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Multiscale computing (MSC) involves the computation, manipulation, and analysis of information at different resolution levels.
Widespread use of MSC algorithms and the discovery of important relationships between different approaches to implementation were
catalyzed, in part, by the recent interest in wavelets. We present two examples that demonstrate how MSC can help scientists understand
complex data. The first is from acoustical signal processing and the second is from computer graphics.

Multiscale computing (MSC) is concerned with methods for
computing, manipulating, and analyzing information at dif-

ferent resolution levels. The field has undergone tremendous
advances during the past decade because of the increase in inex-
pensive, powerful hardware. The concurrent development of ad-
vanced algorithms and data structures to reduce computational,
data access, and communication costs has played an equally vital
role. MSC is used in many disciplines, but its presence is often
obscured, because it appears under several different names de-
pending on the field of application. For instance, it appears as
multiresolution analysis in wavelet theory, compression in signal
analysis, progressive meshing in computer graphics, and clustering in
the study of databases. The discovery of important relationships
between different algorithms and implementation techniques for
MSC was catalyzed, in part, by the development of wavelet theory.
The primary aim of this paper is to describe how MSC can help
scientists understand complex data through two examples: one
from acoustical signal processing and a second from computer
graphics. But first, we take a short digression to explain some basic
concepts used in the examples.

Wavelets. Until recently scientists used approximation methods
based on the ease of proving error bounds and computation.
Polynomials and Fourier methods dominated the scientific land-
scape despite well known drawbacks. For instance, polynomials
diverge on unbounded intervals and the Gibbs phenomenon plagues
the Fourier expansion of discontinuous functions. The increase in
powerful computers during the last decade freed scientists from
methods that involve only simple computations. What are the
consequences? Given a function f, our natural inclination is to use
a basis with functions that converge quickly and have properties
similar to f. Wavelet theory is based on this idea. The Fourier
expansion usually works well for periodic functions that are smooth,
because the associated basis functions (cosines and sines) are
smooth and periodic. What if f is a piecewise constant function? We
are more likely to accurately approximate f by using a basis that
consists of characteristic functions¶ with unit supporti such as B1 5
{x[m,m11] for m [ Z} than by Fourier methods. Suppose addition-
ally that the discontinuities of f(x) lie at the points x 5 0.5, 2.0, and
4.5. A better approximation could be made by using a basis with a
finer scale, such as B1/2 5 {x[ny2,(n11)y2] for n [ Z}. If we already
have a coarse approximation by using B1 and want one of a finer
scale using B1y2, we do not have to compute from scratch if we use
wavelets.

In the context of wavelet theory, the basis elements x in the
example shown above are the scaling functions, and the corre-
sponding wavelets are the Haar wavelets, which are smaller or
larger versions of the generating function cHaar(x), which equals
1 for 0 # x , 1

2
, 21 for 1

2
# x , 1, and 0 elsewhere.

Addition and subtraction of Haar wavelets are efficient tools for
refining the coarser approximation.

We are now prepared for the formal definition: Wavelets are
families of functions,

ca,b 5 uau 2 1/2cSx 2 b
a D ; a,b [ R , a Þ 0,

generated from a single function c by dilations and translations (1).
One of the applications of wavelet theory is to construct a basis for
efficient and accurate approximation of functions and signals at
different scales and to provide for a simple and fast means for
moving between different scales according to user needs. To
approximate functions, most engineers begin with a generating
wavelet c(x), which has compact support** and * c(x)dx 5 0,
because a considerable number of theorems have been developed
for this class of wavelets.†† A second class of applications associated
with wavelets involves time-frequency analysis of nonstationary
signals. It has generated more interest than MSC. The exponential
increase in wavelet-related patents issued in the United States
during the last decade and the large proportion of those using
time-frequency analysis are quantitative measures of this observa-
tion (2). Time-frequency analysis involves transforms, which are
defined as follows: For wavelets with mother function c, the
continuous wavelet transform for a function f(x) [ L2(R) is

^ca,b, f& 5 uau 2 1/2EdxzcSx 2 b
a D zf~x!

for a,b [ R, a Þ 0, and the discrete wavelet transform is

^cm,n, f& 5 ua0u 2 m/2Edxzc~a0
2 mx 2 nb0!zf~x!
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Abbreviation: MSC, multiscale computing.

†To whom reprint requests should be addressed. E-mail: mei@jp.ibm.com.

¶The characteristic function x[a,b[ on the finite interval [a,b[ is one on [a,b[ and naught
elsewhere.

iThe support of a function f(x) is the set of x for which function is nonzero.

**A function has compact support if its support (the set of points on which the function is
nonzero) is a compact (closed and bounded) set.

††Actually, most of the theorems apply to a wider class of wavelets c that satisfy the weaker
admissibility condition: 2p * dj j 21 ĉ(j) 2 , `, where ĉ denotes the Fourier transform of
the wavelet and j the variable in the transform space. Because testing for convergence
of the integral is cumbersome, the stricter requirement (given above) is normally used in
practice because it is easier to verify.
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for a0 . 1, b0 Þ 0. Two other important topics associated with
wavelets are filter banks (3) and operator theory (4).

The remarkable ability of wavelets to facilitate movement
between families of bases that are constructed from a single
function but of different scale lies at the heart of many algorithms
associated with MSC, but it is not the only method for scaling
data. The next section is a summary of auditory modeling work
in which the Mellin transform is used to rescale human speech
signals. References to scientifically important and beautiful
examples of wavelet- and nonwavelet-based MSC in graphics are
given in the section that follows.

Rescaling Human Speech Signals via the Mellin Transform. A funda-
mental question in the study of human auditory mechanisms is
the following. Suppose that a man, woman, and child are asked
to read aloud a sentence. How does the human auditory system
process the information and identify that the same sentence has
been spoken by all three? To answer this question, we first must
tackle the simpler one of how the auditory system adjusts for the
difference in body sizes and vocal tracts of the humans who are
speaking. The existence of some kind of intelligent processing is
conceivable, because we can appreciate and recognize the same,
beautiful tune in C major whether it is played on a violin, viola,
cello, or bass even when there is a shift in octaves.

Irino and Patterson (5) proposed a model to answer this
question. They demonstrated that essential features in speech
signals for the same vowel can be mapped consistently by the
Mellin transform to the (nearly same) location in the time-scale
plane regardless of the speaker’s body size. The Mellin transform
F(p) of a function f(x) is defined as

F~p! 5 E
0

`

f~x!xp 2 1dx 5 E
0

`

f~x!e~p 2 1!ln~x!dx,

where x and s denote the respective variable parameters for the
function and its transform. Irino and Patterson go on to note that
the Mellin hypothesis enables us to interpret the peripheral
auditory system as an optimal signal processor. The mathemat-
ical model operates as follows. First, the wavelet transform is
used to simulate the auditory filterbank. The wavelet transform
is suited for this role, because it is transparent to the Mellin
transform, i.e., all of the wavelet kernels (even with dilations) are
mapped into a uniform distribution by the Mellin transform, and
thus it is easy to deconvolve the filter component from the
components of sound in the outside world. Second, the kernel
function for the auditory filter is derived as a solution to an
eigenvalue problem that satisfies certain minimal uncertainty
constraints in the time-scale plane; both psychophysical and
physiological data are simulated well by this filter function (6).

The model in this section maps signals produced by humans of
different scales to the same location in time-scale space. In the
next section we consider the reverse mapping. Graphical models
of objects are mapped to several different scales according to
user needs or the virtual distance from the object to the user.

Multiscale Computer Graphics. One of the goals of modern computer
graphics has been to develop increasingly better technologies for
fast and accurate presentation of three-dimensional virtual objects

at resolution levels that are appropriate for individual user needs.
These technologies have been used in the development of flight
simulators for training military and civilian pilots. The devices work
as follows. When a simulated object is beyond a certain distance, a
very crude model of the object is used. The model has relatively few
meshpoints with virtually no rendering, shading, or texture. When
a pilot approaches the object and reaches certain distance thresh-
olds in virtual space, the model for the object is replaced with one
of a finer scale with more detailed rendering, shading, and texture.
Conversely, as one moves away from an object, successively coarser
models are substituted. This technology has been extended for use
in walk-throughs and fly-bys for electronic games.

Recently scientists have been exploring a new generation of MSC
algorithms for a wider range of applications. Examples from this
emerging area of research are the Digital Michelangelo Project at
Stanford and the Multi-Res Group Modeling Group at Cal Tech.
One goal of the Michelangelo project is to generate realistic
three-dimensional images of some of the artist’s sculptures from
laser and range scanner data (7). Art historians will be able to ‘‘see’’
and study the chisel marks to learn about the shapes of the chisels
and techniques used to carve the marble. The marks on the actual
sculpture are so fine that they cannot be perceived in detail by the
unaided eye. Another goal is to enhance the visits of museum goers
and archives of virtual digital museums. For this second purpose, a
coarser resolution image will suffice, because the objects will be
viewed for their artistic beauty.

MSC of three-dimensional models has also been conducted by
Schröder and coworkers (8, 9) by using wavelet- and nonwavelet-
based approaches for industrial as well as academic applications.
The works of various scientific groups in this discipline differ
primarily in the choice of primitives used for meshing and how and
what types of information are stored and compressed during MSC.
Surveys on MSC of meshes are given on the home pages of
Owen (www.andrew.cmu.eduyuserysowenysurveyy) and Guibas
(www-graphics.stanford.eduyguibasyGeomSemy99winterysched-
ule.html) and in the Annual Proceedings of ACM SIGGRAPH
conference and ACM Transactions on Graphics. A good MSC
algorithm for mesh generation will minimize the amount of storage
space for descriptors (e.g., node locations and connectivities and
normal and tangent vectors) as much as possible, facilitate move-
ment between meshes of different scales, and facilitate efficient
rendering and shading algorithms at all scales. The need for these
requirements can be understood in light of an example from the
Michelangelo project. A three-dimensional 0.25-mm resolution
scan of the 2.7-mm statue of Saint Matthew generated 102,868,637
points, making a 644-MB file. Some approaches to multiscale
meshing that have been proposed are mesh compression, wavelets,
zerotree coders, and irregular subdivision. The plethora of topo-
logical primitives and their possible contortions make it impossible
to conclude which algorithm will always be the best. The only
foregone conclusion is that state-of-the-art algorithms for graphics
will continue to be based on meshing, rendering, and shading
algorithms that are designed in ways that complement each other’s
strengths to improve performance.

We acknowledge the generosity of our coauthors and colleagues for
many helpful discussions and welcome readers to explore our home
pages (www.trl.ibm.co.jpyprojectsyindexoe.htm, www.kecl.ntt.co.jpyicly
signalyirinoyindex.html, and wim.sweldens.com).
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