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An equilibrium statistical theory of coherent structures is applied
to midlatitude bands in the northern and southern hemispheres of
Jupiter. The theory imposes energy and circulation constraints on
the large-scale motion and uses a prior distribution on potential
vorticity fluctuations to parameterize the small-scale turbulent
eddies. Nonlinearly stable coherent structures are computed by
solving the constrained maximum entropy principle governing the
equilibrium states of the statistical theory. The theoretical predic-
tions are consistent with the observed large-scale features of the
weather layer if and only if the prior distribution has anticyclonic
skewness, meaning that intense anticyclones predominate at small
scales. Then the computations show that anticyclonic vortices
emerge at the latitudes of the Great Red Spot and the White Ovals
in the southern band, whereas in the northern band no vortices
form within the zonal jets. Recent observational data from the
Galileo mission support the occurrence of intense small-scale
anticyclonic forcing. The results suggest the possibility of using
equilibrium statistical theory for inverse modeling of the small-
scale characteristics of the Jovian atmosphere from observed
features.

Prominent examples of long-lived large-scale vortices in geo-
physical flows are those observed on the Jovian planets, such
as the Great Red Spot (GRS) on Jupiter (1-3). The emergence
and persistence of such coherent structures at specific latitudes,
such as 22.4°S for the GRS, in a background zonal shear flow that
seems to violate all of the standard stability criteria (1) are a
genuine puzzle needing a theoretical explanation. The present
article contributes to such an explanation by using a recent
equilibrium statistical theory (4-6) to predict the coherent
structures in the weather layer of Jupiter. This statistical theory
is based on a few judiciously chosen dynamical invariants and
does not involve any detailed resolution of the fluid dynamics.
An important input to the theory is therefore a prior probability
distribution for the one-point statistics of the potential vorticity,
which parameterizes the unresolved small-scale turbulent eddies
that produce the large-scale coherent structures. Below it is
demonstrated that the equilibrium states of the statistical theory
simultaneously have three key properties:

(i) Coherent monopolar vortices, such as the GRS, emerge at
the appropriate latitudes within the zonal mean velocity profile,
such as the Limaye profile derived from Voyager data.

(i) The coherent vortices are anticyclones if and only if the
prior distribution on potential vorticity fluctuations has anticy-
clonic skewness.

(iii) All steady flows realized as equilibrium states are non-
linearly stable, including zonal shear flows that contain prograde
and retrograde jets and embedded vortices.

Here the theory is developed for a one and one-half layer
quasigeostrophic model, which yields the limiting behavior of a
corresponding shallow-water model in a standard fashion (7, 8).
The one and one-half layer model is commonly used to interpret
the measurements of the Jovian atmosphere from spacecraft and
other observations (1, 2), because its idealized vertical structure
is comparable to the limited knowledge about the vertical
structure of the Jovian planets. In the statistical theory based on
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this model, the choice of the prior distribution is a fundamental
issue. An inverse modeling strategy is adopted here with respect
to the prior distribution—the statistical properties of the small-
scale eddies encoded in the prior distribution are inferred from
a comparison of the large-scale features of predicted flows with
observed flows. These small-scale properties can then be tested
by physical arguments, numerical experiments, or independent
observational data. The predictions of the statistical theory are
computed here for a midlatitude band in the southern hemi-
sphere of Jupiter, where there is an abundance of coherent
vortices, and for a midlatitude band in the northern hemisphere,
where there is a notable lack of large vortices.

There are several other equilibrium statistical theories of
large-scale coherent structures (9-12) besides the theory
adopted here (4, 5), each having different strengths and weak-
nesses (60) in its mathematical formulation and potential physical
applications. One of the stated goals of these theories is to
predict the GRS and other Jovian vortices (11, 13, 14). Although
it is rather easy to invoke any of these theories to produce
coherent monopole vortices resembling the GRS in variety of
circumstances, the situation is akin to that of direct numerical
simulation, where various models produce vortices of the desired
kind in a range of physical regimes (1). To our knowledge, the
work presented here is the first to incorporate the actual
observational record for Jupiter into a statistical equilibrium
theory and to predict coherent structures that are consistent with
those observations and possess the properties i, ii, and iii. The
following is the plan for the remainder of the article. First, the
fluid dynamical model is introduced, and the statistical equilib-
rium theory is summarized. Then, the computed results for
bands in the northern and southern hemispheres are presented
and contrasted, followed by a brief concluding discussion.

The Dynamical Model

The basic dynamical equations model the shallow layer whose
motion is visible to observations, but take into account the zonal
flow in the underlying deep lower layer by including an effective
zonal topography (1, 15). This is a one and one-half layer model,
in which the upper and lower layers are assumed to have constant
densities with lighter fluid overlying heavier fluid; the depth of
the upper layer is small compared with the lower layer, and the
steady zonal geostrophically balanced flow in the lower layer is
unaffected by the flow in the upper layer. In dimensionless
variables, the quasigeostrophic model is governed by the non-
linear advection equation

Qt - Qxlr/fy + lelfx =0, [1]
and the linear elliptic equation
Q: lpxx—"_ wyy_A72(¢_¢2)+ﬁya [2]

Abbreviation: GRS, Great Red Spot.
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where O = Q(x,y,t) is the potential vorticity and ¢ = Y(x,y,f) is
the streamfunction or, equivalently, the normalized height per-
turbation for the upper layer. The positive parameters A and 3
are the nondimensionalized Rossby deformation radius and
gradient of the Coriolis parameter, respectively. The choice of A,
B, and the streamfunction ¢(y) for the lower layer is discussed
below. The velocity fields for the upper and lower layers are
nondivergent, and are given by (u,v) = (—,¥y) and (u»,0) =
(—yny,0), respectively.

For all computations below, the flow domain is the zonal
channel.

D ={(ey):le[ <2, y[ <1}

The boundary conditions for flow in this channel are achieved
by setting ¢y = 0 on the wallsy = =1 and imposing periodicity
in x.

The Equilibrium Statistical Theory

In the statistical theory, the potential vorticity field Q is viewed
as a fine-grained field that is randomized by the governing
microscopic dynamics (Eqgs. 1 and 2), and a corresponding
macroscopic description is introduced to capture the coarse-
grained structure of Q. In an appropriate continuum limit, the
statistical theory is an exact local mean-field theory (11, 12), and
the macroscopic description is furnished by a spatially localized
probability distribution P(x,y,dq) on the random microstate Q at
each point (x,y). The macrostate characterized by the theory is
the probability density, p = p(x,y,q), of P(x,y,dq) with respect to
a given “prior distribution” I1(dg) (4, 5); namely,

P(x,y,dq) = p(x,y,q)I1(dq). [3]

The spatially homogeneous prior distribution IT is chosen to
model the statistical properties of the small-scale fluctuations of
the potential vorticity. In the inverse modeling strategy adopted
here, the choice of II is tested a posteriori by comparing the
macroscopic predictions of the theory with the large-scale
properties of the observed flows. For this reason, it is worthwhile
to carry out the statistical equilibrium calculations for an arbi-
trary prior distribution before making a definite choice.

The equilibrium macrostate p maximizes the relative entropy.

S(p) = — f fp In p dxdyll(dq) [4]
D
over all macrostates satisfying the constraints

1 - - -
H(p) = 5 f (W + 45 + A 2)dndy = E,
D

Cp) = f (lz’xx + lzlyy - Ale_!/)dXdy =T, [5]
D

which reflect the conservation of total energy and circulation by
the dynamics in Eqgs. 1 and 2. In these constraints, ¢ is deter-
mined by p via the coarse-grained potential vorticity

Olxy) = f qpx.y,q)11(dq)
= l_p)cx + l_pyy - A_Z(JJ - lpZ) + By [6]
The constrained entropy maximization leads to the local mean-

field equation
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qu(eq: V11(dq)
Q="—"—"". [7]
few_w— V1(dq)

The parameters 6 and vy are the Lagrange multipliers for the
energy and circulation constraints in Eq. 5, respectively, and play
the role of the “inverse temperature” and “chemical potential.”
It is instructive to write Eq. 7 in its variational form,

O =G'(6 —vy), where G(s)= lnfe“ql_[(dq) [8]

is the cumulant generating function for the probability distribu-
tion II. The properties of the coherent structure determined by
the solution to Eq. 8 depend on the prior distribution II through
the properties of the real function G' = dG/ds. From the
elementary formulas for the mean, variance, and skewness of the
prior distribution 11,

G'(0) = qu(dq) =(0),
G"(0) = f[q - (Q)’l(dq) = var Q,

G"(0) = f[q — (O)TI(dg) = skew Q(var 0)*?,

it is evident that the principal contribution to the nonlinearity of
Eq. 8 scales with skew Q. In view of the importance of skewness,
an attractive choice of the prior distribution is the centered
gamma distribution

I1.(dg) = |e| 'R(e"'[q + & ']; e ?)dq, [91

where R(z;a) = T'(a) "'z le™* (z = 0), R(z;a) = 0 (z < 0) denotes
the standard gamma density. The scaling of II, is chosen so that

Q) =0,

Because R(z;a) has the cumulant generating function —aln(1 — s),
the local mean-field Eq. 8 associated with the prior distribution (Eq.
9) takes the explicit form

var Q =1, skew Q = 2e. [10]

09 — v
1—e(6p—7y)°

In the limit as the skewness parameter ¢ — 0,11, converges to the
standard Gaussian distribution, and the corresponding statistical
equilibrium theory reduces to the standard energy—enstrophy
theory (6, 9, 10).

In applying the equilibrium statistical theory formulated
above, it is useful to adopt the viewpoint that the prior distri-
bution II, encodes the statistics of the potential vorticity fluc-
tuations induced by small-scale forcing, and that the solution Q
to Eq. 11 represents the large-scale structure resulting from an
inverse cascade process. Such a perspective is confirmed in a
variety of flow regimes for various idealized models by compar-
ing crude closure schemes based on equilibrium statistical theory
to direct numerical simulations with random small-scale forcing
(16-18). This viewpoint contrasts with other numerical studies of
equilibrium statistical theories that emphasize freely decaying
turbulence (12, 19). A similar approach to prior distributions and

0=Gu0y—y) = [11]
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inverse cascades has been used by M.D. and A.M. in statistical
models parameterizing open ocean deep convection (20, 21).

Application to Jets and Spots on Jupiter

First, it is necessary to fit the dimensionless parameters and
fields in the dynamical equations in Eqgs. 1 and 2 to their
dimensional counterparts for the Jovian atmosphere, which are
distinguished by asterisk superscripts. Let D* be the flow domain
that lies between the latitudes ®_ and ©., and let u* be the
zonally averaged velocity profile for this domain of Jupiter
determined by Limaye (3, 22). A centered Limaye profile, i*,
obtained by subtracting from u* its average over the domain, is
introduced so that the zonal mean flow satisfies the boundary
conditions ¢* = 0 at the channel walls. With this adjustment of
frame of reference, no constraint associated with the conserva-
tion of linear impulse is required in the constraints (Eq. 5) for
the maximum entropy principle. The characteristic length scale
L is defined to be half the channel width, and the characteristic
velocity scale U is defined to be the rms velocity of the centered
Limaye profile; namely,

(®+ — ®_)r0 2 1 7Y 2y %
where rg = 7 X 107m is used for the radius of the planet. The
dimensional constants 8* and A* are computed from the Coriolis
parameter f(®) = 2Qsin O, with Q = 1.76 X 1074 s~!, at the
center latitude ®, of the channel; specifically,

AT R
ro f(©y)’

where ¢ = 454ms~! is the estimated gravity wave speed for

Jupiter (23). The dimensionless model parameters are then 8 =

L2U~'g* and A = L™'A*. The fields Q and ¢ are similarly

nondimensionalized by L and U; in particular, the dimensionless

centered Limaye streamfunction is

y
IL__J i(ydy', with i=U 'a*.
1

There is no available data on the zonal velocity profile of the
lower layer, and consequently there is no direct way to deduce
Y. Dowling (1, 23) has noted that a good fit for the observational
data is obtained by imposing the linear relation

O=0y—vy with o=-1"2 [12]
This relation combined with Eq. 2 then determines the effective
zonal topography

- dii
P = (A0 + 1)J + Az(@ - By - V)- [13]
In the computations presented here, the parameter 6 in Eq. 13 is
selected to be 0 = —A~2 — (7/2)?, the first eigenvalue of 92/ax? +
8%/dy* —A~% on D. When 4y, is fixed with this value, which is close
to Dowling’s approximate value, ¢ is a bifurcation point for the
energy—enstrophy theory. Other selection criteria for 0 are com-
patible with the analysis of observed data in refs. 1 and 23 and result
in small changes in the effective zonal topography; those criteria will
be discussed elsewhere. For any given value of 6, the parameter vy
in Eq. 12 is chosen so that [*yndy = 0.

Next, solutions to the constrained maximum entropy problem
(Egs. 4 and 5) are computed by using the iterative algorithm
developed in refs. 5 and 24. The zonal topography i is deter-
mined by the Dowling procedure (Eq. 13), and the constraint
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Fig. 1. The Limaye zonal mean velocity profile for the southern hemisphere
band from 36.6°S and 13.7°S (solid), and the zonal velocity profile for the lower
layer (dashed) inferred by the Dowling procedure.

values E and T are derived from 4. Consequently, the solution
corresponding to ¢ = 0 is a zonal shear flow that coincides with
the centered Limaye profile on the channel domain. Branches of
solutions are therefore computed by varying the skewness pa-
rameter ¢ in the prior distribution (Eq. 9), holding i, E, and I'
fixed. Because virtually all of the large coherent vortices on
Jupiter have anticyclonic relative vorticity, it is natural to expect
that they emerge as equilibrium states in a statistical theory with
a prior distribution having anticyclonic skewness. This conjec-
ture is tested for particular channel domains in the southern and
the northern hemispheres. Each domain contains five alternating
zonal jets of the Limaye profile and consists of two zones and two
belts.

The Southern Hemisphere Domain

The large-scale coherent structures predicted by the statistical
equilibrium theory are computed for a channel domain between
36.6°S and 13.7°S in latitude. (For the sake of clarity, the usual
northern hemisphere conventions are used in the discussion of
southern hemisphere flows.) Fig. 1 displays the Limaye profile,
u*, for the upper layer together with velocity profile, u%, for the
lower layer determined by Eq. 13. By construction, the computed
solution, u*, for ¢ = 0 coincides with the centered Limaye
profile, i*. In this and the subsequent figures, the zonal profiles
of computed equilibrium states are plotted with respect to the
reference frame of the uncentered Limaye profile. The stream-
line plots displayed in Fig. 2 correspond to solutions with the
same values of energy E and circulation I" as in Fig. 1, but with
anticyclonic skewness ¢ = —0.02,—0.035. These plots clearly
show that a large coherent vortex forms in the zonal shear flow
and becomes stronger and more concentrated as the skewness
parameter increases. This large vortex is an anticyclone centered
in latitude at ~23°S, the latitude of the GRS. Furthermore, the
vortex for e = —0.035 has nearly the same size and shape as the
GRS. A weaker anticyclonic vortex also forms south of the large
vortex at 32°S, in the zone that corresponds to the location of the
White Ovals. In the belt between those zones and in the belt
north of the GRS, there are regions of recirculating cyclonic
flow. All these predictions of the statistical equilibrium theory
are consistent with the observed large-scale features of the
Jovian southern hemisphere (3). In Fig. 3, the zonal mean-
velocity profiles for the upper layer flows corresponding to & =
—0.02,—0.035 are plotted together with the Limaye profile. It is
noteworthy that, even though the computed solution with & =
—0.035 contains a strong vortex, its zonally averaged profile
departs only slightly from the Limaye profile.

The Northern Hemisphere Domain

In analogy to the southern hemisphere computation, the theory
is applied to a channel domain from 23.1°N to 42.5°N in latitude.

Turkington et al.
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Fig. 2. Mean streamline plots for the equilibrium states over the effective
zonal topography in Fig. 1, with skewness parameter ¢ = —0.02 (Upper) and
& = —0.035 (Lower), and the same energy and circulation as the Limaye zonal
flow. The length scale is L = 14,000 km.

This implementation provides an interesting test of the theory
because no large-scale coherent vortices are observed in this
domain of Jupiter. Fig. 4, which is analogous to Fig. 1, displays
the Limaye profile, u*, and the zonal velocity profile, u%, for the
lower layer determined by Eq. 13. The solutions corresponding
to skewness parameter ¢ = —0.02,—0.032 and having the same
energy and circulation as the Limaye solution with ¢ = 0 are then
computed. In striking contrast to the southern hemisphere
computation, these equilibrium states are purely zonal shear
flows. The zonal velocity profiles for these solutions are plotted
together in Fig. 5. In fact, all of the solutions corresponding to
0 > & > —0.032 are zonal, and for ¢ < —0.033 solutions fail to
exist. Even though no coherent vortices emerge, it is evident
from Fig. 5 that the zonal jet structure of these solutions is
modified significantly as the anticyclonic skewness increases.

Nonlinear Stability

All of the steady-flow fields calculated in Figs. 1-5 are nonlin-
early stable with respect to the dynamics of frictionless flow in

0.5r
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Fig. 3. The Limaye profile (solid) in the southern hemisphere band, and the

zonally averaged velocity profiles for the equilibrium states with ¢ = —0.02
(dashed) and ¢ = —0.035 (dotted).
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Fig.4. The Limaye zonal mean velocity profile for the northern hemisphere
band from 23.1°N to 42.5°N (solid), and the zonal velocity profile for the lower
layer (dashed) inferred by the Dowling procedure.

the upper layer with fixed topography. In fact, all coherent
structures identified with equilibrium states of the statistical
theory enjoy this stability property. The nonlinear stability of
these most probable states can be proved by constructing
Lyapunov functionals from the objective and constraint func-
tionals appearing in the maximum entropy principle (Egs. 4 and
5). This construction is related to the classical approach of
Arnold (25), in which a Lyapunov functional for a given steady
flow, such as a zonal shear flow, is defined by combining the
energy functional with the generalized enstrophy functional
associated with that steady flow. In the approach taken here, the
role of the generalized enstrophy functional is played by the
negative entropy, which can be expressed as a convex functional
of the coarse-grained potential vorticity, Q. The Lyapunov
functional of Arnold is then identical with the Lagrangian for the
constrained maximization problem (Egs. 4 and 5). In the Jovian
applications considered here, however, the second variation of
this Lagrangian is typically not positive-definite with respect to
arbitrary variations, 8Q. Consequently, the Arnold sufficient
conditions for stability fail in general, as has been noticed by
Dowling (1, 23, 26). Nevertheless, for any equilibrium state Q of
the statistical theory a Lyapunov functional whose second vari-
ation is positive-definite at Q can be constructed by forming the
“augmented Lagrangian,” a standard tool of optimization theory
(27) for treating constrained problems. The key idea in this
refined stability analysis is to account for the dynamical con-
straints (Eq. 5) in the Lyapunov argument. A detailed discussion
of this approach is given by B.T. and K.H. (28); its application
to coherent structures in a Jovian atmosphere will be described
elsewhere.
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Fig. 5. The Limaye profile (solid) in the northern hemisphere band and the

zonal velocity profiles for the equilibrium states with ¢ = —0.02 (dashed) and
& = —0.032 (dotted), and the same energy and circulation as the Limaye zonal
flow; each of these computed solutions is purely zonal.
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Concluding Discussion

The statistical theory developed here self-consistently produces
equilibrium states possessing all three of the key properties i, i,
and iii. The results strongly suggest the use of such statistical
equilibrium theories as inverse modeling tools to infer the
statistical behavior of the small-scale motions from the observed
large-scale structures. In the context of the one and one-half
layer quasigeostrophic model used here, such an approach has
shown that anticyclonic eddies dominate the small-scale fluctu-
ations of potential vorticity. How consistent is this theoretical
prediction of anticyclonic skewness with direct observations?
Recent analysis of data from the Galileo mission (29) points to
a source of intense anticyclonic small-scale forcing of the
weather layer on Jupiter through moist convective towers—their
significant horizontal divergence coupled with rotation leads to
small-scale anticyclonic vorticity production. Also, numerical
simulations of freely decaying shallow-water turbulence in a
regime of balanced dynamics show a preponderance of anticy-
clones compared with cyclones (30). Careful numerical experi-
ments with small-scale forcing could provide additional insight
into this issue. At present, all observational and numerical
evidence confirms the implication of the statistical equilibrium
theory that the distribution of small-scale eddies is anticycloni-
cally skewed.

The statistical equilibrium computations conducted here for
midlatitude bands in the northern and southern hemispheres of
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