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Abstract

When the SUMO-1 protein is localized on the genome, it is found on proteins bound to the 

promoters of the most highly active genes and on proteins bound to the DNA encoding exons. 

Inhibition of the SUMO-1 modification leads to reductions in initiation of mRNA synthesis and 

splicing. In this review, we discuss what is known about the SUMOylation of factors involved in 

transcription initiation, pre-mRNA processing and polyadenylation. We suggest a mechanism by 

which SUMO modification of factors at the promoters of high activity genes trigger the formation 

of an RNAPII complex that coordinates and integrates the stimulatory signals for each process to 

catalyze an extremely high level of gene expression.
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Introduction to SUMO

The Small Ubiquitin-like Modifier (SUMO), which was discovered by its association with 

human RAD51 and RAD52 using a yeast two-hybrid screen 1, 2, has important regulatory 

function in many cellular processes. In most mammalian cell types SUMO has three 

isoforms, SUMO-1 to -3, and one isoform in yeast. As is the case with ubiquitin, SUMO 

proteins are conjugated to substrate proteins via isopeptide bonds linking the carboxy-

terminus of the mature SUMO protein and the ε-amino moiety of lysines in the target 

protein. SUMO proteins must be cleaved to expose the carboxy-terminus of the mature 

protein, which is then bound by a thio-ester linkage to its E1 factor, transferred to UBC9, 

which is the one E2 factor for all SUMO proteins, and together with E3 proteins transfer the 

SUMO protein to acceptor lysines on the substrate protein 3, 4. SUMO-1 is normally 

conjugated to its substrate as a monomer while SUMO-2 and SUMO-3, which are 45% 

identical to SUMO-1 and 96% identical to each other, are often conjugated in poly-SUMO 

chains. The major SUMO conjugated protein in the cell is RanGAP1, a 90 kDa protein when 

SUMO modified, and which binds to the nuclear pore complex 5. SUMO-conjugation to 

RanGAP1 is essential to mediate nuclear protein transport 6.
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SUMOylation is the conjugation of SUMO protein to target proteins. SUMOylation 

regulates multiple cellular processes, including DNA double strand break (DSB) repair 7–10. 

The different isoforms of human SUMO function in specific pathways of DSB repair: 

SUMO-1 stimulates all DSB pathways, and in some pathways its function is independent of 

conjugation to a substrate protein by UBC9. The SUMO-2/3 isoforms are specific to the 

conservative NHEJ pathway of DSB repair 11. Other processes regulated by SUMOylation 

include mitochondrial fission 12, synapse function 13, and cell cycle progression 14, 15. 

Transcriptional regulation has many steps regulated by SUMO modification 16–18. The effect 

of SUMOylation of many transcription factors is to repress transcription via the recruitment 

of transcription repressors, such as histone deacetylases 19, 20. Examples of transcription 

factors that have their positive signal repressed due to SUMOylation include C/EBP, ELK-1, 

SREBP, SP3 and Jun 21–25. Conversely, SUMOylation of transcription factors have been 

found to stimulate transcription; examples of such transcription factors include Tcf-4, 

HSF1/2, and CREB 26–29. In this review article, we will focus on a pathway by which 

SUMO-1 stimulates the gene expression process via regulation of mRNA synthesis and 

processing.

Localization in the genome of SUMO modified chromatin associated factors

Histone SUMOylation

In yeast, SUMO modifies all four core nucleosomal histones, and this SUMOylation 

represses transcription genome-wide, with highest concentration of SUMO at the telomeres 
30. As part of the DNA repair process, SUMO modifies H2A.Z in yeast 31. In human cells, 

among the four core histones, only SUMOylation of H4 has been observed, and H4-SUMO 

is associated with gene repression via recruitment of histone deacetylases 20. A variety of 

other chromatin associated (non-histone) proteins are marked by SUMO, including 

transcriptional regulatory factors. Specific examples of factors stimulated by SUMOylation 

will be discussed below.

Location of SUMO marks in genome

SUMO proteins had been found associated with both telomeres 32, 33 and with centromeres 
34, 35. Genome-wide analysis, which excludes the repetitive sequence elements that are 

present in centromeres and telomeres, revealed that the preponderance of SUMO-1 bound 

sites localize to genes with high transcriptional activity 36. The SUMO-1 mark is found at 

promoters and on exons of active genes. Strikingly, the RNA polymerase II (RNAPII) genes 

with the highest level of transcription have the highest amount of SUMOylation of 

chromatin proteins at the promoter; these include genes encoding ribosomal protein subunits 

and translation regulatory factors 36. These SUMO-1 marks are correlated with other 

stimulatory marks, such as H3K4me3, and depletion of either SUMO-1 or the E2 factor 

UBC9 results in decreases in mRNA abundance for these genes. The magnitude of the 

decrease in SUMO-1 depleted cells in ribosomal protein gene mRNA abundance is in most 

cases less than 2-fold, indicating that these genes are still transcribed but at lower levels 36.
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Preformed transcriptosome versus independent assembly of processing 

modules

The RNAPII complex is the central player in the process that initiates mRNA synthesis, 

elongates, caps, splices, and polyadenylates the mRNAs, and SUMOylation has a role in 

each step. The concept of the “transcriptosome” has emerged whereby the RNAPII is just a 

component of a larger complex that includes RNA processing factors that will provide 

synergy to facilitate mRNA production 37. RNAPII had been observed in large complexes, 

called the RNAPII holoenzyme, that include transcriptional co-activators 38, but the 

transcriptosome concept goes further likening the RNAPII complex to a coordinately 

regulated cellular machine. Consistent with this idea, preassembled RNA transcription and 

processing complexes are assembled in the nuclear Cajal body (CJ) and the transcriptosome 

translocates to the gene 39. The idea is that the cellular machines are all present to 

coordinately synthesize and process mRNA.

More recently, the concept has emerged that rather than a preformed transcriptosome, 

transcription is mediated by the stepwise recruitment of protein complexes that execute 

different steps on the growing RNA transcript 40. Individual steps of the total process have 

been linked. The largest subunit of RNAPII has a domain called the Carboxy-Terminal 

Domain (CTD), which consists of a repeating unit of seven amino acids 41, 42. With 

initiation of RNA synthesis, the RNAPII CTD is phosphorylated on the serine-5 position of 

the heptad repeat, and this phosphorylated CTD binds and recruits the splicing factors to 

process the nascent RNA 43. With regard to the transcriptosome, the question is whether the 

phosphorylation of the CTD associated with transcription initiation catalyzes the 

independent assembly of the cellular machines that regulate RNA processing in an ordered 

fashion as the RNAPII elongates or whether the factors all pre-assemble into a 

transcriptosome. One possibility that will be developed in the following text is that 

SUMOylation of specific proteins bound to the promoter can drive the efficient assembly of 

RNA processing factors along with RNAPII and coactivators, and coordinate the steps to 

generate a mature mRNA.

SUMO and Initiation

Genome-wide analysis of SUMO-1 bound to chromatin associated factors found that 

SUMO-1 in human cells, or SUMO in yeast, is associated with the promoters of the most 

active RNAPII genes in the cell and mapping to about -150 relative to the transcription start 

site 36, 44, 45. Two different SUMOylated proteins have been found to bind to this site: RAP1 

in yeast 44 and SAFB in human 46. SUMOylation of these factors have been shown to 

stimulate the recruitment of transcription factor TFIID by RAP1 and RNAPII by SAFB.

In the case of SUMO-1, the SAFB1 and SAFB2 proteins were identified by mass 

spectrometry as SUMO-1 modified chromatin associated factors. SAFB was found to 

localize to promoters coincident with SUMO-1. Depletion of SAFB or of SUMO-1 had 

similar effects decreasing RNAPII initiation events on the promoters, decreasing mRNA 

abundance of SUMO-1 marked genes, and decreased splicing 46. In this study, along with 

SAFB, the most abundantly SUMO-1 modified proteins associated with chromatin were 
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splicing factors. SAFB is known to interact with RNAPII and splicing factors, suggesting the 

possibility that SUMO-1 and SAFB collaborate to regulate high expression genes at the level 

of initiation of mRNA synthesis and processing 46.

Regulation of splicing

The regulation of splicing is functionally tied to the rate of elongation. SUMOylation 

regulates one of the RNAPII elongation factors, Transcription Elongation Regulator 1 

(TCERG1). Modification of the human TCERG1 with any of SUMO-1, -2, or -3 causes a 

decrease in the elongation stimulatory activity of TCERG1. Mutation of the SUMO acceptor 

lysines of TCERG1 resulted in higher elongation rates 47. While in the case of TCERG1 

SUMOylation resulted in transcription repression, in the following examples SUMO 

modification stimulates mRNA processing.

The genome-wide analysis of SUMO-1 conjugation to chromatin associated proteins 

revealed a striking enrichment of the SUMO-1 mark on exons and no enrichment on introns 
36. In light of the data that the most abundantly detected SUMO-1 substrates associated with 

chromatin after SAFB are splicing factors 46, and independent observations that splicing 

factors associate with the chromatin 48, 49, it is likely that the SUMO-1 conjugated proteins 

associated with exons are splicing factors. A key point that is unclear at this point is how the 

exons are recognized at the DNA level. It is suggested that RNAPII elongates at a slower 

rate in some exons that are alternatively spliced 50. It has also been suggested that a long 

noncoding RNA binds to exon encoding DNA and recruits chromatin modifiers that affect 

the splicing of the exon 51. Though SUMOylation is enriched on chromatin of DNA 

encoding exons, if it is splicing effector proteins that are the source of the SUMO-1 mark on 

exonic DNA, then it is unlikely that SUMO-1 has a role in initiating the exon recognition but 

rather that the SUMO modification is a downstream event. In such a case, the SUMO 

modification could be stimulating protein-protein interactions that accelerate the RNA 

processing.

Important splicing factors, such as serine-arginine rich (SR) proteins 55, 56, have been 

identified as SUMO substrates 46, 57. The SR protein SF2/ASF interacts with UBC9 and 

enhances SUMOylation of specific substrates as well as promoting SUMO conjugation to 

RNA processing factors 58. The recruitment of regulatory splicing factors depend on 

chromatin modification factors, transcriptional regulators as well as RNAPII elongation rate 
50, 51, 59, 60, and the splicing process occurs simultaneously with the elongating RNAPII 
61–63. SUMOylation may be the glue that binds transcription initiation, transcription 

elongation, and splicing together.

The events at initiation can affect splicing. SUMO-1 modification of SAFB stimulates 

initiation by RNAPII. In addition, depletion of either SUMO-1 or of SAFB from cells result 

in a decrease in the rate of splicing detected in nuclear pre-mRNAs 46. Splicing still occurs, 

indicating that the SUMOylation of SAFB does not have a required role in splicing, but the 

splicing is about 40% slower. As discussed above, the genes marked with SAFB-SUMO-1 at 

promoters are the most highly expressed RNAPII genes in the cell, and it may be anticipated 
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that the splicing of these genes is also at an accelerated pace, leading to the concept of a 

“fast track” in mRNA synthesis and processing.

SUMO modifications and mRNA polyadenylation

Pre-mRNA 3′ processing requires four multi-subunit protein complexes, CPSF, CstF, CFI 

and CFII, in addition to the poly(A) polymerase (PAP) 64, which associate with RNAPII and 

other proteins to form a complex for the pre-mRNA 3′ processing 65. CPSF has been shown 

to interact with TFIID and together with its counterpart CstF to remain associated with 

RNAPII throughout the coding region 66. When 3′ processing complexes are purified under 

cleavage and polyA conditions, all the four main 3′ processing complexes plus other 

proteins are found in both conditions, confirming the association of these complexes with 

the early transcriptional machinery. This linkage of transcription initiation with 

polyadenylation factors supports the concept of transcriptosome formation.

SUMO-2/3 modified forms of CPSF, PAP, and an assembly factor called Simplekin have 

been detected. SUMOylation of PAP occurs via six SUMO acceptor sites. Lysine to arginine 

mutation of those sites in effect leads to lower concentration of these factors in the nucleus. 

The SUMO-2/3 modification is necessary for PAP nuclear localization. Blockage of 

SUMOylation of CPSF and Simplekin affected the assembly and activity of pre-mRNA 3′ 
complex and was lethal to cell viability 67, 68.

mRNA stability

SUMOylation regulates one of the key factors controlling mRNA stability in human cells, 

nucleolin. Cell stress induces SUMO-1 modification of nucleolin, which in turn causes its 

binding to and stabilization of the GADD45a mRNA. Expression of a mutant nucleolin with 

its SUMO-1 acceptor lysine mutated, results in a failure for the mutant nucleolin to bind to 

the mRNA and a failure to stabilize it 69. Thus, it is likely that the SUMOylation of 

nucleolin has an important regulatory role in specific stress-induced mRNA stabilization. 

The stability and export from the nucleus of mRNA is also regulated by SUMOylation of the 

THO complex in yeast; THO regulates the association of mRNAs into mRNPs for export. 

SUMOylation of the Hpr1 subunit of the THO complex controls THO binding to mRNPs. 

Hpr1 mutants defective for SUMOylation fail to bind to mRNPs, leading to destabilization 

of several stress-induced transcripts 70. In these two experimental settings, SUMO 

modification of protein factors stabilize subsets of mRNAs.

Concept of fast-track mRNA synthesis and processing

It is striking that the genes with the highest level of expression, such as those encoding 

ribosomal proteins and translation factors, have the highest level of SUMO-1 modification of 

chromatin associated proteins at the promoter 36. Results are consistent with the concept that 

transcription initiation, elongation and splicing still occur in the absence of the SUMO 

modification of these factors, but perhaps at a slower pace. The idea that transcription and 

splicing occur in the neighborhood of nuclear pore complex and the product is primed for 

rapid RNA synthesis, rapid pre-mRNA processing, and ensuing rapid nuclear-cytoplasmic 
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transport, form the basis to postulate that SUMOylation functions to speed up multiple steps, 

from initiation through to pre-mRNA 3′ processing, hence fast-tracking the process of 

mRNA synthesis and processing.

Concept of group SUMOylation

Similar to what is proposed in this review for transcription, SUMOylation of multiple DNA 

repair factors accelerates the repair process, and the SUMO modification of these proteins 

stimulate protein physical interactions as if it were protein glue 7. Mutation of 11 SUMO-

acceptor lysine residues in DNA repair factors in yeast do not eliminate DNA repair, but 

repair is slowed. These observations led to the notion that DNA repair process requires 

group SUMOylation of repair proteins to speed repair in a synergistic manner 7.

Perhaps the same concept applies to group SUMOylation of transcription, splicing and 

polyadenylation factors. Group SUMOylation can facilitate the formation of an RNAPII 

transcription and processing complex. This concept is summarized in Figure 1.

A dense network of protein-protein interactions occurs centering on the elongating RNAPII 

downstream of the start site. A subset of the interactions that occur on the template with 

elongating RNAPII is shown in Figure 1. Though methylation, acetylation, ubiquitination 

and SUMOylation all mark the chromatin on an active gene, to keep the model depiction 

simple, only the histone H3 lysine 4 trimethyl (H3K4me3) and SUMO-1 modifications are 

shown in the Figure. In the genome-wide study of SUMO-1 bound to chromatin associated 

proteins, SUMOylation of chromatin bound to promoters is associated with the stimulatory 

mark H3K4me3 found downstream of the transcription start site 36, 52. The H3K4me3 mark 

is bound by CHD1, which in turn stimulates RNAPII elongation and recruits the splicing 

machinery to the chromatin. Depletion of CHD1 decreases splicing and decreases the 

association of splicing components such as the U2 snRNP with chromatin 48. SAFB, the 

protein that is conjugated to SUMO-1 at the promoter and stimulates initiation by RNAPII, 

also binds to CHD1 53. SAFB also binds to the phospho-serine-5 CTD 54, which is also 

bound by splicing factors 43. The splicing factor SC35 is required for transcription 

elongation, suggesting a reciprocal functional role between elongation and splicing 

machineries 49.

We suggest that for most active genes RNAPII transcription synthesizes mRNA, and 

stimulation of transcription by the actions of CHD1 or by phospho-CTD recruitment of 

mRNA processing factors may happen, but not in the coordinated complex enabled by 

SUMOylation. Many of the most active genes in the cell, such as genes encoding ribosomal 

proteins and translational regulatory factors, are the genes with high abundance mRNAs 

found to be most affected by the depletion of SUMO-1 or its E2 factor, UBC9 36. Based on 

available data, we suggest that the SUMOylation of SAFB is a trigger that stimulates the 

physical association with CHD1 and splicing factors to coordinate a giant complex that 

synthesizes the mRNA and processes it. Since SUMOylation factors are abundant at the 

nuclear pore complex, it is possible that the SUMO modifications that trigger the “fast track” 

transcription localize to the nuclear pore, thus priming these genes for mRNA synthesis, 

processing and translocation to the cytoplasm. It is possible that following group 

SUMOylation, re-initiation of highly processive mRNA synthesis is stimulated and drives 
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high levels of transcription consistent with the fast track model. We emphasize that this 

model is not proven, but rather is based on independent observations of protein-protein 

interactions that make sense as an integrated mechanism.
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Figure 1. 
Model for SUMOylation mediated fast track transcription and processing of mRNA.

In this depiction many factors have been left out to emphasize how “active” transcription 

may differ from “fast track” expression. We model that on most RNAPII templates, 

transcription occurs by multiple independent protein-protein and protein-template 

interactions to yield a pre-mRNA product that is likely processed co-transcriptionally. We 

model that the key difference with the fast-track synthesis is the SUMO modification of 

multiple factors, including SAFB, splicing factors and polyadenylation factors to stimulate 

the physical interaction of these complexes and coordinate the change from an active level of 

expression to a significantly higher level of expression, driving mRNA levels for these genes 

to very high abundances.
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