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Myelocytomatosis proto-oncogene transcription factor (Myc)
is an intrinsically disordered protein with critical roles in cellu-
lar homeostasis and neoplastic transformation. It is tightly reg-
ulated in the cell, with Myc phosphorylation playing a major
role. In addition to the well-described tandem phosphorylation
of Thr-52 and Ser-62 in the Myc transactivation domain linked
to its degradation, P21 (RAC1)–activated kinase 2 (PAK2)–
mediated phosphorylation of serine and threonine residues in
the C-terminal basic helix–loop– helix leucine zipper (bHLH-
LZ) region regulates Myc transcriptional activity. Here we
report that PAK2 preferentially phosphorylates Myc twice, at
Thr-358 and Ser-373, with only a minor fraction being modified
at the previously identified Thr-400 site. For transcriptional
activity, Myc binds E-box DNA elements, requiring its het-
erodimerization with Myc-associated factor X (Max) via the
bHLH-LZ regions. Using isothermal calorimetry (ITC), we
found that Myc phosphorylation destabilizes this ternary
protein–DNA complex by decreasing Myc’s affinity for Max by 2
orders of magnitude, suggesting a major effect of phosphoryla-
tion on this complex. Phosphomimetic substitutions revealed
that Ser-373 dominates the effect on Myc–Max heterodimeriza-
tion. Moreover, a T400D substitution disrupted Myc’s affinity
for Max. ITC, NMR, and CD analyses of several Myc variants
suggested that the effect of phosphorylation on the Myc–Max
interaction is caused by secondary structure disruption during
heterodimerization rather than by a change in the structurally
disordered state of Myc or by phosphorylation-induced electro-
static repulsion in the heterodimer. Our findings provide criti-

cal insights into the effects of PAK2-catalyzed phosphorylation
of Myc on its interactions with Max and DNA.

The myelocystomatosis proto-oncogene encodes a tran-
scription factor, Myc, that is a central regulator of metabolism,
proliferation, apoptosis, and other key cellular processes (1).
Myc is well-recognized for its role in maintaining cellular
homeostasis and neoplastic transformation. It is deregulated
via chromosomal translocations, insertional mutagenesis, and
gene amplification and is the most common gene amplification
in human cancers (2, 3). In the absence of binding partners, Myc
protein is intrinsically disordered. In particular, the bHLH4

domain (Fig. 1, A and B) is unstructured but forms a helical
structure when in complex with Max, allowing the heterodimer
to interact with E-box DNA and Myc to transactivate or repress
genes (4). The transactivation complex is then assembled via
recruitment of multiple coactivators to the highly conserved
“MYC box” elements in the N-terminal transactivation domain
(Fig. 1B). Because of its oncogenic potential, the Myc gene is
tightly regulated at transcriptional (5–7), posttranscriptional
(8, 9), and posttranslational (10) levels.

The close links between Myc and oncogenesis make it an
attractive therapeutic target. There have been numerous
reports of the identification of small molecule ligands that bind
to the bHLH-LZ domains of Myc and disrupt the interaction
with Max (11–14). Compounds working via this mechanism
represent the most direct way of modulating the activity of Myc
and offer the potential to block Myc action in cancer. However,
there have been no reports of such compounds being optimized
to demonstrate in vivo efficacy in relevant models. Significant
in vivo efficacy targeting Myc has only been achieved through
transient expression of an engineered Myc variant termed
Omomyc, but a detailed biophysical characterization of the
interaction with Myc or Max has not been described (15, 16).

The development of Myc-targeted therapeutics is further
complicated by posttranslational modifications of Myc, includ-
ing phosphorylation (17, 18), ubiquitination (19 –21), and
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acetylation (22, 23). Phosphorylation of Thr-58 and Ser-62 in
the transactivation domain has been of particular interest
because of their conservation across species and, along with
adjacent amino acids, their location in a hot spot frequently

mutated in Burkitt’s lymphoma (24). Interestingly, the phos-
phorylation of these two residues is interdependent, with the
phosphorylation of Ser-62 required prior to Thr-58 (18), which
then triggers the proteasomal degradation of Myc (25). Other

Figure 1. Myc structure and phosphorylation. A, crystal structure of the heterodimer formed by the bHLH-LZ domains of Myc (blue) and Max (orange) in
complex with E-box DNA (PDB code 1NKP), showing potential phosphorylation sites as red space-filling spheres. B, domain structure of Myc protein (Mb–Myc
box). C, a sequence logo representing Myc bHLH-LZ based on a hidden Markov model. Higher stacks represent increased conservation of a residue. D, secondary
structure of Max-bound Myc, including the phosphorylation sites detected in this study. Relative phosphorylation of different sites is qualitatively represented
with red filling. E, 1H-15N HSQC spectrum fingerprint of unphosphorylated (black, ID 27414) and phosphorylated (green, BMRB ID 27422) Myc bHLH-LZ (fully
assigned in Fig. S4) with marked phosphorylation sites. F, 1D slices (in 15N) of 1H15N HSQC peaks for Thr-358, Ser-373, and Thr-400 in unmodified (black) Myc and
Myc doubly phosphorylated by PAK2 (blue).
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Myc phosphorylation sites have also been characterized (26 –
28), including phosphorylation of Thr-358, Ser-373, and Thr-
400 by PAK2 (29), which again are highly conserved residues
(Fig. 1C). Thr-358 is located in the basic region of the bHLH
domain, which interacts directly with DNA, whereas Ser-373
and Thr-400 are located in the adjacent helix–loop– helix
region, which participates in the interaction with Max (Fig. 1, A
and D). Phosphorylation of these residues has been shown qual-
itatively to interfere with formation of the Myc–Max–DNA
ternary complex and promote the E-box-independent regula-
tion of transcription and differentiation (30).

The thermodynamics and kinetics of Myc–Max–DNA ter-
nary complex formation have been characterized previously
(31–35), but the underlying mechanism for perturbation of the
complex following phosphorylation of residues in the Myc
bHLH-LZ region is unknown (29). In this work, ITC, NMR, and
CD have been used to characterize the effects of these phos-
phorylation events on the structure of Myc and the affinity of
the interaction with Max. The results show that the residual
structure in the Myc bHLH-LZ domains in the absence of Max
is relatively unperturbed by phosphorylation, but the influence
on heterodimer formation is more significant. These observa-
tions provide insight to assist with the identification of new
therapeutic leads that interfere with the formation of the Myc–
Max–DNA ternary complex.

Results

Effects of Myc phosphorylation on Max and DNA binding

The Myc bHLH-LZ (MycWT) sequence (Fig. 1C) is generally
well-conserved among species, including the three previously
identified Ser/Thr residues. These amino acids are all preceded
by positively charged residues, although the Ser-373 site does
not quite match the (K/R)RX(S/T) consensus sequence of
PAK2. In vitro phosphorylation of MycWT by PAK2 results pri-
marily in a dual phosphorylation event, where Myc is predom-
inantly modified at Thr-358 and Ser-373 (MycWT-2P) (Fig. 1D
and Figs. S1–S3 and Table S1). This behavior is apparent from
the positions of the Thr-358 and Ser-373 in the NMR spectrum
of MycWT-2P compared with the position of these residues in
the NMR spectrum of MycWT (Fig. 1, E and F). Phosphorylation
of Thr-358 and Ser-373 also induces a shift of additional reso-
nances belonging to residues close to the phosphorylation sites
(Fig. S4). Phosphorylation of the Thr-400 site is not detectable
in the NMR spectra, but MS phosphorylation profiling detected
low-level phosphorylation on this residue and at Tyr-402, Ser-
405, and Ser-437 (Table S1 and Figs. S1–S3).

The effect of dual phosphorylation of Myc bHLH-LZ on the
stability of the Myc–Max–DNA ternary complex was mea-
sured using a size exclusion DNA peak shift assay. Compared
with MycWT, MycWT-2P is impaired in the ability of its het-
erodimer with Max to bind to E-box DNA (Fig. 2A). The
MycWT–Max heterodimer binds tightly to E-box DNA, shifting
the size exclusion peak to a shorter elution time, whereas the
purified MycWT-2P leads to a mixture of free and bound DNA
(Fig. 2A and Figs. S5 and S6). The presence of free and bound
DNA arises from the fact that, although MycWT-2P has a
reduced ability to form the MycWT-2P–Max heterodimer, Max

bHLH-LZ itself can form a dimer, bind to the DNA E-Box, and
induce a shift of DNA.

The effect of dual phosphorylation of MycWT on the interac-
tion with Max in the absence of DNA was determined using
ITC (Fig. 2, B–F, and Table 1). Max is known to form a
homodimer at high concentration, and dilution of Max into
buffer shows an ITC curve that is typical for dimer dissociation
(Fig. S7), with a dissociation constant KD of 6 �M (Table 1).
Therefore, ITC measurements for the Myc–Max interaction
were performed with Max as the analyte and the Myc variants
as the titrants (Figs. S8 and S9), which minimizes this dilution

Figure 2. A, size exclusion profiles of E-box DNA in the absence (red) and
presence of Max and unmodified (blue) and PAK2-phosphorylated (green)
MycWT. a.u., arbitrary units. B and C, ITC titration curves of unphosphorylated
(B) and phosphorylated (C) MycWT binding to Max at pH 7.4. D and E, ITC-
derived thermodynamic parameters of Myc bHLH-LZ variants binding to
Max at pH 7.4 (D) and pH 6.5 (E). The asterisk indicates 2:1 binding stoichi-
ometry. F and G, flat profiles of ITC-integrated heat data of 8 �M MycS373D/
T400D titration to 80�M Max (F) and 8 �M MycWT titration to 80 �M Omomyc
(G), revealing no interaction between the proteins in vitro. All ITC experi-
ments were performed with MycWT, MycWT-2P, Mycmutant, and Omomyc as
titrants and Max as analyte.
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effect. Under all conditions measured, binding was exothermic
with an unfavorable entropic contribution. In line with previ-
ous qualitative studies (29), MycWT-2P has a decreased affinity
for Max by 100-fold compared with MycWT. The KD for binding
of MycWT to Max was found to be pH-dependent, with a lower
pH favoring binding (0.9 nM at pH 6.5 compared with 6 nM at
pH 7.4). This effect is maintained on phosphorylation. The dif-
ferences in binding affinities and in �Hbind for MycWT and
MycWT-2P binding to Max are the same (within error) at pH 6.5
and 7.4. This implies that an interaction with phosphorylation
is responsible for the pH dependence and that the impact of
phosphorylation is unrelated to the charge on the phosphate
groups. The difference of Gibbs binding energy of Myc–Max
heterodimerization upon phosphorylation (��Gphos) is 2.5 � 1
kcal mol�1 at pH 7.4 and 2.7 � 0.8 kcal mol�1 at pH 6.5.

To provide a broad comparison for the Myc–Max interac-
tion, we also assayed the equivalent interaction between
MycWT and Omomyc, which is a Myc-derived bHLH-LZ pro-
tein that forms a stable homodimer (36) and is reported to
interact with Myc in vivo (37). However, MycWT binding to
Omomyc was too weak to be detected in the ITC experiment
(Fig. 2G), suggesting that heterodimerization is not the primary
effect.

Contributions of individual phosphorylation sites

Purified MycWT-2P is predominantly phosphorylated on
Thr-358 and Ser-373 (Fig. 1F). Ser-373 is positioned at the
interface between Myc and Max, whereas Thr-358 is distant
from this interaction. Its phosphorylation is expected to influ-
ence DNA binding only (Fig. 1A). Therefore, to examine more
closely the causes of the decreased affinity of the Myc–Max
interaction following phosphorylation, Ser-373 was mutated to
Glu and Asp. For comparison, mutation to Glu and Asp of one
of the secondary sites of phosphorylation in the heterodimer
interface was also carried out. Residue Thr-400 was chosen
because this site is highly conserved (Fig. 1C) and is the closest
of the secondary phosphorylation sites to Ser-373. The
NMR spectra of the mutant proteins (MycS373D, MycT400D,
MycS373D/T400D, and MycS373E,T400E) were compared with
MycWT-2P, phosphorylated using PAK2, and showed no signif-
icant shifts, indicating that the overall conformation of the pro-
tein is maintained (Fig. S4). To compare the Asp and Glu muta-
tions more accurately with MycWT-2P, the data recorded at pH
6.5 were used as the reference set, as this favors a single negative

charge on the phosphate groups, to match the carboxylate side
chains.

In agreement with the behavior of MycWT and MycWT-2P,
ITC measurements at 298 K for MycS373D binding to Max gave
exothermic binding isotherms with a stoichiometry of 1 (Table
1, Fig. 2E, and Fig. S9). The dissociation constant for Max bind-
ing (23 nM) is comparable with that of MycWT-2P (97 nM), and
the small difference (approximately 4-fold) is consistent with a
close but slightly imperfect mimicking of a phosphate group by
Asp (1). In contrast, the T400D mutation perturbs the interac-
tion much more significantly, altering the stoichiometry to 2:1
MycT400D:Max bHLH-LZ (Fig. S9) and increasing the KD to 270
nM. The combination of these mutations in a S373D/T400D
construct would be expected to increase the KD for Max to
approximately 6 mM if the effects at the two sites were indepen-
dent and, consistent with this, no binding was detected in ITC
experiments (Fig. 2F). The effect of mutating Ser-373 and Thr-
400 to Glu was far less pronounced than the equivalent muta-
tions to Asp. MycS373E/T400E binds 9-fold more weakly than
MycWT to Max (KD � 8.2 nM) but 12-fold more strongly than
MycWT-2P.

Conformational perturbation on phosphorylation

The perturbation of the Myc–Max interaction by phosphor-
ylation can, in principle, result from a direct disruption of the
Myc–Max interface or, because Myc is an intrinsically disor-
dered protein in the absence of Max, through changing the
structural propensity of the isolated Myc bHLH-LZ domain.
Potential effects of phosphorylation on the structural propen-
sity of Myc were investigated using a combination of NMR and
CD spectroscopy. In the NMR spectra of MycWT, MycWT-2P
(Fig. 1E), all of the Asp variants (S373D/T400D, S373D, and
T400D), and MycS373E/T400E (Fig. S4), resonances for the C-ter-
minal residues of the bHLH region and the leucine zipper
(399 – 413) were broadened beyond detection, so measure-
ments are only available for residues 352 to 398.

One reporter of changes in structural propensity is a change
in fluctuations of individual residues, and heteronuclear
15N{1H} NOEs are sensitive reporters of such fluctuations on
the picosecond–nanosecond timescale (38, 39). Most residues
in the basic region and helix 1 exhibit intermediate 15N{1H}
NOE values (�0.6) (Fig. 3A). A fully folded protein of this size
would be expected to have NOE values between 0.7 and 0.8,
whereas a very dynamic region would be expected to have val-
ues between 0.4 and �1.5. The loop and helix 2 are slightly
more dynamic than the basic region and helix 1, with 15N{1H}
NOE values around 0.4. These measurements show that the
domain is partially structured and does not behave as a com-
pletely disordered protein, although any structure in Myc
bHLH-LZ is transient. Phosphorylation of MycWT with PAK2
moderately increases NOE values close to the phosphorylated
residues, Thr-358 and Ser-373, indicative of a small increase in
local structure. However, this small effect is not reproduced by
substitutions with Asp or Glu residues.

The conformational properties of the Myc variants in the
absence of Max were assessed further by deriving secondary
structure propensities (40) from 13C� and 13C� chemical shifts.
Up to 50% helical propensity is estimated in the basic region

Table 1
ITC-derived dissociation constants and thermodynamic parameters of
Myc bHLH-LZ variants upon interaction with Max bHLH-LZ

KD �G �H �T��S

nm kcal mol�1 kcal mol�1 kcal mol�1

pH 7.4
MycWT 6 � 1 �11.2 � 0.1 �18.2 � 0.4 7.0 � 0.6
MycWT-2P 376 � 7 �8.77 � 0.01 �14.08 � 0.01 5.31 � 0.02

pH 6.5
MycWT 0.9 � 0.5 �12.4 � 0.4 �25.6 � 0.6 13.3 � 1.0
MycWT-2P 96.9 � 0.1 �9.6 � 0.4 �20.2 � 0.1 10.6 � 0.5
MycT373E/T400E 8.0 � 1. 0 �11.0 � 0.1 �24.0 � 2.0 13.0 � 2.0
MycT373D/T400D n/a n/a n/a n/a
MycS373D 23.0 � 9.0 �10.4 � 0.2 �22. � 1.0 12.0 � 1.0
MycT400D

a 270.0 � 50.0 �9.0 � 0.1 �21.0 � 2.0 12.0 � 2.0
Max dissociation 5600 � 600 �7.2 � 0.1 6000 � 2000 6000 � 2000

a The stoichiometry for this reaction is 0.5.
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and helix 1 in MycWT, peaking around residues 363–365. In
contrast, up to 20% �-strand propensity is estimated in the loop
residues and in helix 2 (Fig. 3B). Phosphorylation of MycWT has
a large effect on residues on the N-terminal side of the phos-
phorylation sites, where it decreases the �-helical propensity by
up to 30% (Fig. 3B), in line with other systems (41). Downfield
1H chemical shift changes on phosphorylation indicate that the
phosphate group forms a hydrogen bond with its backbone
amide, which would compete with hydrogen bonding partici-
pating in secondary structure formation.

There is no evidence that phosphorylation leads to a stabiliz-
ing N-capping effect, according to the chemical shift changes of
residues to the C-terminal side of the phosphorylation sites.
The Asp variants mimicked the chemical shift changes
observed on phosphorylation to a large extent, but the Glu var-

iant behaved much more closely to unphosphorylated MycWT
(Fig. 3B). The decrease in �-helical propensity caused by the
S373D mutation is independent of the T400D mutation (Fig.
3C), suggesting that there is little long-range interaction
between the sites.

CD spectroscopy was used in conjunction with the NMR
measurements to assess the effects of phosphorylation (and
mutation) on the secondary structure content of Myc because
NMR approaches were unable to report on the C-terminal
region, including residue Thr-400 (42). The Myc–Max het-
erodimer has �70% � 9% �-helical content, with the remainder
being random coil (19% � 5%) or turn conformations (9% �
3%). The isolated Myc variants all have approximately half the
per-residue helical content of the heterodimer. All proteins
show a � minimum at 205 nm resulting from a combination of
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�-helix, polyproline II helix, and random coil spectral finger-
prints, with the amount of �-helix characterized by � at 222 nm
(Fig. 4A) (42). The differences between the Myc variants are
subtle, with only minor changes in the relative values of �205
and �222.

Full quantification of the differences between the Myc vari-
ants using deconvolution of CD spectra into a combination of
secondary structure elements (43–45) was not possible, given
the data quality below 190 nm and small uncertainties in pro-
tein concentrations because of the low �280 of Myc HLH-LZ.
However, using the ratio of �222 to �205, the �-helical content
is ordered WT � S373D � S373E/T400E � S373D/T400D �
WT-2P � T400D. The �-helical content of the Myc constructs
mostly follows the trend seen for the binding affinities for Max,
with only MycS373D/T400D a significant outlier from this rela-
tionship, as it has an undetectable binding affinity using ITC.
Ignoring this variant, and expressing the �-helical content as an
equilibrium constant relative to the helical content of the Myc–
Max complex, gives a correlation coefficient of 0.8 and a slope
of 0.08 � 0.02 for the relationship with log(KD) (Fig. 4B).

Discussion

Several previous studies have focused on disentangling the
kinetics and thermodynamics of Myc–Max dimerization or
Myc(Max)–Max–DNA ternary complex formation (31–35). In

this study, ITC is used to characterize the thermodynamics of
Myc and Max bHLH-LZ binding. The measured KD � 6 nM at
25 °C is substantially lower than the KD � 167 nM obtained
previously at 23 °C by fluorescence anisotropy (32). This differ-
ence could be accounted for by the fluorescence labeling of Max
(32) or by the use of slightly different constructs (supporting
information). Surprisingly, ITC did not reveal an interaction
between Myc bHLH-LZ and Omomyc (Fig. 2D). Therefore, the
cellular effect of Omomyc expression (16, 37) may not be
caused by Myc sequestration by Omomyc (46). Rather, it
appears that the cellular effect of Omomyc reflects the compe-
tition of Omomyc homodimers with the Myc–Max het-
erodimer for DNA binding sites instead of competition of
Omomyc with Max for Myc (or with Myc for Max).

Phosphorylation of Myc bHLH-LZ by PAK2

The regulation of Myc activity by the action of PAK2 is pre-
dicted to be via the disruption of the interaction with E-box
DNA, which can occur either directly through perturbation of
the DNA binding sites or indirectly through disrupting the
interaction with Max. Identification of the preferred phosphor-
ylation sites can provide information regarding the relative sig-
nificance of the two mechanisms. Using a combination of MS
and NMR, it was shown that PAK2 phosphorylates Myc
bHLH-LZ at multiple sites, but the major phosphorylation sites
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are at Thr-358 and Ser-373. In MycWT-2P, Thr-358 and Ser-
373 are phosphorylated to the exclusion of all other residues. In
the overall phosphorylation mixture, low phosphorylation lev-
els of Thr-400 were detected, and, to a lesser extent, Tyr-402,
Ser-405, and Ser-437, although the phosphorylation of the lat-
ter three sites was below the detection level of NMR. This pat-
tern of phosphorylation is broadly in line with previous quali-
tative observations of Myc phosphorylation by PAK2 (29) but
downplays the significance of phosphorylation of Thr-400.

Dual phosphorylation of Myc significantly affects Myc–Max
heterodimer binding to DNA. The effect of phosphorylation of
Thr-358 is readily rationalized from the structure of the Myc–
Max–DNA ternary complex because this residue is part of the
DNA-binding motif, and the phosphate group of pThr-358
would be juxtaposed with the phosphate diester backbone of
the E-box DNA. The effect of phosphorylation of Ser-373 is less
clear. Although part of the DNA-binding helix, Ser-373 is posi-
tioned away from the DNA but adjacent to the Myc–Max
dimerization region, which suggests a perturbation of Myc–
Max dimerization in the reduced stability of the Myc–Max–
DNA ternary complex. The side-chain OG atom of Ser-373 is
only 3 Å away from the OD1 atom of Asp-74 in the LZ region of
Max, and so phosphorylation of Ser-373 has the potential to
introduce charge repulsion to this part of the heterodimer
interface. Deconvolution of the contributions of the equilib-
rium between MycWT-2P–Max, Max–Max–DNA, and a
potentially weaker MycWT-2P–Max–DNA complex is not
appropriate for a nonequilibrium technique such as size exclu-
sion chromatography. Consequently, ITC was employed to
directly determine the effects of the phosphorylation of Ser-373
on the association of Myc with Max in the absence of DNA.

Compared with MycWT, MycWT-2P has a 100-fold reduced
affinity for Max. The S373D mutation reduces the affinity for
Max by 20-fold, which potentially leaves a 5-fold (1 kcal mol�1)
contribution from the phosphorylation of Thr-358. However,
there is significant uncertainty in this value because S373D is
not a perfect mimic of pSer-373. Because Thr-358 is distant
from the Myc–Max heterodimer interface in the ternary com-
plex, pThr-358 would only affect Max binding if there were
some “non-native” intramolecular interactions in free Myc, and
there is little evidence of long-range interactions in any of the
NMR spectra.

Folded state effects

Charge repulsion between pSer-373 of Myc and Asp-74 of
Max should have a pH dependence near to the pKa of the phos-
phate group. The pKa of pSer is usually 5.8 – 6.2 (41), but this is
likely to be increased when pSer-373 is close to the carboxylate
group of Asp-74 of Max. As a result, the interaction between
MycWT-2P and Max is expected to be significantly affected
between pH 6.5 and pH 7.4. There is an effect of pH on the
Myc–Max binding thermodynamics in this pH range, but it
occurs independently of the phosphorylation of Ser-373.
Hence, the observed effect is most likely due to His-81 of Max,
the imidazole NH groups of which are hydrogen-bonded by
Glu-410 and Glu-417 of Myc in the heterodimer, which would
require protonation of His-81 at pH 7.4. The lack of a phosphor-
ylation-dependent pH effect is also unexpected because the

specificity of leucine zipper interactions is dictated by the
charged residues that flank the core hydrophobic interface (47),
and the electrostatic environment of Myc is modified by the
introduction of anionic phosphate groups. Consequently, the
results suggest that repulsion between pSer-373 of Myc and
Asp-74 of Max is not a main contributory factor to the reduc-
tion of affinity for Max caused by the dual phosphorylation of
Myc. This conclusion is supported by the negligible effect the
MycS373E/T400E variant has on the Myc–Max interaction, even
though the Glu carboxylate oxygen atoms and the phosphate
oxygens in pSer and pThr are separated by the same number of
bonds from the backbone C�.

Conformational ensemble effects

The effects of dual phosphorylation are not limited to elec-
trostatics but can also include the disruption of all equilibria
that affect the overall thermodynamics. To simply describe the
binding of Myc to Max, a four-state mechanism that separates
the coupled binding and folding into two events was used as a
thermodynamic model (Fig. 4C; note that our measurements
do not report on the pathway for this interaction). In the
absence of Max, an ensemble of partially disordered Myc con-
formers is in rapid equilibrium with fully disordered Myc (equi-
librium 1), which is the equilibrium observed using NMR.
Rarely (and thus invisible to NMR), the partially disordered
ensemble will populate a fully folded, monomeric Myc (equilib-
rium 2). Association with Max allows stabilization of the fully
folded Myc in the heterodimer (equilibrium 3). The arguments
above concentrate on equilibrium 3.

Some effects of dual phosphorylation on equilibrium 1 are
visible in the NMR-derived parameters. Normally, helical
regions that are C-terminal of phosphorylation sites are stabi-
lized through N-capping interactions, whereas helical regions
N-terminal of phosphorylation sites are destabilized by disrup-
tion of the helix hydrogen bonding (41). Phosphorylation of
Ser-373 leads to no measurable helicity at residue 373 and has a
substantial destabilizing effect on both the N-terminal and
C-terminal side. The S373D and S373D/T400D variants behave
similar to each other, but the destabilizing effects are focused
on the N-terminal side of the mutation and are significantly less
than for pSer-373. Phosphorylation of Thr-358 leads to a
response in its vicinity that is more reminiscent of the S373D
mutation than Ser-373 phosphorylation. Helix propensity is
lost completely on its N-terminal side (where it was already
low) but is moderately unaffected at position 358 and on its
C-terminal side, where the bulk of helicity associated with equi-
librium 1 resides. Hence, the primary effect of phosphorylation
on equilibrium 1 appears to result from local secondary struc-
ture perturbation by pSer-373. The similarity in behavior
between the effects of pSer-373 and S373D mutations, but not
S373E mutations, strongly implies that the competition
between helix formation and side chain– backbone hydrogen
bonding is the most significant factor in the perturbation of
equilibrium 1.

Overall, the changes in helical propensities reported in the
NMR data are small, which is consistent with the modest
changes in CD spectra between the same species. Intriguingly
though, there is a good correlation (Fig. 4B) between the per-
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turbation of secondary structure formation in the monomer
and the free energy of the Myc–Max binding interaction across
the phosphorylated and mutated Myc species. However, this
correlation accounts for less than 10% of the observed effects on
binding. This leaves the strong implication that the perturba-
tion of secondary structure formation in the monomer by phos-
phorylation is a reflection of a more major effect on equilibrium
2. This would mean that the ensemble of partially disordered
Myc conformers formed in equilibrium 1 is more capable of
accommodating the perturbation introduced by phosphoryla-
tion (as, for example, reported by the NMR data in the vicinity
of pSer-373) than the more structured, extended helical confor-
mation that is required to bind to Max in the WT mode (equi-
librium 3).

Comparison with pThr-400

Thr-400 is a canonical PAK2 phosphorylation site, even
though the pThr-400 modification is not prevalent in the puri-
fied MycWT-2P samples. Notably, the effects of introducing a
charged group here are more significant than at Ser-373. Thr-
400 is located near the C terminus of helix 2, which is adjacent
to helix 1 of Max in the ternary complex. The T400D mutation
has the largest effect on Max binding and on the conforma-
tional ensemble of unbound Myc (as detected by CD spectros-
copy). Surprisingly though, the MycT400D–Max complex
switches to become heterotrimeric. Although such leucine zip-
per complexes have been reported previously, and the rules
governing homotrimeric structure are well-understood (48), it
is not clear how this single point mutation alters the preference
over dimer in this complex. The line broadening observed in
the C-terminal region of the Myc bHLH region prevents a full
comparison of the NMR and CD data, but it is apparent from
the fact that the perturbations introduced by the T400D muta-
tion are not widespread in equilibrium 1.

In summary, Myc is an intrinsically disordered protein that
elicits its biological effect by adopting a more ordered structure
that enables it to interact with Max and affect transcription at
the DNA level. Posttranslational modifications of intrinsically
disordered proteins are key mechanisms for regulating this
class of proteins. The data presented here provide insight into
the structural effect of PAK2-catalyzed phosphorylation of
Myc. Further characterization of phosphorylated Myc could
provide information to assist with the design of small-molecule
ligands targeting this state. Stabilization of the phosphorylated
form could be a mechanism for disruption of Myc function in
cancer. Identification of suitable ligands targeting this mecha-
nism remains a challenge.

Experimental procedures

All protein constructs and mutants (supplemental informa-
tion) were generated by gene synthesis with an N-terminal
hexahistidine tag and tobacco etch virus protease site. All were
subcloned into a pET-9 vector for Escherichia coli expression.
Protein expression was performed in BL21-Gold (DE3) (Nova-
gen) E. coli cells induced using 0.5 mM isopropyl 1-thio-�-D-
galactopyranoside for 4 h at 37 °C.

Cells were resuspended in PBS buffer containing complete
protease inhibitor tablets (Roche) and benzonase nuclease (2.5

units/ml) and lysed using a Constant Systems cell disruptor at
25 psi. Guanidium chloride was added to resuspended cells to 4
M final concentration and stirred for 1 h. Guanidium-contain-
ing lysate was further clarified by centrifugation at 75,000 	 g
for 1 h.

Proteins were purified from supernatant using nickel affinity
chromatography followed by Superdex 75 gel filtration chro-
matography (50 mM HEPES (pH 7.5), 500 mM NaCl, 1 mM

EDTA, and 1 mM DTT), and the His tag was cleaved by tobacco
etch virus protease. Cleaved protein was separated under dena-
turing conditions (4 M guanidium chloride and 2 mM CaCl2 to
chelate the EDTA) as flow-through on nickel chromatography.
Protein was concentrated by ultrafiltration (3-kDa pore) and
purified and buffer-exchanged on Superdex 75 gel filtration
chromatography (50 mM potassium phosphate (pH 6.5), 500
mM ammonium chloride, 1 mM EDTA, and 1 mM DTT).

Phosphorylation by PAK2 T402E (Dundee University) was
carried out at room temperature in a mixture of Myc 0.5 mg/ml,
PAK2 3 �g/ml, and ATP 300 �M, each in phosphorylation
buffer (60 mM HEPES (pH 7.5), 3 mM MgCl2, 3 mM MnCl2, and
1.2 mM DTT). The phosphorylation was carried out until the
level of dual phosphorylation was higher than 80%, as quality-
controlled by MS (C18 reverse phase LC-ESI-Q-TOF). The
reaction was quality-controlled every 24 h, and when the level
of double phosphorylation was unsatisfactory, an additional 3
�g/ml of PAK2 and 0.3 �mol/ml ATP were added.

Dual-phosphorylated Myc was further purified on cation
exchange. ResourceS 1.0-ml columns were equilibrated with 60
mM HEPES (pH 7.5) and eluted over 20 column volumes with
60 mM HEPES (pH 7.5) and 1 M NaCl. The fractions containing
the dual-phosphorylated Myc were identified by MS (Fig. S6),
pooled, and buffer-exchanged to 50 mM potassium phosphate
(pH 6.5), 500 mM ammonium chloride, 1 mM EDTA, and 1 mM

DTT.
Gel filtration mobility shift assays were performed using a

Superdex 75 3.2/300 column equilibrated in 50 mM potassium
phosphate (pH 6.5), 500 mM ammonium chloride, 1 mM EDTA,
and 1 mM DTT using 5-�l injections of sample comprising 10
�M E-Box DNA alone or in combination with 10 �M Myc
and/or 10 �M Max. The detector was set to � � 260 nm to
detect DNA. E-Box DNA was prepared by annealing of chemi-
cally synthetized oligonucleotides (supplemental information).

All ITC experiments were performed on a VP-ITC instru-
ment at 25 °C. In all titration experiments, 20 �M, 40 �M, and 80
�M Myc bHLH-LZ was titrated into Max bHLH-LZ at 2 �M, 4
�M, and 8 �M concentrations. The concentrations of Myc and
Max bHLH-LZ were initially determined by amino acid analysis
and interpolated to a Bradford assay. All experiments were per-
formed in 50 mM potassium phosphate (pH 6.5 or pH 7.4), 500
mM ammonium chloride, 1 mM EDTA, and 1 mM DTT. Max
bHLH-LZ dissociation titration was obtained by titrating 160
�M Max bHLH-LZ into buffer. All experiments were analyzed
using NITPIC (49) and SEDPHAT/ITCsy (50, 51). The ITC
titration parameters were obtained from a simultaneous fit of
titrations at 20 �M, 40 �M, and, when available, 80 �M Myc
bHLH-LZ.

All NMR experiments were performed at 4 °C. All heteronu-
clear 15N{1H}NOE spectra and assignment spectra of MycWT
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and MycWT-2P were acquired on a Bruker Avance III at
800 MHz, whereas assignment spectra of MycS373E/T400E,
MycS373D/T400D, MycS373D, and MycT400D were acquired using
a Bruker Avance III at 600 MHz. Both spectrometers were
equipped with a 5-mm z-gradient 1H/13C/15N TCI probe. The
heteronuclear 15N{1H}NOE experiments were acquired using
the hsqcnoef3gpsi pulse sequence with a 7-s relaxation delay.
BEST type HNCA, HN(CO)CA, HNCACB, and HN(CO)
CACB experiments (52, 53) were used for assignment. Second-
ary structure propensities were obtained by SSP (40) using C�

and C� only with internal SSP chemical shift referencing.
For CD experiments, all proteins were buffer-exchanged into

50 mM potassium phosphate (pH 6.5) or 500 mM potassium
fluoride (pH 7.4). CD spectra were recorded at 293 K in a Jasco
J-810 spectrometer equipped with a Peltier temperature con-
troller in a 0.1-cm path length quartz cuvette containing pro-
tein at 0.3 mg/ml. Blank spectra were recorded with the same
buffer in the absence of protein and subtracted from the protein
spectra. All measurements for CD spectra were taken in tripli-
cate with a response of 2 s, 0.1-nm data pitch, 1-nm bandwidth,
and a scanning speed of 20 nm/s from 260 –185 nm. To obtain
the secondary structure composition, data were analyzed using
the Contin-LL method (44) using reference set 7 (54).

MS analysis of the MycWT-2P phosphorylation pattern was
performed on SDS-PAGE with gel bands excised from a Coo-
massie-stained gel and subjected to reduction, alkylation, and
digestion with trypsin (55). For ESI MS-MS using the Qstar
Elite (ABSciex) mass spectrometer, 5 �l of the sample was chro-
matographed using the U3000 Ultimate (Thermo) nanoflow
chromatography system, and the outlet flow was run directly
into the Qstar Elite for analysis via the nanoflow probe at a flow
rate of 300 nl/min. A 20-min reverse phase gradient was run
using a 300-�m inner diameter 	 5 mm C18 PepMap trapping
precolumn and a 75 �m inner diameter 	 15 cm C18 PepMap
analytical column. The Qstar collected data in positive ion
mode, and an autoswitching setup was initiated with automatic
precursor selection based on peak intensity and charge state.
The collision energies were automatically adjusted based on the
precursor. Nitrogen was used as the collision gas. The subse-
quent data files generated were searched against in the Myc
sequences using the Mascot Daemon software. The searches
were then manually verified.
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