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Abstract

As data for microbial community structures found in various environments has increased,

studies have examined the relationship between environmental labels given to retrieved

microbial samples and their community structures. However, because environments contin-

uously change over time and space, mixed states of some environments and its effects on

community formation should be considered, instead of evaluating effects of discrete envi-

ronmental categories. Here we applied a hierarchical Bayesian model to paired datasets

containing more than 30,000 samples of microbial community structures and sample

description documents. From the training results, we extracted latent environmental topics

that associate co-occurring microbes with co-occurring word sets among samples. Topics

are the core elements of environmental mixtures and the visualization of topic-based sam-

ples clarifies the connections of various environments. Based on the model training results,

we developed a web application, LEA (Latent Environment Allocation), which provides the

way to evaluate typicality and heterogeneity of microbial communities in newly obtained

samples without confining environmental categories to be compared. Because topics link

words and microbes, LEA also enables to search samples semantically related to the query

out of 30,000 microbiome samples.

Author summary

In the past decade, microbiomes from various natural and human symbiotic environ-

ments have been thoroughly studied. However, our knowledge is limited as to what types

of environments affect the structure of a microbial community. In the first place, how can

we define “environments”, in particular, the environmental entities that are often continu-

ously varying and difficult to discretely categorize? We assumed that environments could

be represented from microbiome data because the structure of microbial communities

reflect the state of the environment. We applied a probabilistic topic model to a dataset

containing taxonomic composition data and natural language sample descriptions of

>30,000 microbiome samples and extracted “latent environments” of the microbial com-

munities, which are core elements of environmental mixtures. Integrating the training

results of the model, we developed a web application to explore the microbiome universe
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and to place new metagenomic data on this universe like a global positioning system. Our

tool shows what kinds of the environment naturally exist and are similar to each other on

the perspective of the structural patterns of microbiome, and provides the way to evaluate

the commonality and the heterogeneity of users’ microbiome samples.

Introduction

Microbial communities are present worldwide in almost all possible environments. Because

the composition (structure) of a microbial community and its surrounding environment are

closely related to each other, it is important to understand what kinds of structural patterns are

possible and how environmental factors affect community formations. Over the past decade,

the structures of tens of thousands of microbial samples derived from various natural environ-

ments, including those in symbiosis with humans, have been analyzed. Using these datasets,

global patterns of microbial diversity have been characterized that show that community struc-

tures constitute distinct clusters among at least certain environments[1–4]. In addition, the

community structure of each examined environment has been evaluated using a clearly

defined environmental ontology[5,6].

However, the granularities (i.e., the levels of detail) of human-classified environmental cate-

gories do not necessarily coincide with structural patterns of microbial communities, and this

unavoidable arbitrariness in the granularities of environmental labels may bias the interpreta-

tion of results of comparative analysis, such as an enrichment analysis of environments among

communities[1]. There are three types of incongruences between environmental labels and

community structures. First, there are different subtypes in the microbial community struc-

tures associated with certain environments, e.g., enterotypes in the human gut and vaginal

community types[7–9]. Second, in contrast to the first case, a nearly identical community

structure may be observed across different environmental labels. For example, microbial com-

munities of the surface of the home environment and their inhabitants show highly similar

structural patterns[10]. Third, because an environment varies continuously over time and

space, it is impossible to define it using a strict segmentation or hierarchical structure. For

example, the brackish water of an estuary can have various mixtures of fresh water and seawa-

ter, for which the relative proportion continuously shifts[11]. Although an environment is dif-

ficult to definitively define owing to uncharacterized factors, these factors can potentially be

defined indirectly using microbial community data because microbes respond quickly to envi-

ronmental changes[12,13], and their community structure reflects the state of the environ-

ment[14–16].

Microbial community structures have been analyzed by various data clustering methods.

Most of these approaches are based on the evaluation of data densities on high-dimensional

feature space in which microbiome samples are distributed. Microbial community structures

are complex as they are described by a large number of features (taxa), although not all the

features necessarily vary independently. There are groups of taxa that show co-occurrence

patterns in samples[17–19]. Herein, we refer to such co-occurrence relationships of microbes

as “sub-communities”. Summarizing community structure data as mixing ratios of sub-com-

munities makes it easier to interpret community dynamics according to environmental

changes[20]. To extract such partial structures from mixed data, the machine-learning tech-

nique denoted a topic model has been extensively studied in recent years since introduction

of the Latent Dirichlet Allocation (LDA) model[21]. The LDA model is a probabilistic gener-

ative modeling approach, mainly used in natural language processing, for discovering the
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latent (unobserved) structures of the dataset. The LDA model and its extended models have

been used to analyze microbiomes[20,22,23], however, it is often difficult to interpret

extracted sub-communities of microbial taxa. Sub-communities have been characterized by

evaluating their relationships with occurrences of sample metadata (i.e., data describing

information about the samples, such as body sites and gender) after modeling[24], or by

explicitly modeling associations between metadata and sub-communities[20]. These meth-

ods cannot be applied unless all samples have standardized metadata with a uniform granu-

larity, and thus tend not to be practical for comprehensive analyses of microbial samples

from various environments.

All metagenomic data registered in public databases have such metadata, that is, natural

language data described by the researchers who registered the samples. The paired dataset of

community structures and description documents can be used for modeling the conditional

relationship between them. However, natural language descriptions in databases are not

always sufficiently described as their content for many samples is often incomplete and has

widely variable resolution. For example, in a sample, various information on the host such as

race and gender, experimental conditions, the purpose of the research project, etc. are de-

scribed, but in another sample, it is described only as “human gut metagenome” and is needed

to be treated as a sample with missing values. Therefore, for robust modeling, it is necessary to

assume stochastic-generating processes not only for community structures but also for docu-

ments within the framework of the probabilistic generative model. For such purpose, the Cor-

respondence-LDA (Corr-LDA)[25,26] model can be applied. Corr-LDA is a probabilistic

modeling approach that is used to extract correspondence between various types of elements

occurring in the same dataset, for example, the correspondence between sub-regions of pic-

tures and their captions[25], between topics of blog documents and their annotation tags[26],

or between brain regions and their cognitive functions[27][28].

In this research, we attempted to find relationships between patterns of microbial com-

munity structures and patterns of “environments” that the human recognizes and describes.

To this end, we applied the Corr-LDA model to pairs of taxonomic compositions and natural

language sample descriptions for tens of thousands of sequenced 16S rRNA gene amplicon

samples reanalyzed by the unified analysis pipeline. Using this dataset, “topics” extracted by

the Corr-LDA model would represent the core elements of environmental mixtures. By inte-

grating training results, we developed an interactive web application denoted LEA (Latent-

Environment Allocation), which is freely available at http://leamicrobe.jp. The extracted con-

nections between microbial sub-communities and subsets of English words via topics are

applicable to various analyses. LEA enables researchers to do the following: 1) clarify the rela-

tionship between environments and patterns of microbial community structures. 2) predict

the “latent environments” of new samples from, for example, the ocean, a diseased gut, or

another unexpected environment, and quickly compare new samples with tens of thousands

of existing samples based on their environmental similarity, which makes it easy to detect dys-

biosis of the microbiome in the human gut or contaminants in natural environments. 3) search

for samples in the>30,000-sample dataset based on an ecological perspective, without depend-

ing on exact word matching of queries and sample descriptions. In this paper, we show the

patterns found in the human gut and vaginal communities as an example of separations and

connections of extracted “environments”, and show how the LEA global map and a semantic

search method on the map make it easy to explore patterns in microbial community structures.

In addition, as an example of environmental predictions for newly acquired microbiome sam-

ples, we show the LEA mapping results for the datasets of the human gut microbiome and the

microbiome derived from various natural environments.

Latent environment allocation of microbial community data

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006143 June 6, 2018 3 / 25

http://leamicrobe.jp/
https://doi.org/10.1371/journal.pcbi.1006143


Results

Overview of the LEA global map

We collected sequenced 16S rRNA gene amplicon samples from the MicrobeDB.jp database

and performed a phylogenetic analysis using VITCOMIC2[29], which is the metagenomic

analysis pipeline improved from VITCOMIC[30], on all samples. This resulted in a dataset

containing 30,718 samples with genus level information on their taxonomic composition

linked to a document containing sample description information. For this dataset, model

inference runs were performed by Corr-LDA with a varying number of topics. The perplexity,

which is the performance evaluation index of the model (smaller values indicate a better per-

formance), was sufficiently small for the model with 80 topics (S1 Fig). In the following sec-

tions, we discuss the results for the model inferred with 80 topics.

The inferred word subsets and microbial sub-communities for each topic are shown in S2

and S3 Figs. Each topic has a unique subset of words and a microbial sub-community. The

structure of a microbial community sample that has a large proportion of a certain topic is

likely to contain microbes in the sub-community of that topic, and the description of the sam-

ple is likely to contain words in the word subset of that topic. For most topics, the word subset

associated with the topic represents a single natural environment or a symbiotic environment

with humans.

Based on the topic composition of each sample, the similarities among the samples were

visualized using parametric t-SNE[31]. In Fig 1, the dots represent the 30,718 samples and the

pictures represent 80 topics. A sample that is mapped near a picture indicates that the sample

has a large proportion of that topic. On the map in Fig 1C, the sample (SRS425923), which is

located approximately midway between the two pictures, has the two topics (topic #37 and

#52) mixed in similar amounts.

The 80 topics can be regarded as latent environments that affect the formation of microbial

community structures. Topics form several clusters with dense connections formed by many

samples but with sparse or no connections between clusters. Topics can be roughly divided

into gut, skin, vagina, oral cavity, ocean, and soil. In addition, there are several isolated topics,

which include a coral reef, a mosquito, phyllosphere, etc.

Community types found in various environments

The gut microbiome in healthy adult humans are reported to consist of three[7] or four[24]

community types. However, whether truly discrete clusters exist as individual gut microbial

communities remains in doubt[32]. For the gut community types (enterotypes), the key genera

characterizing each community type have been identified—Bacteroides, Prevotella, and Rumi-
nococcus[7]—although the abundance of key genera varies between samples instead of being

discretely clustered[32,33]. Therefore, unlike discrete clusters, e.g., blood types, the composi-

tions of microbial communities are continuously shifting, perhaps as a result of environmental

factors. Such continuous variation of the structure of a microbial community can be discerned

by our method. 22 topics are related to the gut according to the word subsets associated with

each of the topics (S8 Fig), including those with a large proportion of Bacteroides, Ruminococ-
cus, and Prevotella (topics #79, #51, and #24. Fig 1B). However, most of the samples do not

reside near a single topic but instead occupy an intermediate position between multiple topics,

meaning that the samples are a mixture of several topics. Because many samples with interme-

diate properties owing to multiple topics exist, there is variability across a limited area of the

gut microbiome. Bacteroides is often found in the guts of people who eat diets rich in protein

and fat, and Prevotella is often found in the guts of vegetarians[12,34]. In fact, words denoting
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herbivores, e.g., “pig”, “swine”, “horse”, “bovine”, and/or “rumen”, are frequently found in the

Prevotella-rich topic and in topics that are peripherally connected to the Prevotella-rich topic

(Fig 1B).

Regarding the vaginal flora, three related topics were found (Fig 1C): the Lactobacillus-rich

topic (#37); the topic including Gardnerella, Sneathia, and Atopobium (#52); and the Shuttle-
worthia-rich topic (#43). Vaginal community types (Community State Type; CST) have previ-

ously been examined in detail with five CSTs recognized to date: four (CSTs I, II, III, and V) in

which Lactobacillus species dominates and one (CST IV) with various obligate or facultative

anaerobes and very few Lactobacillus[9,35]. The two topics detected in our model are consis-

tent with the above results (Fig 1C). Because we used community structure data found at the

genus level, we cannot distinguish between CSTs I, II, III, and V, so these communities were

identified as a single topic dominated by Lactobacillus. For the second topic corresponding to

CST IV in which Gardnerella and Atopobium dominate, the associated samples likely were

obtained from African-American women (as estimated by the word subset of topic #52). Inter-

estingly, samples in which the Lactobacillus-rich and Gardnerella-rich topics are mixed in vari-

ous proportions are frequently found, as indicated by the many dots that connect these two

pictures (Fig 1C). Vaginal bacterial communities are known to be stable throughout pregnancy

and to be relatively stable throughout the menstrual cycle although changes in the Lactobacillus
spp. populations have been observed[36,37]. Therefore, an environmental gradient of uniden-

tified factors may exist in the vagina, which would cause a community structure to exist as an

intermediate state between two topics. Another topic related to the vaginal environment is a

topic dominated by Shuttleworthia. The presence of Shuttleworthia may be related to bacterial

vaginosis[38] or to squamous intraepithelial cervical lesions[39], but its ecology is not well

understood. Interestingly, the continuous transition of samples to the Shuttleworthia-rich

topic links only with the Gardnerella-rich topic (Fig 1C).

Prediction of topic compositions for new samples

LEA can predict latent environmental topics of newly acquired samples using the Bayesian

prediction method with the identified 80 topics (see Methods). By examining the word subsets

associated with the mixed topics, the environment in which new samples are found can be esti-

mated. In addition, by training the dimension-reduction function of t-SNE in our system

using a neural network procedure, it is possible to arrange the locations of new samples on the

global map (Fig 1A) according to their topic compositions without changing the coordinates

of previously mapped samples. The topic prediction of a new sample and its placement on the

map are implemented by the LEA web application. By uploading the taxonomic assignment

file of VITCOMIC2, the placement of the sample on the map can be viewed in a few seconds.

As examples of LEA mapping results, we have analyzed the dataset of a time-series human

gut microbiome analysis[40], which consists of fecal samples obtained every day from two

male subjects from the US (subjects A and B). The results are shown in S4 Fig. The LEA visual-

ization reproduces the results of David et al.[40], such as the stability of the gut microbiome of

subject A over the course of the experiment with the exception of his time in Southeast Asia,

Fig 1. The LEA global map. (A) Scatter plot of the 30,718 samples from various environments. Coordinates were calculated by t-SNE based on

the similarity of topic compositions among samples. Each dot represents a sample. Pictures correspond to topics and are mapped to coordinates

where the mixing percentage of the topic is 100%. Each topic has its own word subset and microbial sub-community. As an example, for topic

#17, a word subset related to “soil” is displayed by the word cloud (the size of each word is scaled by its probability of occurrence), and the

microbial sub-community, which contains mainly soil bacteria, is displayed as a pie chart. (B) Enlarged view of the region related to the gut in the

global map. (C) Enlarged view of the region related to the vagina in the global map. The colors of the genera in the pie charts are determined

based on their related phyla (see S2 and S3 Figs, which shows the word clouds and pie charts for all topics).

https://doi.org/10.1371/journal.pcbi.1006143.g001
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and the change in the gut microbiome of subject B caused by an infection. Such results can be

easily obtained using the LEA web application.

In a meta-analysis of a large-scale dataset, the existence of systematic bias due to the differ-

ence in methods across studies often becomes a problem. We tried to address this problem by

processing all samples with a unified information analysis pipeline, but there is a possibility

that a further upstream, sample preparation protocol could be a confounding factor. In partic-

ular, a bias due to differences in DNA extraction methods often becomes a problem[41]. To

assess the impact of different DNA extraction methods of the human gut microbiome analysis

on the locations on LEA global map, we conducted LEA environment predictions for the

Microbiome Quality Control (MBQC) dataset[42]. This dataset contains 16S amplicon

sequencing data from human stool samples, chemostats, and artificial microbial communities.

For the same biological sample, there are multiple sequencing data analyzed with different wet

laboratories or different DNA extraction methods. The results are shown in S10 Fig. First,

most of the samples derived from human feces in the MBQC dataset were properly mapped to

the “gut” area of the LEA global map (S10A Fig). As a whole, there was no tendency for sam-

ples processed with a specific DNA extraction kit to be mapped only to a specific topic. There-

fore, separation of topics on LEA is not necessarily influenced by differences in experimental

protocols. However, considering samples that have a same biological origin, some samples

were mapped to the nearly same position on the map, and the others were mapped on the loca-

tion biased by the DNA extraction kits (S10B–S10S Fig). The direction of biases probably dif-

fers depending on the position of the true taxonomy composition. Therefore, topics may

partially contain systematic bias due to differences in studies, and caution is necessary for

interpretation.

As an example of LEA involving a natural environment, Fig 2 shows the topic predictions

for 38 samples of microbial communities obtained over a short period of time and at a high

density from various points along the Tamagawa river in Japan. The upstream region of the

river begins in a deep mountainous region; the middle region flows through a densely-popu-

lated zone where there is water from sewage treatment plants and from tributaries that joins

the river; and the downstream-most region flows into Tokyo Bay. On May 26 and 27, 2015,

we sampled the surface water of the river at 38 points (S5 Fig, S1 Table) and identified the

microbes contained in the samples by VITCOMIC2 after sequencing of their PCR-amplified

16S rRNA genes. The genus level taxonomic compositions are shown in Fig 2A. Limnohabi-
tans is the major genus found in the samples from the river. The microbial community struc-

ture of the river continuously shifted as it flowed to the estuary, but sample 200 had a greatly

different structure. Sample 200 was obtained just under the sewage treatment facility, and its

composition probably reflects the microbiome of the treated water. The community structures

of samples 10, 20, and 30, which were obtained from brackish water in the estuary, also dif-

fered greatly from those collected elsewhere along the river.

The topic predictions for the river samples are shown in Fig 2B. After performing LEA, two

topics related to “river” were found: one was topic #3, which frequently occurs together with

words such as “Baltic sea,” “lake,” and “river,” and the second was topic #53, which is associ-

ated with the words, “river,” “wastewater,” and “urban.” The aforementioned words belong to

the dominant topics in Fig 2B. Topic #3 is primarily associated with the upstream region of the

river and topic #53 with all areas of the river. The relative proportions of these two topics grad-

ually change as the river flows downstream. Given the word subsets associated with the two

topics, topic #3 represents freshwater ecosystems, such as lakes and rivers, and topic #53 repre-

sents river areas adjacent to cities. Samples 10 and 20 (from the estuary) are largely associated

with topics #11 and #63, which represent the ocean, and, along with sample 30, are associated

with topic #56, which represents activated sludge. For the Tamagawa river, about half its water
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Fig 2. The Tamagawa river microbiomes. Samples taken from various points along the Tamagawa river, which were not used to train the model or in the

construction of the initial global map, were mapped onto the global map based on the predictive results of their topic compositions. (A) The genus level

taxonomic composition of samples from the surface water of 38 sites along the Tamagawa river. Site 360 is the most upstream site, and site 10 is at the estuary of

the river. (B) Topic composition of the Tamagawa river microbiome. Each color represents a topic. The top 10 words with the greatest generation probability for

Latent environment allocation of microbial community data
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that flows into the estuary is treated water[43]. Thus, our results suggest that the mixing of the

river water with seawater greatly changes the community structure and that the river’s ecosys-

tem is greatly affected by it interaction with the urban area.

Topic #45 is associated with the upstream region of the Tamagawa river (sample 360 to

250); the words associated with this topic include “pet” and an indoor environment (Fig 2B).

Many of the 16S rRNA sequences associated with topic #45 belong to Blastomonas, a genus

associated with domestic wastewater, which is found in tap water, faucets, and shower hoses

and is resistant to disinfection[44–46]. Advanced sewage treatment facilities are not found in

this region of the Tamagawa river, suggesting that untreated household wastewater is being

dumped into the river.

Most of the Tamagawa river samples were mapped near “freshwater” topics #53 and #3 on

the global map (Fig 2C), although the topics of sample 200, taken near the sewage treatment

plant, and samples 10, 20, and 30, taken from the estuary, diverged, to some extent, from the

freshwater topic. Specifically, sample 10 were mapped within “ocean” topics. In this way, the

LEA web application can place a new sample appropriately on the global map of existing sam-

ples and enables visual and intuitive operation to evaluate its characteristics, e.g., deviations

from the expected environments.

For further testing of LEA using external dataset, we conducted environmental predictions

of microbiome data derived from a highly diverse environment produced by the Earth Micro-

biome Project (EMP) [47]. One of the good points about this dataset is that every sample is

given an environmental label based on a controlled vocabulary, the EMP Ontology (EMPO).

EMPO is a hierarchical framework that captures the major axis of the microbial community

diversity and is used to assign samples of EMP to its habitat[47]. Therefore, by comparing the

result of LEA mapping with each EMPO label, we can estimate the accuracy of environmental

prediction by LEA. For each of the lowest layer label (level 3: most specific habitat name) of

EMPO, we examined the location of the samples given that label on the LEA map. The results

are shown in S11 Fig. Environmental prediction results have well captured the influence of

salinity known as the main axis that determines the community structure[2]. For most samples

of water, sediments, biofilms, and soils, saline samples were mapped around the ocean area,

and non-saline samples were mapped to freshwater or soil area (S11A–S11H Fig). Regarding

the samples derived from the host-associated environments, it was observed that the mapping

pattern varied depending on the host species even with the same EMPO label. Also, the EMPO

label “Plant surface” intuitively evokes leaf surface of land plants, but most of the EMP samples

labeled with “Plant surface” mapped to “ocean” area on LEA. This is because most of the EMP

samples used in this study with the label “Plant surface” are derived from the kelp as the host

(S11J Fig). In such a case, environmental prediction by LEA gives interpretable results (micro-

bial communities on the kelp surface reflects the oceanic community structure pattern, etc.).

When the environmental ontology and the community structure pattern seem to conflict, LEA

can be used to infer the reason from the mapping results.

LEA as a semantic search engine for metagenomic samples

The topic-model approach can be used to semantically search documents related to a user’s

query[48,49]. By using the trained model parameters in LEA, existing samples can be searched

each topic are also displayed. (C) Mapping of the Tamagawa river topic compositions onto the global map. Dark gray dots are samples that were part of the

training set. Colored dots with a gradient from light blue to purple represent the sites along the Tamagawa river from which the samples were obtained, e.g., the

site 360 sample (the upper most part of the river) is colored light blue, and the site 10 sample from the estuary is colored purple. The trajectory from the upstream

to the downstream is indicated by a dotted line.

https://doi.org/10.1371/journal.pcbi.1006143.g002
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using natural language such as “forest soil”, or “hot spring”. Instead of needing to search for

samples by exactly matching the queried words and the description information associated

with samples, we can find the sample using latent environmental topics, using the probability

of each sample to generate the query sentence as the score of the sample.

As an example, Table 1 shows the top five scoring samples obtained by querying “What

kind of microorganisms are in an oil sands tailings pond?” Oil sands tailings ponds are slag

ponds accompanying oil sand development and are highly toxic environments as they contain

heavy metals, naphtha, bitumen, and other toxic chemicals. Tailing ponds have heterogeneous

environments, being aerobic at their surfaces and anaerobic at their bottoms. Many members

of the class Methanomicrobia, includingMethanoculleus, Methanolinea, Methanosaeta, Metha-
nobrevibacter, and Methanocorpusculum, which are methanogenic archaea found in the sedi-

ment of tailing ponds, contribute to the decomposition of hydrocarbons[50,51]. Given the

query, “What kind of microorganisms are in oil sands tailings ponds?”, LEA returned the sam-

ples derived from oil sand tailing ponds and oil-water mixtures (Table 1). In addition, LEA

returned the sample derived from ocean sediments, although the description of this sample

did not contain words such as “oil,” “sand,” or “pond.” Although the microbial community

structures of these samples varied in terms of their taxonomy, almost all were composed of

methanogenic archaea. Within the machine-learning process, these members of Methanomi-

crobia are considered simply as variables in the microbial community structure data and their

shared characteristics are not recognized (although humans would recognize properties com-

mon to all of them given that “Methano-” is at the beginning of each of their names). All high-

scoring samples were associated with a large proportion of topic #8 related to methanogenesis

(S2 Fig). Therefore, the fact that samples containing many methanogenic archaea were

retrieved after querying for “oil sands tailing ponds” indicates that LEA can automatically

extract the following two linkages: 1) the association between words such as “hydrocarbon,”

“oil,” “tailing,” and “methane,” and the latent environmental topic that represent “methano-

genesis,” and 2) the association between methanogenic archaea of various genera and the

latent environmental topic that represent “methanogenesis”.

Discussion

For this study, we applied a correspondence topic model to more than 30,000 samples of

microbial community structure data and extracted the latent environments of each sample as

topics. By doing so, we obtained microbial sub-communities that can be regarded as “base var-

iables” to describe an entire dataset and associated word subsets that characterize the environ-

ments corresponding to the base variables. By visualizing each sample, which is expressed as a

linear combination of these base variables, in two-dimensional space, LEA clarifies continuous

Table 1. Top five results for the search query “What kind of microorganisms are in oil sands tailings ponds?”.

Sample accession number Scorea NCBI taxonomyb Abundant generac

DRS011723 4.01471E–06 Marine sediment metagenome Methanosaeta (100%)

SRS151248 4.00920E–06 Hydrocarbon metagenome Methanoregula (57%), Methanosaeta (21%), Methanolinea (7%)

SRS151247 4.00584E–06 Hydrocarbon metagenome Methanoregula (46%), Methanosaeta (31%), Methanolinea (7%)

SRS526819 4.00451E–06 Aquatic metagenome Methanoplanus (41%), Methanocorpusculum (39%), Methanolobus (18%)

SRS151329 4.00358E–06 Hydrocarbon metagenome Methanoregula (64%), Methanosaeta (16%)

aScores of each sample were calculated as the probability to generate a query sentence based on topic compositions of each sample.
bNCBI taxonomy labels added to each sample. Abbreviation: NCBI, National Center for Biotechnology Information.
cTaxonomy names of abundant genera and their relative abundances in the taxonomic composition of the sample.

https://doi.org/10.1371/journal.pcbi.1006143.t001
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variation of the microbial community structures linking two or more environments. The dif-

ference between continuously connected environments and an isolated environment might

mean that only a few samples have been characterized that bridge the isolated environments.

Such environments currently include wastewater, the phyllosphere, and environments related

to insect symbiosis. Conversely, human-related environments have been vigorously sampled,

and therefore we believe that the visualization reported in this manuscript represents a nearly

complete picture of those environments related to healthy human adults.

Using the extracted environmental topics, LEA can infer what mixture of core environ-

ments influenced the taxonomic compositions of newly acquired samples. In the river micro-

biome analysis, we showed that samples taken from the brackish water area of the Tamagawa

river can be expressed as a mixture of a “freshwater” topic, a “seawater” topic and a “wastewa-

ter” topic. Environmental prediction of new samples is performed by a Bayesian approach

similar to that used in a microbial source tracking algorithm[52], but using topic sub-commu-

nities extracted from a large-scale dataset as source communities, instead of using the samples

pre-specified by a user as sources. This allows to compare new samples virtually with tens of

thousands of samples related to diverse natural environments and human body sites. Environ-

mental prediction of new samples may be done by fixing the granularities of environmental

labels to be used and comparing with samples to which those labels are added in advance[53].

In such a method, however, it is difficult to set the level of granularities, especially when there

are multiple structural patterns of microbial communities in a single environment. When ana-

lyzing the dynamics of community structures in a single environment, for example, the time

series analysis of human gut microbiome or the spatial distribution of river microbiome, it is

more useful to use fine-grained environmental labels than to use simple labels such as “river”

or “human gut”. Our method clarifies the structural patterns naturally existing in various envi-

ronments and provides the way to evaluate how new samples transit among them.

By using a neural network algorithm that maps the data to a two-dimensional space, LEA

can position new samples onto the existing global map. This mapping system can be regarded

as a microbial global positioning system[54] used to specify the position of a new sample based

on the positions of existing sample and allows a user to intuitively evaluate the properties of

new samples. Dysbiosis, a deviation from the ordinary distribution of a microbial community

structure that exists in symbiosis with humans, has been discussed in relation to diseases, espe-

cially those of the gut[55]. Because a newly acquired sample, such as one from an ill patient,

can be located anywhere on the map, identifying the ideal end-point from a clinical perspective

and defining its vector may be useful information when choosing a specific treatment that can

transition its community structure to another state[54].

To perform comparative metagenomics based on environmental information, a huge

amount of environmentally labeled data ordered as a dataset is required. However, manually

labeling such data is nearly impossible, as the amount of available data is increasing too rap-

idly at present. In addition, as microbial community structures from new environments are

characterized, much work will be needed to design the ontologies of the corresponding envi-

ronmental labels at the appropriate granularities while incorporating all new environments.

Furthermore, because binary environmental labels (presence or absence of an environmental

property) are often used to characterize the samples, it is not possible to manually and ap-

propriately evaluate samples that have intermediate properties associated with several en-

vironments. Our method automatically extracts the relationship between microbes and

their environments by assuming that the microbial community structure and the natural lan-

guage description for a given sample are both generated from a state in which several envi-

ronments are mixed. The accuracy of the model should increase as more training data are

incorporated.
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Prior to extending our method for future work, several problems must be solved. First is

how many topics are needed to model microbiomes in highly diverse environments. The num-

ber of topics in this study, 80, is an arbitrarily determined value in a sense. In fact, the predic-

tion accuracy of the model for the validation set shows that 80 topics are still inadequate and

that a more accurate model can be constructed by setting the more number of topics (perplex-

ity, S1 Fig). However, increasing the number of topics may lead to overfitting, and too large a

number of topics may make the map difficult to visualize and interpret. Therefore, we aimed

to explain the data with as few topics as possible while keeping the overall prediction accuracy.

We are not claiming that microbial communities can be explained by a combination of 80 pat-

terns. The model used in this study is a practical choice to facilitate the interpretation of the

whole picture of the microbial community structures and to provide a tool to explore interest-

ing patterns. In the future, as the number of samples acquired from various environments

increases, it will be necessary to set a larger number of topics. Nevertheless, from the results of

experiments with a large number of topics, the characteristics of the environments considered

in this paper (i.e., the gut and vagina) are robust, and an increase in the number of topics

would mainly lead to the generation of a topic related to a single research study (e.g., “whale

skin” as part of a new topic separated from topic #14, which contains “coral reef”). Second is a

sampling bias among environments. Depending on the environment, the number of samples

studied so far varies greatly. Since LEA determines topics based on the prediction accuracy of

the validation set samples, LEA tends to express an environment with a large number of sam-

ples in high resolution by placing many topics in it, while environments with a small number

of samples tend to be compressed into a limited number of topics. Currently, the environment

related to humans, especially to the intestinal tract, have high resolution, but the environment

related to freshwater or hot springs has relatively few samples and the separation of topics can

be insufficient (S9 Fig). Therefore, attention should be paid to interpretation concerning LEA

predictions for such natural environments in which relatively a few number of samples were

studied. By incorporating large-scale data of microbiomes sampled from the natural environ-

ment, such as data from the Earth Microbiome Project[47], high-resolution topics will be

obtained for those environments in the future. The third problem is, though common to any

meta-analysis, a bias due to the difference in experimental methods. In the environmental pre-

diction results of the MBQC dataset by LEA, it was hardly the case that the difference in exper-

imental methods yields a large difference in coordinates on the LEA global map. Nonetheless,

depending on the area on the map, such a bias may have the effect of placing the sample close

to a particular topic. Ideally, there should be as much data as possible processed in a unified

experimental protocol.

We do not know if all topics used for our research specifically express a set of related envi-

ronmental parameters, except for topics such as those representing “methanogenesis.” In the

future, the environmental parameters that determine the microbial community structure will

need clarification that can be accomplished by examining the relevance of various metadata

and topic compositions and transitions.

Materials and methods

Dataset construction

Genus-level taxonomic composition data for 48,873 sequenced 16S rRNA gene amplicon sam-

ples were obtained from MicrobeDB.jp (http://microbedb.jp/MDB/), which is an integrated,

publically available database for microbes in which all metagenomic data registered in the

International Nucleotide Sequence Database Collaboration Sequence Read Archive (SRA)

prior to August 2014 are stored. MicrobeDB.jp includes reanalyzed taxonomic compositions
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of all samples using the unified analysis pipeline. Briefly, for all original sequence data regis-

tered in the SRA, we trimmed adapter sequences and filtered out low-quality sequences,

sequences derived from the PhiX genome, and sequences derived from the human genome.

For all high-quality sequences in each sample, we searched for similar sequences in the VIT-

COMIC2[29] database (http://vitcomic.org) using CLAST[56] and then performed taxonomic

assignments on these sequences. Finally, the number of sequences assigned to a specific genus

were summed for each sample. As a result, we obtained a dataset for which each SRS ID (iden-

tifier associated with a sample in SRA) had a genus-level taxonomic composition. All samples

with<1,000 sequences with an assigned genus were discarded, and samples with>10,000

assigned sequences were subsampled as 10,000 sequences.

To obtain metadata for the samples, XML files for the SRS IDs registered prior to August

2014 were downloaded from the SRA database. The XML file for each SRS ID contains

descriptions of the properties of the corresponding sample, such as pH values and a descrip-

tion of the environment from which the sample was obtained. We extracted the text sand-

wiched between all tags (e.g., research titles, scientific names, geographical locations, and

sample descriptions) in those XML files, lemmatized all words, and organized them according

to a bag-of-words model (with counts of the number of times each word appears). We

removed all English stop words from the extracted text. Additionally, all words corresponding

to any of the following conditions were removed: 1) words that contain numbers or symbols

that are not alphabetic (in many cases these were the project-specific sample identifiers); 2)

words in which the letters “A”, “T”, “C”, or “G” occupied�70% of the word length (often tag

sequences or primer sequences); 3) words generally used in many samples, e.g., genome and

metagenome (S2 Table); 4) words used only for a single research study; and 5) words that

appeared <20 times or in >30% of the samples in the dataset. Samples with all words removed

according to the aforementioned conditions were themselves discarded.

Finally, we integrated the taxonomic composition and sample description datasets to con-

struct a dataset consisting of only samples containing both features. This dataset contains

30,718 samples, each of which has a taxonomic composition (a count of each genus in the sam-

ple) and a description of the properties of the sample (bag-of-words). The number of genera in

the final dataset (vocabulary of taxonomic composition data; S3 Table) is 1675, and the num-

ber of unique words in the dataset (vocabulary of sample description data; S4 Table) is 764.

The final dataset is publicly available at http://palaeo.nig.ac.jp/Resources/lea2018/.

Corr-LDA model inference

We assumed that each sample had a multinomial distribution of latent environments and that

both the observed genera and the sample description document were generated according to

the mixing ratio of those environments or topics. To infer topics, we applied Corr-LDA[25,26]

to the dataset.

In our LEA system, Corr-LDA model was applied to our dataset as described below. Each

sample d (d = 1 . . .D) has taxonomic composition data wd = {wdn} (n = 1. . .Nd) and description

data td = {tdm} (m = 1. . .Md). Here, Nd is the number of sequences with an assigned taxonomy

in sample d, wdn is the taxonomy assigned to the nth sequence in sample d,Md is the number

of words in the description given to sample d, and tdm is themth word in sample d. In a topic

model, it is assumed that all elements in the data have a latent topic. The latent topic of the nth

sequence in sample d is defined zdn 2 {1 . . .K}, and K is the number of latent topics that have

been pre-specified. The latent topic of themth word in sample d is defined cdm 2 {1 . . .K}, with

K again representing the number of latent topics, which is the same for both sequences and

words. Topics assigned to each sequence and each word is undefined prior to analysis and
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inferred using the entire dataset. For the entire dataset, the joint probability distribution for

the taxonomic composition dataW, the description data T, the latent topics Z for sequences,

and the latent topics C for words was written as follows:

PðW;T;Z;Cja; b; gÞ ¼ PðZjaÞPðWjZ; bÞPðCjZÞPðTjC; gÞ

where α, β, and γ are hyper-parameters of prior distributions for topics, taxa, and words,

respectively.

We assumed that latent topics Z for genera appearing in each sample d is generated accord-

ing to the multinomial distribution θd and that the prior of θd is the asymmetric Dirichlet dis-

tribution having αz (z = 1 . . .K) as hyper-parameters. θd can be integrated out and P(Z|α) can

be written as follows:

P Zjað Þ ¼
YD

d¼1

Z

PðZdjydÞPðydjaÞdyd ¼
Gð
PK

z¼1
azÞ

QK
z¼1

GðazÞ

 !D
YD

d¼1

QK
z¼1

GðNzd þ azÞ

GðNd þ
PK

z¼1
azÞ

where Nzd is the number of sequences that are assigned to a topic z in sample d and Г is the

gamma function.

The genera appearing in a sample is generated according to a multinomial distribution φz

when its latent topic is z. φz can be interpreted as a sub-community of genera associated with

latent topic z. We assumed the symmetric Dirichlet prior for φz. φz can also be integrated out

and P(W|Z, β) can be written as follows:

P WjZ; bð Þ ¼
YK

z¼1

Z

PðWjz;φzÞPðφzjbÞdφz ¼
GðbVÞ
GðbÞ

V

� �KYK

z¼1

QV
w¼1

GðNzw þ bÞ

GðNz þ bVÞ

where Nzw is the number of sequences assigned to genus w with a topic assigned to z, Nz is the

number of sequences assigned to a topic z, and V is the number of unique genera in the

dataset.

Topics for words in sample description data were generated according to the following:

cdm � Multinomial
Nzd

Nd

� �z¼K

z¼1

� �

where Nd is the number of genus-assigned sequences in sample d. Thus, topics for words are

conditional on topics assigned for genera.

A word appearing in a sample is generated according to the multinomial distribution ψc

when its latent topic is c. ψc can be interpreted as a subset of words representing latent topic c,
and we assumed the symmetric Dirichlet prior for ψc. As in the case of P(W|Z, β), P(T|C,γ) can

be written as follows:

P TjC; gð Þ ¼
YK

z¼1

Z

PðTjc;ccÞPðccjgÞdcc ¼
GðgTÞ
GðgÞ

T

 !K
YK

z¼1

QS
t¼1

GðMzt þ gÞ

GðMz þ gSÞ

whereMzt is the number of words t with a topic assigned to z,Mz is the total number of words

assigned to a topic z, and S is the number of unique words in the dataset.

We assumed the asymmetric Dirichlet prior only for the topic multinomial distribution,

and the symmetric Dirichlet prior for the genera and word multinomial distributions because

samples for which their microbial community structure had been analyzed previously are

more likely to have been acquired from human symbiotic environments, suggesting that a bias
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might also exist for the topic occurrence probabilities. It was reported that setting an asymmet-

ric Dirichlet prior for a topic distribution is effective for robust inference of a topic model[57].

The posterior distributions of the latent topic Z for genera and the latent topic C for words

were approximated by the collapsed Gibbs sampling method[26,58]. Hyper-parameters (α, β,

and γ) were updated in each step during the Gibbs sampling by the fixed-point iteration

method[59].

To determine the number of topics K, we randomly divided the dataset into 25,718 samples

as a training set and a group of 5,000 samples as a test set, and then the test set perplexity was

calculated using the results from the training set with varying numbers of topics. Perplexity is

an index for measuring the predictive performance of a held-out test set, and the smaller the

value, the better the performance. We ran five Markov chains using different initial values and

inferred the model parameters. Next, using the model parameters inferred from the training

set, the topic composition of each sample in the test set was estimated using 50% of the

sequences in each sample, and the generation probability of genera assigned to remaining 50%

of the sequences was calculated. S1 Fig shows the average perplexities and standard deviations

obtained by inference with five Markov chains for 5 to 300 topics. Setting too large a number

of topics reduces the interpretability of the training results and might cause overfitting for

existing samples, so we fixed the number of topics as 80.

Finally, we ran a Markov chain using 30,718 samples with the number of topics set at 80

and acquired the topic composition θ for each sample, the genera probability φ for each topic

(microbial sub-community in each topic), and the word probability ψ for each topic (word

subset corresponding to each topic) when the joint likelihood converged after a sufficient

number of Gibbs iterations. The implementation of Corr-LDA used in this study is available at

https://github.com/khigashi1987/CorrLDA. Parameters used were -I 1000 -K 80 (1000 Gibbs

iterations and 80 topics).

Word subsets and microbial sub-communities associated with each topic are listed in S2

and S3 Figs. All word-cloud images were generated using the word-cloud generator in Python

(https://github.com/amueller/word_cloud).

The structure of sub-communities differs greatly between most topic pairs (S6A Fig). The

topic pair with the most similar sub-communities is formed by the soil-environment topics

#19 and #54, although the structures of these topics are still greatly different (S6B Fig). Similar

comparison on word subsets of topics shows that there are many more similar topic pairs with

respect to word probabilities (S6C Fig). The topic pair with the most similar word subsets is

formed by the vagina-associated topics #43 and #52 (S6D Fig). In both topics, two words,

“female” and “vaginal”, dominate greatly in their probabilities and reflect similar environmen-

tal concepts (“vagina”). However, in a topic #52, two words, “african” and “american”, have

relatively large probabilities, whereas in a topic #43 the probabilities of those words are very

small (S6D Fig). Unlike microbial sub-communities of topics, it is natural that there are multi-

ple similar topics for word-subsets. That is because there are some environments which have

different patterns of the community structures but are difficult for the human to distinguish

and describe those, as with the case of the human gut environment (enterotypes[7]). Nonethe-

less, like these vagina topics, some topics may reflect slight differences that appear in the sam-

ple descriptions.

As for what kinds of environment the topics show, it is strongly influenced by the sampling

bias by the previous research. The vigorously studied environment can be modeled at the high

resolution, resulting in a large number of topics associated with the environment. We investi-

gated the number of topics related to a specific environment by calculating the generation

probability of specific words for each topic. If the topic had a probability of generating the

word “gut” above 5%, we considered that topic to be related to the gut-associated environment.
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Similarly, we calculated the sum of the generation probabilities the words “oral”, “cavity”,

“dental”, “plaque”, “gingiva”, “tonsil” and “saliva” for the oral cavity-associated environment,

the word “skin” for the skin-associated environment, the words “vaginal” and “vagina” for the

vagina-associated environment, the words “marine”, “sea”, “ocean”, “seawater” and “saline”

for the ocean-associated environment, the words “freshwater”, “lake” and “river” for the

freshwater-associated environment, the words “soil”, “agricultural” and “field” for the soil-

associated environment, and the words “hot” and “spring” for the hot spring-associated envi-

ronment for each topic. As a result, there were many topics associated with the gut environ-

ment (22 topics), and the number of topics related to the natural environment tended to be

small (S8 Fig). When examining the number of samples with more than 50% of each “environ-

ment-associated topics”, similar trends were observed (S9 Fig).

Visualizing the model parameters

After the above process, all samples in the dataset were expressed as 80-dimensional, real-

valued vectors showing topic compositions. In general, for visualization of 80-dimensional

vectors, it is effective to arrange sample points in two or three-dimensional space by di-

mensionality reduction, and various dimensionality reduction methods, such as principal

component analysis or the multidimensional scaling method, can be applied. For this

approach, we used t-SNE (t-distributed Stochastic Neighbor Embedding)[60], which embeds

sample points in a low-dimensional space while maintaining the local structures between sam-

ple points in the original high-dimensional space. However, simple t-SNE method is inade-

quate for newly acquired samples. When predicting the topic composition of a new sample

and comparing it with existing samples, the distance calculation and the cost minimization for

the entire dataset must be performed again with the new sample, which might cause a random

change of the coordinates in the low-dimensional space each time a new sample is added.

Therefore, we adopted the parametric t-SNE method[31], which trains a function with the

same behavior as t-SNE using a neural network. This neural network inputs an 80-dimensional

vector and outputs two-dimensional coordinates. Weights of the neural network are trained

with the same loss function as for the normal t-SNE. We constructed a four-layer, feed-for-

ward neural network (the number of nodes is 80, 160, 160, 640, and 2). We used the Rectified

Linear Unit as the activation function of the nodes in all layers except the last one and the lin-

ear activation function in the last layer and trained the weights using the mini-batch stochastic

gradient descent method. We implemented parametric t-SNE by Theano[61] and Keras

(https://github.com/fchollet/keras) and used Adam[62] as the optimizer. After a sufficient

number of epochs, we obtained the coordinates of all samples by inputting topic compositions

of samples into the neural network and then visualized samples in a scatter plot. At the same

time, we obtained the coordinates of topics in two-dimensional space by inputting one-hot

vectors (80-dimensional vectors with a single 1 value and 0 for all other values) into the neural

network. On those coordinates in a scatter plot, we mapped pictures corresponding to the

word subset of each topic. Thus, the sample plotted in a position close to a given picture means

that the mixing ratio of that topic is very high for the sample. All pictures used in this study are

in the public domain.

Estimation of topic compositions for new samples

The topic composition of a new sample was estimated using the taxonomic composition of

the new sample, the hyper-parameter α, and the genera generation probability φ, learned

from the training samples. First, the DNA sequence data from a new sample was analyzed by

VITCOMIC2 and converted into taxonomic composition data. The estimation of the topic
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composition in a Bayesian approach requires consideration of all possible assignments of

sequences to topics, but direct estimation of the posterior distribution of the topic composition

is intractable[52]. In LEA, the posterior distribution of the topic composition of a new sample

is approximated by performing Gibbs sampling with randomly initializing topics assigned to

sequences in the new sample. For the genus w assigned to the nth sequence of a new sample d,

the latent topic z was sampled according to the following conditional distribution:

P zdn ¼ kjW;Zndn;φ; a
� �

/ φkw
Nkdndn þ ak

Ndndn þ
PK

z¼1
az

where φkw is the generative probability of genus w when zdn is k, αk is the hyper-parameter of

the topic probability; Nkd\dn is the number of sequences assigned to topic k, except for the nth

sequence in sample d; and Nd\dn is the total number of sequences in sample dminus one. This

distribution is similar to the sampling formula used in SourceTracker[52], but LEA uses

microbial sub-communities of 80 topics as source communities, instead of using a sample set

specified by the user as the source in SourceTracker. LEA estimates the topic composition of

the new sample using only sequence information because we assume that the primary use of

LEA is to predict the environment of the sample for which description information is not

available, or, more importantly, to predict contamination of the unexpected environment.

After a sufficient number of Gibbs-sampling iterations, the topic composition of the new sam-

ple was expressed as an 80-dimensional vector and converted to the coordinates on a two-

dimensional map by the feed-forward neural network learned with training samples. By

arranging the transformed coordinates of the new sample on the same two-dimensional map

as the existing samples, we could compare the features of the new sample with those of all sam-

ples in our database.

We provide REST (representational state transfer)-style APIs (application programming

interfaces) to access all the model parameters of LEA and the environmental prediction func-

tion of the user sample at http://snail.nig.ac.jp/leaapi/. With the HTTP POST method, envi-

ronmental predictions for the new samples can be calculated from the command line interface

without going through the web application. There is also an API that provides information on

the instability of the posterior distribution calculation of topic proportions for the new sam-

ples. The function computes topic proportions by drawing 100 samples from 100 independent

Gibbs sampling chains with different initial settings and by averaging 100 samples. This also

provides standard deviations of each topic proportion estimates. These values can be regarded

as “goodness of fit” of the new samples to the LEA model. In the calculation results on the

Tamagawa river microbiome, the topic proportions shown in Fig 2 was stable at any point (S7

Fig).

Implementation of LEA as a web application and a semantic search engine

of metagenomics samples

The training results from the 30,718 samples and their visualization are available as an interac-

tive web application at http://leamicrobe.jp. The back end of the application is written in

C language and Python, and the front end is written in JavaScript. Users can examine the taxo-

nomic and topic compositions of each sample, and the sub-community and word subset of

each topic on the global map. By uploading the taxonomic composition data obtained via VIT-

COMIC2, it is possible to place user samples on the global map after several seconds of calcula-

tion for estimating topic compositions. Because LEA accepts only taxonomic composition

data generated by VITCOMIC2, VITCOMIC2 must be used to obtain taxonomic composi-

tions from raw sequence data.
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Furthermore, with the use of the training results in our model, it is possible to perform a

sample search that does not depend on exact matching between the query text and sample

metadata. The sample-retrieval process uses the word generation probability ψ in each topic

and the topic composition θ in each sample as learned with the existing samples. The search

query consists of free words, i.e., several English words or English sentences. First, the search

query is divided into words. If the search query contains words that do not exist in the vocabu-

lary of LEA (764 words), those words are simply discarded. LEA also carries out preprocessing

of query words (removal of English stop words and lemmatization) same as the training step

of LEA model. After that, the score of sample d is calculated using the following equation:

ScoreðdÞ ¼ PðqjdÞ ¼
YN

n¼1

XK

z¼1

PðqnjzÞPðzjdÞ ¼
YN

n¼1

XK

z¼1

czqn
ydz

where q = {qn} (n = 1 to N) is a search-word set and N is the number of valid words in the

search-word set. This means that we use the probability that the sample d generates the search

query q as the score of the sample d. LEA calculates scores of all samples in LEA dataset

(30,718 samples) and sorts them in descending order. By entering free words in the search

window of the web application, it is possible to highlight samples with a high score, meaning

that those samples are semantically related to the search query. If the taxonomy name of a

microbe (or its synonym(s)) is included in the search query, the score is scaled according to

the abundance of that microbe in each sample. If the search query contains the name of higher

taxa than a genus level, the score is scaled according to the sum of abundances of microbes

below the input taxa (taxonomy based on NCBI Taxonomy). This makes it possible to search

samples by queries such as “Gemmatimonadetes in the ocean”.

Data preparation for LEA mapping

As examples that show how LEA mapping can be used, we acquired four microbiome datasets.

1) Intestinal microbiota data from two subjects over the course of a year[40]. 2) Intestinal

microbiota data obtained by various DNA extraction methods from Microbiome Quality Con-

trol Project[42]. 3) Microbiota data from various natural environments from Earth Micro-

biome Project[47]. 4) Microbiota data from the upper region to the estuary of the river

Tamagawa.

The intestinal microbiota data are those reported by David et al. (PRJEB6518)[40]. In that

study, every day for all or most of a year, the microbial 16S rRNA genes from the feces of two

healthy adult men (subjects A and B) were PCR amplified and sequenced. The sequence data

were downloaded from the European Nucleotide Archive (ENA), and the taxonomic composi-

tions of the samples were analyzed by VITCOMIC2. LEA was used to predict the topic compo-

sitions from the taxonomic composition data and input the topic compositions into the neural

network to obtain coordinates of the samples on the global map. For the topic composition

prediction, samples with <1,000 sequences assigned to genera were discarded, and samples

with>10,000 sequences were sub-sampled to 10,000 sequences. For comparison, the dataset

of Japanese gut microbiome samples by Nishijima et al. (PRJDB3601)[63] was also down-

loaded, their taxonomic compositions were estimated by VITCOMIC2, their topic composi-

tions were estimated by LEA, and the samples were mapped on the global map. The number of

gut samples was 314 for subject A, 184 for subject B, and 265 for the Japanese population.

To assess the impact of different DNA extraction methods of the human gut microbiome

analysis on the locations on LEA global map, we used the Microbiome Quality Control

(MBQC) dataset reported by Sinha et al. (PRJNA260846)[42]. This dataset contains 16S ampli-

con sequencing data from human stool samples, chemostats, and artificial microbial
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communities. For the same biological sample, there are multiple sequencing data analyzed

with different wet laboratories or different DNA extraction methods. The sequence data were

downloaded from the SRA, and the taxonomic compositions of the samples were analyzed by

VITCOMIC2. LEA was used to predict the topic compositions and obtain coordinates of the

samples on the global map. For the topic composition prediction, samples with<1,000

sequences assigned to genera were discarded, and samples with>10,000 sequences were sub-

sampled to 10,000 sequences. The number of samples was 1558 for human stool samples, 228

for chemostats, 133 for fecal artificial communities, and 130 for oral artificial communities.

For the microbiome data from the highly diverse natural environments, we used the subset

of Earth Microbiome Project (EMP) dataset[47]. The original dataset of EMP contains more

than 27,000 samples of 97 studies, but they also provide the subset of the sample list which

gives as equal as possible representation across EMP Ontology (EMPO)-level 3 sample types

and across studies within those sample types. We downloaded the table of sample identifiers

for the EMP subset of 2,000 samples (emp_qiime_mapping_subset_2k.tsv) from the FTP site

of the EMP project (ftp://ftp.microbio.me/emp/release1). Raw sequence data of each sample

were downloaded from the ENA, and the taxonomic compositions of the samples were ana-

lyzed by VITCOMIC2. LEA was used to predict the topic compositions and obtain coordinates

of the samples on the global map. For the topic composition prediction, samples with<1,000

sequences assigned to genera were discarded, and samples with>10,000 sequences were sub-

sampled to 10,000 sequences. The number of samples used in the LEA mapping was 1760.

For the spatial microbiome distribution, we sampled the Tamagawa river in Japan. Its

source is at the peak of Mt. Kasatori, and it flows through the Yamanashi, Tokyo, and Kana-

gawa prefectures. The river’s basin area is 1,240 km2, its total length is 138 km, and the altitude

of its source is 1,953 m. We sampled the river’s water on May 26 and 27, 2015 at 38 points

from its upper region to its estuary (S5 Fig, S1 Table). Sampling was carried out during sunny

weather and no precipitation had occurred for the 4 days before sampling. Samples were col-

lected from the river’s surface water (defined as flowing water no deeper than ~30 cm from the

river surface) using a ladle at the riverbank without disturbing the sediment. At least 500 ml of

water was sampled at each site and then immediately injected into a sterile polypropylene bot-

tle. Samples were transported in an insulated box containing a refrigerant and were moved to

a refrigerator at 4˚C within the day. The water of each sample was filtered through a 0.2-μm

membrane within 5 days of sampling. Each filter was quickly placed in a sterile tube and stored

frozen at –20˚C. DNA was extracted from the material on each filter using the PowerWater

DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA) with bead homogenization on a

Micro Smash MS-100R (TOMY, Tokyo) at 3,000 rpm for 30 s. PCR amplification was per-

formed using the primers 342F and 806R, which are V3–V4 region universal primers for pro-

karyotic 16S rRNA genes[64], and Ex Taq DNA polymerase (Takara, Shiga, Japan) with a

denaturation step at 98˚C for 2 min, followed by 30 cycles at 98˚C for 10 s, 50˚C for 30 s, and

72˚C for 40 s, and a final extension step at 72˚C for 10 min. PCR products were purified with

the Agencourt AMPure XP system (Beckman Coulter) and sequenced using an Illumina

MiSeq sequencer (Illumina, San Diego, CA, USA). The taxonomic composition of each sample

was analyzed by VITCOMIC2, and topic compositions for the samples were predicted by LEA.

The Tamagawa river microbiome data has been deposited in DDBJ BioProject database; acces-

sion number: PRJDB5936.

Supporting information

S1 Fig. Relationship between the perplexity value of the model and the number of topics.

The perplexity of a 5,000-microbe sample test set was calculated using results from the Corr-
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LDA model inference for the training set with different numbers of topics. For each number of

topics, the average value of the calculated perplexities from five independent Markov chains is

shown. The error bars represent the standard deviation. The perplexity decreased monotoni-

cally as the number of topics increases, and ~80–100 topics are sufficient to obtain a suffi-

ciently small perplexity value.

(PDF)

S2 Fig. Word sets and microbial sub-communities for topics #0 - #39. For each of the topics,

the picture used in the LEA global map, 20 words with the highest generation probabilities,

and the pie chart for the genus generation probability are shown. In each pie chart, the genera

with the 15 highest generation probabilities are color-coded by their phylum level taxonomy,

and other less probable genera are in gray.

(PDF)

S3 Fig. Word sets and microbial sub-communities for topics #40 - #79.

(PDF)

S4 Fig. LEA mapping of the time series of gut microbiome samples from subjects A and B

on the global map. The maps of the daily gut microbial community structures retrieved from

two individuals are shown (data from David et al.; PRJEB6518). Most of the samples were

mapped to “the area of the gut” as learned by pre-existing samples. (Top) The color gradation

represents when the samples were taken from the gut of each subject. (Bottom) The samples

(colored dots) on the map are colored according to their associated times. Samples during a

particular event (traveling and infection) are highlighted by the star-shaped plots. The trajec-

tory of samples is indicated by a dotted line. The dark gray dots on the map represent the sam-

ples used for training. (A) The map of the gut microbiome of subject A. The gut environment

of subject A was very stable and had a similar taxonomic composition and topic composition

over much of the year. However, this stability was disturbed when subject A traveled from his

home in an urban area in the United States to Southeast Asia where he stayed from day 72 to

day 122 and ate the local diet. Most of the samples that lay outside the cluster are those col-

lected during the subject’s stay in Southeast Asia. We assume that the disturbance of the gut

microbiome of the subject during his stay in Southeast Asia reflects his exposure to the local

diet and environment. As a comparison, gut microbiomes taken from 106 healthy Japanese

subjects are mapped as pink dots (data from Nishijima et al.; PRJDB3601). Interestingly, at the

beginning of subject A’s stay in Southeast Asia, the positions of some of his samples were near

those of the Japanese subjects (Day 87). (B) The map of the gut microbiome of subject B. The

topic composition of the subject was stable and near topic #28 during the first half of the year.

However, because subject B was infected with Salmonella between days 151 and 159, the

microbial sample taken on the day 155 mapped near topic #68. After recovery from the infec-

tion, subject B’s samples were nearer to topic #16.

(PDF)

S5 Fig. Locations where water from the Tamagawa river was sampled. The red points iden-

tify the sampling sites of the surface water of the Tamagawa river. Black lines indicate drainage

systems around the Tamagawa river. This figure is created based on the base map data down-

loaded from Geospatial Information Authority of Japan.

(PDF)

S6 Fig. Evaluation of similarities of microbial sub-communities between topics. (A) Simi-

larities of topics were assessed by the Jensen-Shannon divergence of genera probabilities

between pairs of the 80 topics. Most of the values were distributed near or at 1.0, which
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represents maximum divergence. The lowest value, identified by the arrow, was 0.3970 for top-

ics #19 and #54. (B) The probabilities of genera among the most similar pair of topics, topics

#19 and #54. (C) Similarities of topics were assessed by the Jensen-Shannon divergence of

word probabilities between pairs of the 80 topics. Compared to the case of genera probabilities,

there are many more similar topic pairs in word probabilities. The lowest value, identified by

the arrow, was 0.0490 for topics #43 and #52. (D) The probabilities of words among the most

similar pair of topics, topics #43 and #52.

(PDF)

S7 Fig. Stability of the topic proportion calculations for the Tamagawa river microbiome.

Topic proportions were calculated by drawing 100 samples from 100 independent Gibbs sam-

pling chains with different initial settings. Bars represent the average values and the error bars

represent standard deviations of 100 samples. Topic proportions were stable among different

chains at any point on the Tamagawa river.

(PDF)

S8 Fig. Topics associated to specific environments. Each bar represents a probability of the

environment associated words of each topic. Topics that can generate a specific word with

above a probability of 5% (red line) was decided as environment-associated topics.

(PDF)

S9 Fig. The bias of the number of samples associated with each environment. The vertical

axis shows the proportion of environment-associated topics per sample, and the horizontal

axis shows 30,718 samples. Samples were ordered by the proportion of the corresponding top-

ics.

(PDF)

S10 Fig. LEA mapping of microbiome quality control dataset. LEA mapping of Microbiome

Quality Control (MBQC) dataset. (A) Colored crosses represent all 2,049 samples of Micro-

biome Quality Control Project on the LEA global map. These contain human-derived samples

(pink), chemostat samples (light blue), artificial fecal communities (green), and artificial oral

communities (orange). (B-S) LEA mapping results of samples for each subject. Colored crosses

indicate samples derived from each subject. Different colors indicate the samples obtained

with different DNA extraction methods.

(PDF)

S11 Fig. LEA mapping of earth microbiome project dataset. LEA mapping results of 2,000

subset of Earth Microbiome Project (EMP) dataset. Groups of samples were separately dis-

played according to their EMP Ontology-Level 3 labels. (A-Q) Colored crosses indicate EMP

samples. In panels J, K, M, N, O, P, and Q, samples were colored by their host species.

(PDF)

S1 Table. Sampling sites of the Tamagawa river.

(XLSX)

S2 Table. Additionally removed words.

(XLSX)

S3 Table. Vocabulary of taxonomic composition data.

(XLSX)

S4 Table. Vocabulary of sample description data.

(XLSX)
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