
on group-level data and estimates of MCID are applied with caution to
individual patients whenmaking treatment or funding decisions, and to
ensure that trial-derived metrics do not become a barrier to accessing
emerging therapies for uncommon life-threatening diseases with few
management options. n
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Obstructive Sleep Apnea and Cardiovascular Disease
REM Sleep Matters!

REM sleep accounts for approximately a quarter of total sleep time
in healthy adults. During REM sleep, several factors coalesce to
result in longer duration and greater severity of oxygen desaturation
during obstructive apneas and hypopneas versus non-REM sleep (1),
including cholinergic-mediated inhibition of the hypoglossal
nerve, resulting in suppression of genioglossus muscle tone and

increased propensity for upper airway collapse (2), as well as a
reduction in the hypoxic and hypercapnic ventilatory drive (3).
Such physiological features of REM sleep can lead to obstructive
sleep apnea (OSA) that occurs predominantly or exclusively
during REM sleep in a third of patients presenting to clinical
sleep laboratories (4). It is well established that compared with
non-REM sleep, REM sleep is associated with greater sympathetic
activity, lower vagal tone and more cardiovascular instability (5).
Hemodynamic and sympathetic changes observed with obstructive
events during REM sleep cause a surge in blood pressure and
heart rate and may even alter glucose metabolism (6, 7). The
above-mentioned pathophysiologic differences between REM and
non-REM sleep support the notion that obstructive events during
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REM sleep may be disproportionately toxic from a cardiometabolic
standpoint versus obstructive events occurring during non-REM
sleep.

Indeed, extended follow-up from the Wisconsin Sleep Cohort
demonstrated that OSA isolated to REM sleep (REM apnea
hypopnea index [AHI] .15 events/h with non-REM AHI ,5
events/h) was independently associated with prevalent and incident
hypertension, as well as with nondipping of the nocturnal blood
pressure (8, 9). Similarly, in the MAILES (Men Androgens
Inflammation Lifestyle Environment and Stress) study, REM
OSA (REM AHI >30 events/h) was independently associated with
hypertension (10). Of note, in both these epidemiologic studies,
non-REM AHI was not associated with hypertension.

It remains unclear whether the increased risk for hypertension
and alterations in glucose metabolism resulting from REM OSA
could promote atherosclerosis and play a part in triggering ischemic
events in patients with cardiovascular disease. To that end, the
analysis of the Sleep Heart Health Study cohort in this issue of the
Journal, by Aurora and colleagues (pp. 653–660), is an important
and timely contribution to the growing evidence that REM OSA
is clinically relevant (11). These investigators examined the
association between OSA during REM sleep and composite fatal
and nonfatal cardiovascular endpoints including myocardial
infarction, coronary artery revascularization, congestive heart
failure, and stroke. The cohort consisted of 3,265 community-
dwelling men and women (mean [6 SD] age, 626 10.7 yr; body
mass index, 27.86 5.0 kg/m2; 63.1% women) with no significant
OSA during non-REM sleep (non-REM AHI ,5 events/h) who
were followed for an average of 9.5 years. To obtain more precise
estimates of REM AHI, the authors included participants who
had at least 30 minutes of recorded REM sleep on home
polysomnography (12). The AHI was defined as the number of
apneas and hypopneas associated with at least a 4% decrease
in oxygen saturation per hour of sleep. The severity of OSA
during REM sleep was categorized as normal (REM AHI ,5
events/h; 53.8% of the cohort), mild (REM AHI 5.0–14.9 events/h;
27.7% of the cohort), moderate (REM AHI 15.0–29.9 events/h; 13%
of the cohort), and severe (REM AHI >30.0 events/h; 5.5% of
the cohort). The analysis revealed that in participants with
prevalent cardiovascular disease at baseline, the hazard ratio for
the composite cardiovascular endpoint was 2.56 (95% confidence
interval, 1.46–4.47) for severe REM OSA compared with no OSA
during REM sleep (REM AHI ,5 events/h), after adjusting for age,
sex, race, body mass index, smoking status, prevalent hypertension,
and diabetes. The association was much weaker in participants
without prevalent cardiovascular disease. The study by Aurora
and colleagues suggests that in patients who have cardiovascular
disease at baseline (i.e., prior myocardial infarction, coronary
revascularization, stroke, and heart failure), severe OSA isolated to
REM sleep more than doubles the risk for recurrent cardiovascular
events.

The study has several strengths including a large sample
size recruited from the community, full polysomnographic
assessments, robust method of ascertaining cardiovascular end
points, and a long follow-up period. Notwithstanding the strengths,
there are several noteworthy limitations. As acknowledged by
the authors, there were only 33 participants who had both
cardiovascular disease at baseline and severe OSA during REM
sleep. Although we appreciate lumping of the cardiovascular

endpoints to increase statistical power, it is important to point out
that these outcomes do not necessarily have the same underlying
pathophysiology, and therefore limits the ability to get at a
mechanistic understanding of the role of OSA during REM sleep in
increasing cardiovascular risk. Certainly hypertension is a common
thread, but the OSA-driven sympathetic surges associated with
paroxysmal arrhythmias and atrial embolus generation leading to
stroke are mechanistically distinct from OSA-associated endothelial
dysfunction and local thrombus generation leading to
atherosclerosis.

Given the strong and independent association between OSA
during REM sleep and cardiometabolic disorders (6–10), it is
disappointing to see that large randomized clinical trials of
continuous positive airway pressure (CPAP) have yielded
ambiguous or negative results (13–15). In these trials, however,
CPAP adherence was low and likely covered only the first half
of the sleep period. Indeed, it is plausible that reduced CPAP
adherence and the predominantly untreated OSA during REM
sleep (which prevails during the latter hours of normal nocturnal
sleep) may explain the negative or modest cardiometabolic benefits
of CPAP therapy in several randomized clinical trials.

To date, it remains unclear whether the adverse outcomes
associated with REM OSA are a specific product of the physiology
of REM sleep, or whether they are a product of intermittently
severe disease during sleep, as would also be seen, for example, in
positional OSA. Such individuals typically have an overall low
severity of disease, as measured by the total AHI, and questions
remain about whether they would derive any benefit from CPAP
therapy, particularly in the face of minimal symptomatology.
Nonetheless, Aurora and colleagues have provided incremental
evidence that severe OSA during REM sleep is not to be ignored,
particularly in individuals with prevalent cardiovascular disease.
Although the sleep medicine community awaits more definitive
interventional studies, we believe there is also a need for better-
tolerated and novel treatment options so that patients with REM-
related OSA can tolerate therapy during the entire sleep period. n
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