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Over the last two decades, there has come about a recognition that chaotic dynamics is pervasive in the solar system. We now understand
that the orbits of small members of the solar system—asteroids, comets, and interplanetary dust—are chaotic and undergo large changes
on geological time scales. Are the major planets’ orbits also chaotic? The answer is not straightforward, and the subtleties have prompted

new questions.

n the early 1600s, Johannes Kepler laid the groundwork for

modern celestial mechanics by discovering and formulating the
laws of planetary motion from study of the complex observed
motions of the planets. Isaac Newton subsequently achieved
further simplicity in his mathematical description of the basic
laws of motion and the universal law of gravitation. Thus, we
came to a simple set of equations that determine the motions of
the planets. The force on each planet is simply the sum of the
gravitational forces from the sun and all of the other planets in
the solar system. In vector notation, this is expressed as:
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where G is the universal constant of gravitation, m values are the
masses, and r values are their positions in space.

For a two-body system (sun and one companion), there is a
simple, elegant solution: a conic section (circle or ellipse,
parabola or hyperbola). However, the presence of a third body
(or in the case of the solar system, the sun, the nine major
planets, and myriad minor bodies) allows no simple solution to
these simple equations!

Newton himself wrestled unsuccessfully with the problem of
the Moon’s motion. The main mathematical tool used in this
business in the past has been perturbation theory, which starts
with an “unperturbed” orbit (an ellipse about the sun) and
strives step by step to calculate the effects of perturbations in an
orderly fashion. Most uncomfortably, the proof that such a
scheme “works” for arbitrarily long times has remained elusive.
Do the perturbations cause only small changes in the present
nearly circular, nearly coplanar orbits of the planets, or might
they add up so much over the great age of the solar system that
the orbits change greatly (in the past or future)?

There is the obvious intellectual curiosity. What was the historical
planetary configuration? What is it going to be in the future?

There is the mathematical motivation about the quality of
solutions of apparently simple ordinary differential equations.

And there are practical motivations—questions related to the
habitability of our planet. The climate history of the earth is
affected by changes in its orbit, by impacts of asteroids and
comets, and possibly also by the accumulation of interplanetary
dust particles that are generated by asteroids and comets. Thus
the long term orbital dynamics of the planets and small bodies
in the solar system has great temporal relevance as well.

We also ask, how typical is our planetary system in the galaxy?
What are the characteristics of a stable planetary system or of one
that harbors a habitable planet?

In the last two decades remarkable advances in digital computer
speed, the development of new numerical techniques, and the

12342-12343 | PNAS | October 23,2001 | vol.98 | no.22

application of modern nonlinear dynamics techniques and chaos
theory to classical problems of celestial mechanics have led to the
discovery and exploration of a number of examples of dynamical
chaos in our solar system. In its scientific usage, chaos is not a
synonym for disorder, rather it describes the irregular behavior that
can occur in deterministic dynamical systems, i.e., systems described
by ordinary differential equations free of external random influ-
ences. Chaotic systems have two defining characteristics: they show
order interspersed with randomness, and their evolution is ex-
tremely sensitive to initial conditions. Extreme sensitivity to initial
conditions is quantified by the exponential divergence of nearby
orbits. The rate of such divergence is characterized by the e-folding
time scale called Lyapunov time. A second characteristic time scale
is the escape time, which is the time for a major change in the orbit.

Chaos in the solar system is associated with gravitational reso-
nances. The simplest case of a gravitational resonance occurs when
the orbital periods of two planets are in the ratio of two small
integers, e.g., 1:2, 3:5, etc. There are other more subtle gravitational
resonances when one considers the precessional periods of plane-
tary orbits in addition to their orbital periods. Strong and weak
resonances thread the entire phase space of the solar system in a
complex web. Overlapping resonances, i.e., multiple gravitational
resonances in close proximity, provide the route to chaos in the
solar system. Gravitational resonances may effect very large orbital
changes or only modest orbital changes (in some cases, even provide
protection from large perturbations), depending sensitively on
initial conditions. The long term dynamics of the planetary system
is the dynamics of gravitational resonances.

We have understood, within the last two decades, that the
orbits of many of the small members of the solar system
(asteroids, comets, dust particles), subjected to the combined
gravitational perturbations of the major planets, are chaotic and
unstable on million-year time scales. A dynamical transport
mechanism thus has been identified for transporting small bodies
across the vast distances in the solar system. This mechanism has
led to a large revision in our understanding of the origin of
comets and of meteorites.

As an example, Matt Holman described the overlap of high
order orbital resonances with Jupiter as well as “three-body
resonances” (involving an asteroid’s interaction with both Jupi-
ter and Saturn) as the cause of chaos in the outer asteroid belt.
Murray and Holman (1) have developed an analytical theory for
estimating the Lyapunov time and escape time in this problem.
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The orbital evolution of planetary orbits on giga-year time
scales has been investigated recently via several numerical
simulations. These have led to a most interesting conclusion
that the orbits of the planets themselves evolve chaotically. The
characteristic Lyapunov time is 5-10 million years. A new
analytic theory (2) shows that chaos among the Jovian planets
results from a delicate interaction—also a three-body reso-
nance—among Jupiter, Saturn, and Uranus. The theory also
confirms the numerical estimate of the Lyapunov time asso-
ciated with this chaos and shows that the escape time of Uranus
islong (10'8 years), substantially longer than the lifetime of our
sun.

Although the numerical simulations all indicate chaos in plane-
tary orbits, in a qualitative sense the planetary orbits are stable—
because the planets remain near their present orbits—over the
lifetime of the sun. However, the presence of chaos implies that
there is a finite limit to how accurately the positions of the planets
can be predicted over long times. Of all of the planets, Mercury’s
orbit appears to exhibit changes of the largest magnitude in orbital
eccentricity and inclination. Fortunately, this is not fatal to the
global stability of the whole planetary system owing to the small
mass of Mercury. Changes in the orbit of the Earth, which can have
potentially large effects on its surface climate system through solar
insolation variation, are found also to be small.

Takashi Ito discussed several properties that may be respon-
sible for the long term stability of our solar system. Among these,
the difference in dynamical separation” between terrestrial and
Jovian planetary subsystems seems to be quite interesting and

TFor consideration of dynamical stability of two planets of mass my and my, orbital radius
a1 and ap, a natural unit of separation is their mutual Hill radius (after the 19th century
mathematician, G. W. Hill), defined by
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where me is the mass of the sun. With this measure, the separations among terrestrial
planets exceed 26Ry, whereas those among Jovian planets are less than 14Rp.
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important. The terrestrial planets have smaller masses, shorter
orbital periods, and wider dynamical separation. They are
strongly perturbed by the Jovian planets, which have larger
masses, longer orbital periods, and narrower dynamical separa-
tion. As a subsystem, the Jovian planets are not perturbed by any
other massive bodies.

Ito and Tanikawa (3) have performed a set of numerical
experiments to understand how these differences between
terrestrial and Jovian planets affect their long term stability.
They have considered various kinds of terrestrial planetary
subsystems with equal dynamical separations and determined
their typical instability time scales under the disturbance from
the massive Jovian planets. They find that the terrestrial
planetary subsystems with smaller dynamical distances
(<18Rp) are likely to become unstable in a short time scale
(<107 years). This rapid instability is caused by the strong
gravitational perturbation from massive Jovian planets. Thus
it seems that the present wide dynamical separation among
terrestrial planets (>26Ry) is possibly one of the significant
conditions to maintain the stability of the planetary orbits in
giga-year time spans.

These recent advances are the beginning of a quest to tease out
the critical properties of our solar system (and its subsystems)
that give it the curious character of being only marginally chaotic
or marginally stable on time spans comparable with its current
age. It is but a part of the quest to understand what processes of
formation (and perhaps initial conditions) led to this remarkable
system in nature and how common such systems are in our galaxy
and the universe.
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