of ACKR3 in vitro decreases M2 macrophage receptor 

expression on monocytes, implying a potential role for ACKR3 in fine-tuning immune 

tolerance at the fetal-maternal interface [91, 92]. In addition to possible immune cell 

regulation, ACKR3 expression is higher in late compared to early term placentas in humans 

[93]. The reasoning for this expression pattern has yet to be determined, however ACKR3 

expression is decreased in trophoblast cells of preeclamptic pregnancies, suggesting ACKR3 

expression in late term placentas may be important in the etiology of preeclampsia [94].

AM expression is critical during pregnancy by modifying processes such as uterine 

receptivity, immune cell recruitment, and spiral artery remodeling [95, 96]. The importance 

of AM in these processes is highlighted by observations in animal models. For example, 

genetic deletion of just one Adm allele in female mice leads to a reduction in litter size, 

abnormal implantation spacing, and diminished pinopode numbers (markers of uterine 

receptivity). Adm also co-localizes with its other receptors during the estrous cycle and they 

all increase in luminal epithelium prior to blastocyst attachment [97, 98]. Like other AM 
receptors, ACKR3 expression is increased in uterine tissue during the period of 

implantation. Thus, it is possible that ACKR3 could contribute to uterine receptivity and 

embryo attachment through AM [99, 100]. Remarkably, AM plasma levels continually 

increase throughout pregnancy with highest levels found during the third trimester. 
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Concurrently, ACKR3 expression also increases in late term placenta, which may contribute 

to proper AM regulation. While there is still much progress to be made regarding the role of 

ACKR3 during pregnancy, additional research investigating ACKR3:AM signaling could 

provide insight into alterations of AM levels in normal and complicated pregnancies.

In addition to regulating female reproductive processes, ACKR3 may also be beneficial in 

male reproduction. In the testis, spermatogonial stem cells (SSC) are pivotal players in 

spermatogenesis by sustaining the continuation of spermatogenesis through self-renewal 

[101]. CXCR4:CXCL12 signaling regulates SSC activities, as disruption of this axis results 

in SSC loss in vivo and expression of CXCR4 in SSC's, and CXCL12 secretion from Sertoli 

cells supports SSC self-renewal [102, 103]. Although original studies identified the 

importance of CXCR4:CXCL12 signaling for the maintenance of spermatogonial stem cells, 

ACKR3 could also play a role. Recent studies have identified ACKR3 expression in 

undifferentiated spermatogonia during testicular development, which could mediate 

spermatogenic repopulation of the seminiferous tubules through regulation of CXCL12 

concentrations [104]. It is still unclear the role of ACKR3 in regulating germ cells and other 

male reproductive processes, but these initial studies demonstrate a potential function of this 

receptor in supporting testicular development.

Because CXCL12 and AM are critical ligands for healthy reproductive functions, more 

clarification related to ACKR3 binding to CXCL12 and AM during pregnancy and 

spermatogenesis is necessary. Identification of pathways that regulate CXCL12 and AM 

levels will help address novel mechanisms in reproductive physiology, and aid in improving 

fertility and pregnancy outcomes.

3. Conclusions

Research into ACKR3 signaling continues to flourish and with this comes the daunting task 

of elucidating new physiologically-relevant functions related to ACKR3 and its five ligands 

(Table 1). Even as more research unfolds, it is becoming apparent that there are still many 
new and exciting avenues for ACKR3 investigation. By better understanding precise 

mechanisms of atypical chemokine receptor signaling, we can continue to embrace their 

significance in physiology and their attractive translational research opportunities.
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Figure 1. 
Distinct signaling pathways for atypical chemokine receptor 3 (ACKR3). Typically, 

chemokine ligand 12 (CXCL12, purple circle) binds to CXCR4 and activates classical 

GPCR signaling events such as cell proliferation, chemotaxis and calcium influx. ACKR3 

can heterodimerize with CXCR4, causing conformational rearrangements in G-protein 

complexes and partiality to β-arrestin rather than classical GPCR signaling in response to 

CXCL12 binding. This heterodimer effect is reduced by CXCL11 (blue circle) binding to 

ACKR3/CXCR4. ACKR3 can also sequester CXCL12, CXCL11, adrenomedullin (red 

circle), adrenal opioid proenkephalin A (green circle), and vCCL2 (yellow circle) ligands, 

leading to possible ligand internalization and degradation through β-arrestin recruitment.
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